*partialOrderingOn* | *documentation* A BinaryRelation is a partial ordering on a Class only if the relation is *reflexiveOn* the Class, *and* it is both an AntisymmetricRelation, *and* a TransitiveRelation | |

**has axiom** (*<=>* (*totalOrderingOn* ?RELATION ?CLASS) (*and* (*partialOrderingOn* ?RELATION ?CLASS) (*trichotomizingOn* ?RELATION ?CLASS)))
| |

**has axiom** (=> (*partialOrderingOn* ?RELATION ?CLASS) (*and* (*reflexiveOn* ?RELATION ?CLASS) (*instance* ?RELATION TransitiveRelation) (*instance* ?RELATION AntisymmetricRelation)))
| |

**has domain1** BinaryRelation | |

**has domain2** Class | |

**is an ***instance* of AsymmetricRelation | |

**is an ***instance* of BinaryPredicate | |

BinaryRelation | **is first ***domain* of *DomainFn* | |

**is first ***domain* of *equivalenceRelationOn* | |

**is first ***domain* of *inverse* | |

**is first ***domain* of *irreflexiveOn* | |

**is first ***domain* of *partialOrderingOn* | |

**is first ***domain* of *RangeFn* | |

**is first ***domain* of *reflexiveOn* | |

**is first ***domain* of *totalOrderingOn* | |

**is first ***domain* of *trichotomizingOn* | |

**is second ***domain* of *inverse* | |

Predicate | **is first ***domain* of *singleValued* | |

Class | **is third ***domain* of *domain* | |

**is third ***domain* of *domainSubclass* | |

Abstract | **is ***disjoint* from Physical | |