*subrelation* | *documentation* A Relation R is a *subrelation* Relation R' if R is a *subclass* R'. This implies that every tuple of R is also a tuple of R'. Again, if R *holds* for some arguments arg_1, arg_2, ... arg_n, then R' *holds* for the same arguments. Thus, a Relation *and* its *subrelation* must have the same *valence*. In CycL, *subrelation* is called #$genlPreds | |

**has axiom** (=> (*and* (*subrelation* ?PRED1 ?PRED2) (*domain* ?PRED2 ?NUMBER ?CLASS2) (*domain* ?PRED1 ?NUMBER ?CLASS1)) (*subclass* ?CLASS1 ?CLASS2))
| |

**has axiom** (=> (*and* (*subrelation* ?PRED1 ?PRED2) (*instance* ?PRED2 ?CLASS)) (*instance* ?PRED1 ?CLASS))
| |

**has axiom** (=> (*and* (*subrelation* ?PRED1 ?PRED2) (?PRED1 ?INST1 ?INST2)) (?PRED2 ?INST1 ?INST2))
| |

**has axiom** (=> (*and* (*subrelation* ?PRED1 ?PRED2) (?PRED1 ?INST1 ?INST2 ?INST3)) (?PRED2 ?INST1 ?INST2 ?INST3))
| |

**has axiom** (=> (*and* (*subrelation* ?PRED1 ?PRED2) (?PRED1 ?INST1 ?INST2 ?INST3 ?INST4)) (?PRED2 ?INST1 ?INST2 ?INST3 ?INST4))
| |

**has axiom** (=> (*subrelation* ?PRED1 ?PRED2) (exists (?NUMBER) (*and* (*valence* ?PRED1 ?NUMBER) (*valence* ?PRED2 ?NUMBER))))
| |

**has domain1** Relation | |

**has domain2** Relation | |

**is an ***instance* of BinaryPredicate | |

**is an ***instance* of PartialOrderingRelation | |

BinaryRelation | **is first ***domain* of *DomainFn* | |

**is first ***domain* of *equivalenceRelationOn* | |

**is first ***domain* of *inverse* | |

**is first ***domain* of *irreflexiveOn* | |

**is first ***domain* of *partialOrderingOn* | |

**is first ***domain* of *RangeFn* | |

**is first ***domain* of *reflexiveOn* | |

**is first ***domain* of *totalOrderingOn* | |

**is first ***domain* of *trichotomizingOn* | |

**is second ***domain* of *inverse* | |

Predicate | **is first ***domain* of *singleValued* | |

Class | **is third ***domain* of *domain* | |

**is third ***domain* of *domainSubclass* | |

Abstract | **is ***disjoint* from Physical | |