*exhaustiveDecomposition* | *documentation* An *exhaustiveDecomposition* of a Class C is a set of subclasses of C such that every subclass of C either is an *element* of the set or is a *subclass* of an *element* of the set. Note: this does not necessarily mean that the elements of the set are *disjoint* (see partition - a partition is a *disjoint* exhaustive decomposition. | |

**has axiom** (=> (*exhaustiveDecomposition* ?CLASS1 ?CLASS2 ?CLASS3) (forall (?OBJ) (=> (*instance* ?OBJ ?CLASS1) (or (*instance* ?OBJ ?CLASS2) (*instance* ?OBJ ?CLASS3)))))
| |

**has axiom** (=> (*exhaustiveDecomposition* ?CLASS1 ?CLASS2 ?CLASS3 ?CLASS4) (forall (?OBJ) (=> (*instance* ?OBJ ?CLASS1) (or (*instance* ?OBJ ?CLASS2) (*instance* ?OBJ ?CLASS3) (*instance* ?OBJ ?CLASS4)))))
| |

**has axiom** (=> (*exhaustiveDecomposition* ?CLASS1 ?CLASS2 ?CLASS3 ?CLASS4 ?CLASS5) (forall (?OBJ) (=> (*instance* ?OBJ ?CLASS1) (or (*instance* ?OBJ ?CLASS2) (*instance* ?OBJ ?CLASS3) (*instance* ?OBJ ?CLASS4) (*instance* ?OBJ ?CLASS5)))))
| |

**has axiom** (forall (?INT) (*domain* *exhaustiveDecomposition* ?INT Class))
| |

**has domain1** Class | |

**has ***relatedInternalConcept* partition | |

**is an ***instance* of Predicate | |

**is an ***instance* of VariableArityRelation | |

Predicate | **is first ***domain* of *singleValued* | |

Relation | **is second ***domain* of *subrelation* | |

Class | **is third ***domain* of *domain* | |

**is third ***domain* of *domainSubclass* | |

Abstract | **is ***disjoint* from Physical | |