*ComplementFn* | *documentation* The complement of a given Class C is the Class of all things that are *not* instances of C. In other words, an object is an *instance* of the complement of a Class C just in case it is *not* an *instance* of C | |

**has axiom** (*<=>* (*instance* ?ENTITY (*ComplementFn* ?CLASS)) (*not* (*instance* ?ENTITY ?CLASS)))
| |

**has axiom** (*equal* (*RelativeComplementFn* ?CLASS1 ?CLASS2) (*IntersectionFn* ?CLASS1 (*ComplementFn* ?CLASS2)))
| |

**has axiom** (equal NullSet (ComplementFn Entity))
| |

**has domain1** Class | |

**has ***range* Class | |

**is an ***instance* of UnaryFunction | |

BinaryRelation | **is first ***domain* of *DomainFn* | |

**is first ***domain* of *equivalenceRelationOn* | |

**is first ***domain* of *inverse* | |

**is first ***domain* of *irreflexiveOn* | |

**is first ***domain* of *partialOrderingOn* | |

**is first ***domain* of *RangeFn* | |

**is first ***domain* of *reflexiveOn* | |

**is first ***domain* of *totalOrderingOn* | |

**is first ***domain* of *trichotomizingOn* | |

**is second ***domain* of *inverse* | |

Function | **is first ***domain* of *AssignmentFn* | |

**is first ***domain* of *closedOn* | |

**is first ***domain* of *range* | |

**is first ***domain* of *rangeSubclass* | |

Class | **is third ***domain* of *domain* | |

**is third ***domain* of *domainSubclass* | |

Abstract | **is ***disjoint* from Physical | |