*ReciprocalFn* | *documentation* (*ReciprocalFn* ?NUMBER) is the reciprocal *element* of ?NUMBER with respect to the multiplication operator (*MultiplicationFn*), i.e. 1/?NUMBER. *Not* all numbers have a reciprocal *element*. For example the number 0 does *not*. If a number ?NUMBER has a reciprocal ?RECIP, then the product of ?NUMBER *and* ?RECIP will be 1, e.g. 3*1/3 = 1. The reciprocal of an *element* is *equal* to applying the *ExponentiationFn* function to the *element* to the power -1 | |

**has axiom** (*equal* (*ReciprocalFn* ?NUMBER) (*ExponentiationFn* ?NUMBER -1))
| |

**has axiom** (*equal* 1 (*MultiplicationFn* ?NUMBER (*ReciprocalFn* ?NUMBER)))
| |

**has domain1** Quantity | |

**has ***range* Quantity | |

**is an ***instance* of RelationExtendedToQuantities | |

**is an ***instance* of UnaryFunction | |

Relation | **is first ***domain* of *domain* | |

**is first ***domain* of *domainSubclass* | |

**is first ***domain* of *holds* | |

**is first ***domain* of *subrelation* | |

**is first ***domain* of *valence* | |

**is second ***domain* of *subrelation* | |

BinaryRelation | **is first ***domain* of *DomainFn* | |

**is first ***domain* of *equivalenceRelationOn* | |

**is first ***domain* of *inverse* | |

**is first ***domain* of *irreflexiveOn* | |

**is first ***domain* of *partialOrderingOn* | |

**is first ***domain* of *RangeFn* | |

**is first ***domain* of *reflexiveOn* | |

**is first ***domain* of *totalOrderingOn* | |

**is first ***domain* of *trichotomizingOn* | |

**is second ***domain* of *inverse* | |

Function | **is first ***domain* of *AssignmentFn* | |

**is first ***domain* of *closedOn* | |

**is first ***domain* of *range* | |

**is first ***domain* of *rangeSubclass* | |

Class | **is third ***domain* of *domain* | |

**is third ***domain* of *domainSubclass* | |

Abstract | **is ***disjoint* from Physical | |