![]() |
Entity > Abstract > Class > Relation > Function > BinaryFunction > CommutativeFunction |
![]() ![]() | ||||
CommutativeFunction | ||||
subject | fact |
CommutativeFunction | documentation A BinaryFunction is commutative if the ordering of the arguments of the function has no effect on the value returned by the function. More precisely, a function ?FUNCTION is commutative just in case (?FUNCTION ?INST1 ?INST2) is equal to (?FUNCTION ?INST2 ?INST1), for all ?INST1 and ?INST2 | ![]() |
has axiom (=> | ![]() | |
is a kind of BinaryFunction | ![]() | |
BinaryFunction | is first domain of distributes | ![]() |
is first domain of identityElement | ![]() | |
is second domain of distributes | ![]() | |
Class | is third domain of domain | ![]() |
is third domain of domainSubclass | ![]() | |
Abstract | is disjoint from Physical | ![]() |
Kinds of CommutativeFunction :