**1**-
A. Abian (1971), Fixed point theorems of the mappings of
partially ordered sets, Reniconti del circolo mathematico di Palermo 20,
139-142
**2**- S. Abian and A. B. Brown (1961), A theorem on partially ordered sets with applications to fixed point theorems, Canad. J. Math. 13, 78-82
**3**- A. V. Aho, J. E. Hopcroft and J. D. Ullman (1983), Data structures and algorithms, Addison-Wesley, Reading, MA
**4**- K. Baclawski (1976), Homology and combinatorics of ordered sets, Ph. D. thesis, Harvard Univ.
**5**- K. Baclawski (1977), Galois connections and the Leray spectral sequence, Adv. in Math. 25, 191-215
**6**- K. Baclawski (1996), A fixed point algorithm for ordered sets, submitted to the proceedings of the Rotafest
**7**- K. Baclawski and A. Björner (1979), Fixed points in partially ordered sets, Adv. Math. 31, 263-287
**8**- K. Baclawski and A. Björner (1981), Fixed points and complements in finite lattices, J. Combin. Theory, Ser. A 30, 335-338
**9**- H. J. Bandelt and M. van de Vel (1987), A fixed cube theorem for median graphs, Discrete Math. 67, 129-137
**10**- M. F. Bélanger, J. Constantin, G. Fournier (1994), Graphes et ordonnes démontables, propriété de la clique fixe, Discrete Math. 130, 9-17; previously: Université de Sherbrooke, Rapport no. 44 (1986, revised 1988)
**11**- A. Björner (1981), Homotopy type of posets and lattice complementation, J. Combin. Theory Ser. A 30, 90-100
**12**- A. Björner (1982), problem presented in I. Rival (ed.), Ordered sets, D. Reidel, p. 838
**13**- A. Björner and I. Rival (1980), A note on fixed points in semimodular lattices, Discrete Math. 29, 245-250
**14**- B. Bollobás (1979), Graph theory, Graduate texts in mathematics nr. 63, Springer Verlag, New York
**15**- R. Brown (1982), The fixed point property and cartesian products, Amer. Math. Monthly, November issue, 654-678
**16**- S. Carl and S. Heikkilä (1990), On a parabolic boundary value problem with discontinuous nonlinearity, Nonlinear Anal. 15, 1091-1095
**17**- S. Carl and S. Heikkilä (1992), An existence results for elliptic differential inclusions with discontinuous nonlinearity, Nonlinear Anal. 18, 471-479
**18**- J. Constantin and G. Fournier (1985), Ordonnes escamotables et points fixes, Discr. Math. 53, 21-33
**19**- E. Corominas (1990), Sur les ensembles ordonnés projectifs et la propriété du point fixe, C. R. Acad. Sci. Paris 311 Série 1, 199-204
**20**- P. Cousot and R. Cousot (1979), Constructive Versions of Tarski's Fixed Point Theorems, Pacific J. Math. 82, 43-57
**21**- P. Cousot and R. Cousot (1979), A Constructive Characterization of the Lattices of all Retractions, Preclosure, Quasi-closure and Closure Operators on a Complete Lattice, Portugaliae Mathematica 38, 185-198
**22**- H. Crapo (1966), The Möbius function of a lattice, Journal Comb. Theory 1, 126-131
**23**- P. Crawley and R. P. Dilworth (1973), Algebraic theory of lattices, Prentice Hall, Englewood Cliffs, NJ
**24**- Anne C. Davis (1955), A Characterization of Complete Lattices, Pacific J. Math. 5, 311-319
**25**- R. DeMarr (1963), Common fixed points for commuting contraction mappings, Pac. J. Math. 13, 1139-1141
**26**- M. Donalies (1997), M.S. thesis, Hampton University, in progress
**27**- B. Dreesen, W. Poguntke and P. Winkler (1985), Comparability invariance of the fixed point property, Order 2, 269-274
**28**- D. Duffus (1984), Automorphisms and products of ordered sets, Algebra Universalis 19, 366-369
**29**- D. Duffus and T. Goddard (1996), The complexity of the fixed point property, submitted to Order
**30**- D. Duffus, W. Poguntke and I. Rival (1980), Retracts and the fixed point problem for finite partially ordered sets, Canad. Math. Bull. 23, 231-236
**31**- D. Duffus and I. Rival (1976), Crowns in dismantlable partially ordered sets, Coll. Math. Soc. Janos Bolyai 18, 271-292
**32**- D. Duffus and I. Rival (1979), Retracts of partially ordered sets, J. Austral. Math. Soc. (Series A) 27, 495-506
**33**- D. Duffus and I. Rival (1981), A structure theory for ordered sets, Discr. Math. 35, 53-118
**34**- D. Duffus, I. Rival and M Simonovits (1980), Spanning retracts of a Partially Ordered Set, Discr. Math. 32, 1-7
**35**- D. Duffus, V. Rödl, B. Sands, R. Woodrow (1992), Enumeration of order-preserving maps, Order 9, 15-29
**36**- D. Duffus and N. Sauer (1987), Fixed points of products and the strong fixed point property, Order 4, 221-231
**37**- P. Edelman (1979), On a fixed point theorem for partially ordered sets, Discr. Math. 15, 117-119
**38**- K. Ewacha, I. Rival (1994), private communication on the number of 12-element cores with the fixed point property
**39**- J. D. Farley (1993), The uniqueness of the core, Order 10, 129-131
**40**- J. D. Farley (1995), Perfect sequences of cc posets, submitted to Discrete Mathematics
**41**- D. C. Fisher and A. E. Solow (1990), Dependence Polynomials, Discrete Math. 82, 251-258
**42**- T. Fofanova (1980), On the fixed point property of partially ordered sets, Colloq. Math. Soc. Janos Bolyai 33, 401-406
**43**- T. Fofanova and A. Rutkowski (1987), The fixed point property in ordered sets of width two, Order 4, 101-106
**44**- T. Fofanova, I. Rival, A. Rutkowski (1994), Sets of dimension 2 and the fixed point property, preprint
**45**- M. R. Garey and D. S. Johnson (1979), Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco
**46**- M. Gikas (1986), Fixed points and structural problems in ordered sets, Ph. D. dissertation, Emory University
**47**- K. Grant, R. Nowakowski, I. Rival (1995), The endomorphism spectrum of an ordered set, Order 12, 45-55
**48**- S. Hazan, V. Neumann-Lara (1995), Fixed points of posets and clique graphs, to appear in Order
**49**- S. Heikkilä (1990), On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities, Nonlinear Anal. 14, 413-426
**50**- S. Heikkilä (1990), On differential equations in ordered Banach spaces with applications to differential systems and random equations, Differential Integral Equations 3, 589-600
**51**- S. Heikkilä (1992), On extremal solutions of operator equations in ordered normed spaces, Applicable Analysis 44, 77-97
**52**- S. Heikkilä (1992), Fixed point results in ordered normed spaces with applications to abstract and differential equations, Journal of Mathematical Analysis and Applications 163, 422-437
**53**- S. Heikkilä (1995), On recursions, iterations and well-orderings, Nonlinear Times and Digest 2, 117-124
**54**- S. Heikkilä, V Lakshmikantham, Y. Sun (1992), Fixed point results in ordered normed spaces with applications to abstract and differential equations, J. Math. Anal. Appl. 163, 422-437
**55**- S. Heikkilä and V. Lakhshmikantham (1994), On first order differential equations in ordered Banach spaces, WSSIAA3, 293-301
**56**- S. Heikkilä and V. Lakhshmikantham (1994), Monotone iterative techniques for discontinuous nonlinear differential equations, Marcel Dekker Inc., New York, 1994
**57**- S. Heikkilä and V. Lakhshmikantham (1995), On mild solutions of first order discontinuous semilinear differential equations in Banach spaces, Applicable Analysis 56, 131-146
**58**- S. Heikkilä and H. Salonen (1995), Applications of a recursion method to game theory and to mathematical programming, preprint
**59**- C. Hoede and X. Li (1994), Clique polynomials and independent set polynomials of graphs, Discrete Math. 125, 219-228
**60**- H. Höft (1987), Bound sets in partial orders and the fixed point property, Can. Math. Bull. 4, 421-427
**61**- H. Höft and M. Höft (1976), Some fixed point theorems for partially ordered sets, Can. J. Math. 28, 992-997
**62**- H. Höft and M. Höft (1988), Fixed point invariant reductions and a characterization theorem for lexicographic sums, Houston Journal of Mathematics 14 no. 3, 411-422
**63**- H. Höft and M. Höft (1991), Fixed point free components in lexicographic sums with the fixed point property, Demonstratio Mathematica XXIV, 294-304
**64**- M. Höft (1987), A fixed point theorem for multifunctions and an application, Alg. Univ. 24, 283-288
**65**- S. Homer and M. Peinado (1996), On the performance of polynomial time clique approximation algorithms on very large graphs, to appear in a DIMACS volume JMP E. Jawhari, D. Misane and M. Pouzet (1986), Retracts: Graphs and ordered sets from the metric point of view, in ``Combinatorics and ordered sets", Contemp. Math. 57, 175-226
**66**- B. Jónsson (1982), Arithmetic of ordered sets, in Ordered Sets (ed. I. Rival), D. Reidel, Dordrecht, 3-41
**67**- D. Kelly (1985), Comparability graphs, in Graphs and Order (ed. I. Rival), D. Reidel, Dordrecht, 3-40
**68**- B. Knaster (1928), Un theoreme sur les fonctions d'ensembles, Ann. Soc. Polon. Math. 6, 133-134
**69**- B. Larose (1991), On finite projective ordered sets, preprint
**70**- B. Li (1993), The core of a chain complete poset with no one-way infinite fence and no tower, Order 10, 349-361
**71**- B. Li (1995), The ANTI-order for caccc posets - Part I, to appear in Discrete Mathematics
**72**- B. Li (1995), The ANTI-order for caccc posets - Part II, to appear in Discrete Mathematics
**73**- B. Li and E. C. Milner (1992), The PT order and the fixed point property, Order 9, 321-331
**74**- B. Li and E. C. Milner (1993), A chain complete poset with no infinite antichain has a finite core, Order 10, 55-63
**75**- B. Li and E. C. Milner (1995), From finite posets to chain complete posets having no infinite antichain, Order 12, 159-171
**76**- B. Li and E. C. Milner (1995), The ANTI-order and the fixed point property, to appear in Discrete Mathematics
**77**- B. Li and E. C. Milner (1995), Isomorphic ANTI-cores of caccc posets, to appear in Discrete Mathematics
**78**- J. Lindenstrauss and L. Tzafriri (1973), Classical Banach spaces, Springer Lecture Notes in Mathematics 338, Springer Verlag, New York
**79**- A. Lubiw (1981), Some NP-complete problems similar to graph isomorphisms, SIAM Journal of Computing 10, 11-21
**80**- T. McKee and E. Prisner (1996), An approach to graph-theoretic homology, submitted to the Proceedings of the Eigth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications, Kalamazoo, MI
**81**- R. Möhring (1989), Computationally tractable classes of ordered sets, in: I. Rival (ed.), Algorithms and Order, Kluwer Acad. Publ., Dordrecht, 105-193
**82**- R. Nowakowski, I. Rival (1979), A fixed edge theorem for graphs with loops, J. Graph Theory 3, 339-350
**83**- R. Nowakowski, P. Winkler (1983), Vertex-to-vertex pursuit in a graph, Discrete Math. 43, 235-239
**84**- A. Pelczar (1961), On the invariant points of a transformation, Annales Polonici Mathematici XI, 199-202
**85**- D. Pickering, M. Roddy (1992), On the strong fixed point property, Order 9, 305-310
**86**- D. Pickering, M. Roddy and J. Stadel (1991), The strong fixed point property for small sets, Order 8, 29-32
**87**- N. Polat (1993), Finite invariant sets in infinite graphs, Period. Math. Hungar. 27, 125-136
**88**- N. Polat (1994), Invariant graphs for a family of endomorphisms - a survey, papier de recherche no. 19, IAE de Lyon
**89**- N. Polat (1995), Retract-collapsible graphs and invariant subgraph properties, J. Graph Theory 19, 25-44
**90**- T. Poston (1971), Fuzzy Geometry, Ph.D. Thesis, University of Warwick
**91**-
D. Quillen (1978),
Homotopy properties of the poset of nontrivial
*p*-subgroups of a group, Adv. Math. 28, 101-128 **92**- A. Quilliot (1983), Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques, Thèse de doctorat d'état, Univ. Paris VI
**93**- A. Quilliot (1983), An application of the Helly property to the partially ordered sets, J. Comb. Theory (A) 35, 185-198
**94**- A. Quilliot (1985), On the Helly property working as a compactness criterion for graphs, J. Comb. Theory (A) 40, 186-193
**95**- I. Rival (1976), A fixed point theorem for finite partially ordered sets, Journal of Combinatorial Theory (A) 21, 309-318
**96**- I. Rival (1980), The problem of fixed points in ordered sets, Ann. Discrete Math. 8, 283-292
**97**- I. Rival (1982), The retract construction, in: I. Rival (ed.), Ordered Sets, D. Reidel, 97-122
**98**- I. Rival ed. (1982), Ordered sets, Dordrecht-Reidel, Boston
**99**- I. Rival (1984), Unsolved problems, Order 1, 103-105
**100**- I. Rival ed. (1984), Graphs and order, Dordrecht-Reidel, Boston
**101**- I. Rival (1985), Unsolved problems: The fixed point property, Order 2, 219-221
**102**- I. Rival ed. (1989), Algorithms and order, Kluwer, Dordrecht-Boston
**103**- I. Rival and A. Rutkowski (1991), Does almost every isotone self-map have a fixed point?, in: Extremal Problems for Finite Sets, Bolyai Soc. Math. Studies 3, Viségrad, Hungary, 413-422
**104**- M. Roddy (1994), Fixed points and products, Order 11, 11-14
**105**- G.-C. Rota (1964), On the foundations of combinatorial theory I: Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie verw. Gebiete 2, 340-368
**106**- G.-C. Rota (1971), On the combinatorics of the Euler characteristic, Studies in Pure Mathematics (Rado Festschrift issue), 221-233
**107**- A. Rutkowski (1985), Multifunctions and the fixed point property for products of ordered sets, Order 2, 61-67
**108**- A. Rutkowski (1986), Cores, cutsets and the fixed point property, Order 3, 257-267
**109**- A. Rutkowski (1986), The fixed point property for sums of posets, Demonstratio Math. 4, 1077-1088
**110**- A. Rutkowski (1989), The fixed point property for small sets, Order 6, 1-14
**111**- A. Rutkowski (1991), Some observations concerning the fixed point property for ordered sets, Bulletin of the Polish Academy of Sciences 39, 271-278
**112**- A. Rutkowski, B. Schröder (1994), Retractability and the fixed point property for products, Order 11, 353-359
**113**- A. Rutkowski, B. Schröder (1994), A fixed point theorem with applications to truncated lattices, preprint
**114**- B. Schröder (1992), On the number of nondismantlable sets with the fixed point property, Order 8, 325-329
**115**- B. Schröder (1992), The strong fixed point property for lexicographic sums, Order 9, 311-319
**116**- B. Schröder (1993), Fixed point property for 11-element sets, Order 10, 329-347
**117**- B. Schröder (1995), On retractable sets and the fixed point property, Algebra Universalis 33, 149-158
**118**- B. Schröder (1993), On the fixed point property for ordered sets that have as a retract, to appear in Order 13
**119**- B. Schröder (1995), The uniqueness of cores for chain-complete ordered sets, submitted to Order
**120**- B. Schröder (1996), The fixed clique property, submitted to Order
**121**- B. Schröder (1996), Problems related to fixed cliques in graphs, Graph Theory Notes of New York XXX, 42-46
**122**- B. Schröder (1996), Fixed cliques and generalizations of dismantlability, submitted to the Proceedings of the Eigth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications, Kalamazoo, MI
**123**- R. E. Smithson (1971), Fixed points of order-preserving multifunctions, Proc. Amer. Math. Soc. 28
**124**- E. H. Spanier (1966), Algebraic Topology, Springer Verlag, New York
**125**- R. P. Stanley (1979), Balanced Cohen-Macauley Complexes, Trans. Amer. Math. Soc. 249, 139-157
**126**- R. E. Stong (1966), Finite topological spaces, Trans. Amer. Math. Soc. 123, 325-340
**127**- A. Tarski (1955), A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5, 285-309
**128**- W. T. Trotter (1992), Combinatorics and partially ordered sets: dimension theory, Johns Hopkins University Press, Baltimore
**129**- J. W. Walker (1984), I sotone relations and the fixed point property for posets, Discrete Math. 48, 275-288
**130**- J. Wang (1996), Average case computational complexity, to appear in: A. Selman and L. Hemaspaandra (eds.), Complexity theory retrospective II, Springer Verlag
**131**- S. Willard (1970), General Topology, Addison Wesley, Reading, MA
**132**- S. Williamson (1992), Fixed point properties in ordered sets, Ph. D. dissertation, Emory University
**133**- J. S. W. Wong (1967), Common fixed points of commuting monotone maps, Canad. J. Math. 19, 617-620
**134**- W. Xia (1992), Fixed point property and formal concept analysis, Order 9, 255-264

Bernd.S.W.Schroder