*inverse* | *documentation* The *inverse* of a BinaryRelation is a relation in which all the tuples of the original relation are reversed. In other words, one BinaryRelation is the *inverse* of another if they are equivalent when their arguments are swapped | |

**has axiom** (=> (*and* (*inverse* ?REL1 ?REL2) (*instance* ?REL1 BinaryRelation) (*instance* ?REL2 BinaryRelation)) (forall (?INST1 ?INST2) (*<=>* (*holds* ?REL1 ?INST1 ?INST2) (*holds* ?REL2 ?INST2 ?INST1))))
| |

**has domain1** BinaryRelation | |

**has domain2** BinaryRelation | |

**is an ***instance* of BinaryPredicate | |

**is an ***instance* of SymmetricRelation | |

BinaryRelation | **is first ***domain* of *DomainFn* | |

**is first ***domain* of *equivalenceRelationOn* | |

**is first ***domain* of *inverse* | |

**is first ***domain* of *irreflexiveOn* | |

**is first ***domain* of *partialOrderingOn* | |

**is first ***domain* of *RangeFn* | |

**is first ***domain* of *reflexiveOn* | |

**is first ***domain* of *totalOrderingOn* | |

**is first ***domain* of *trichotomizingOn* | |

**is second ***domain* of *inverse* | |

Predicate | **is first ***domain* of *singleValued* | |

Class | **is third ***domain* of *domain* | |

**is third ***domain* of *domainSubclass* | |

Abstract | **is ***disjoint* from Physical | |