*MinFn* | *documentation* (*MinFn* ?NUMBER1 ?NUMBER2) is the smallest of ?NUMBER1 *and* ?NUMBER2. In cases where ?NUMBER1 is *equal* to ?NUMBER2, *MinFn* returns one of its arguments | |

**has axiom** (=> (*equal* (*MinFn* ?NUMBER1 ?NUMBER2) ?NUMBER) (or (*and* (*equal* ?NUMBER ?NUMBER1) (*lessThan* ?NUMBER1 ?NUMBER2)) (*and* (*equal* ?NUMBER ?NUMBER2) (*lessThan* ?NUMBER2 ?NUMBER1)) (*and* (*equal* ?NUMBER ?NUMBER1) (*equal* ?NUMBER ?NUMBER2))))
| |

**has domain1** Quantity | |

**has domain2** Quantity | |

**has ***range* Quantity | |

**is an ***instance* of AssociativeFunction | |

**is an ***instance* of CommutativeFunction | |

**is an ***instance* of RelationExtendedToQuantities | |

BinaryFunction | **is first ***domain* of *distributes* | |

**is first ***domain* of *identityElement* | |

**is second ***domain* of *distributes* | |

Relation | **is first ***domain* of *domain* | |

**is first ***domain* of *domainSubclass* | |

**is first ***domain* of *holds* | |

**is first ***domain* of *subrelation* | |

**is first ***domain* of *valence* | |

**is second ***domain* of *subrelation* | |

Class | **is third ***domain* of *domain* | |

**is third ***domain* of *domainSubclass* | |

Abstract | **is ***disjoint* from Physical | |