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Abstract. In this paper we introduce three soft-decision decoding al-
gorithms for Reed-Solomon (RS) codes. We compare them in terms of
performance over both the AWGN and Rayleigh Fading Channels and
in terms of complexity with a special emphasis on RS codes over IFis.
The algorithms discussed are variants of well known algorithms for bi-
nary codes adapted to the multilevel nature of RS codes. All involve a
re-ordering of the received symbols according to some reliability mea-
sure. The choice of reliability measure for our simulations is based on a
comparison of three in terms of how they affect the codes’ performances.

1 Introduction

It is well known that one way of facilitating soft-decision decoding for linear block
codes is to represent them by a trellis and apply the Viterbi algorithm (VA) to
decode them. However, the complexity of the VA makes its use infeasible for all
but a small number of linear codes. Because of the widespread use of RS codes,
it would be highly desirable to find efficient soft-decision algorithms for them.
Various approaches have been proposed (see [1] for a recent example). This paper
introduces a further three. Our simulations were based around an AWGN and a
Rayleigh fading channel with BPSK (binary-phase-shift-keyed) modulation and
8-level uniform quantisation. Except in a very few cases with extremely long
simulation runs, we based the results on 100 error events (word errors, not bit
errors). Throughout the paper we denote by IFy, a finite field of ¢ = 2! elements
and assume an [n, k] linear code over IF, which can correct ¢ errors.

2 The Algorithms

The Dorsch algorithm was proposed in [2] for binary codes and has more recently
been applied by Fossorier and Lin [3]. Given a code of length n and dimension k
the idea is to find k most reliable symbols whose positions are such that they can
be used as an information set of the code. Various error patterns are added to this
information set and each result is re-encoded. In each case, the distance of the
obtained codeword from the received word is computed. Decoding stops as soon
as we have a maximum-likelihood solution or the number of permitted decoding
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tries has been exhausted (in which case the best solution up to that point is
output). Our first two algorithms (A1 and A2) are based on this technique.

The codeword closest to the received word in terms of the following metric
is the maximum-likelihood solution we want to find.

Definition 1. Let s} = (s1,...,s};) € IFy be the symbol obtained by using hard
decision (si; € {0,7}) on vy = (ri1,...,mi1), the ith received symbol after quan-
tisation. The distance between a received word v = (r1,r2,...,7,) and a word
c=(c1,...,cn) € WY, with ¢; = (ci1, ..., ca) € Fy, is defined as

n
dist(r, ¢) = E (diStsym (7i, ¢i)) where distsym (i, ¢;) E |rij—cijl— E [rij—s Z
i=1

Furthermore, all algorithms produce a continuous stream of possible solutions
which are subjected to a stopping criterion that, if satisfied, is sufficient (though
not necessary) to guarantee a maximume-likelihood solution [4], in which case
the decoding stops. Since we are concerned here with RS codes, any k& symbols
may be used as an information set. Hence we simply sort the symbols according
to reliability (see Chapter [3) and, in algorithm A1, we use the k most reliable
as the information set. A2 repeats A1l using the k least reliable symbols unless
a maximum likelihood solution has already been found by Al.

Fossorier and Lin’s implementation of the Dorsch algorithm checks error
patterns corresponding to ¢ errors in the information set. This has been termed
order-i reprocessing [3]. In our version, we take a slightly different approach
which is closer to the original Dorsch algorithm. Our order for testing the error
patterns to be added to the chosen information set is the proximity of the re-
sulting sequence to the corresponding part of the received word. The index used
is the generalisation of ’dist’ to different length sequences which takes the sum
of all the ’distsym,’s over the symbols of the sequence. This is achieved by using
a stack-type algorithm, whereby stacks of sequences of different lengths are kept
in storage, ordered according to the index. A sequence from the stack of lowest
index is extended in ¢ different ways by appending a symbol, the indices of the
resulting sequences are calculated and they are each put in the appropriate stack.
The memory requirement of this implementation is determined by the maximum
number of decoding tries. Let M DT be this maximum and DT be the number
of decoding tries so far. Then we only need to keep M DT — DT information sets
of smallest index in our array as none of the others will be used.

Our third algorithm (A3) simply applies Al and, if that algorithm does not
produce a maximum-likelihood solution, then a Chase-style algorithm is applied
to the sorted word, i.e. we apply a fixed number of error patterns of least distance
to the least reliable symbols and then use an algebraic decoder to decode. This
approach has already been applied successfully to binary codes by Fossorier and
Lin [5].
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3 Sorting

All the algorithms depend on sorting the received symbols according to some
reliability measure. In the case of binary codes, Fossorier and Lin showed that
on an AWGN and on a Rayleigh fading channel with BPSK modulation, the
absolute value of the received symbol is the most appropriate choice [3]. The
higher that value is, the more reliable hard decision on the received symbol will
be. With RS or indeed any code whose symbols come from a non-binary finite
field we need to find a slightly different approach. In such a case, each ’received
symbol” will, in fact, be a string of symbols which, between them, indicate the
binary representation of the 'received symbol’.

Definition 2. Let r = (r1,...,7) with 0 < r; < 7 be a received symbol after
quantisation and define

!
Rely(r) = Z 3.5 — 7], Rels(r) =min{|3.5—r;||1<i<I}

i=1

l .
and Rela(r) = [ P(hd(r)Ir:), where hd(j) = {(1) Y fj =3

i=1

The natural generalisation of the reliability measure of the binary case is to
add the absolute values of the symbols in the string, thus obtaining an overall
reliability of the 'received symbol’. As we use 8-level uniform quantisation this
translates into Rel; above. Another approach is to use Bayes’ rule. One can
easily determine the probability P(j|0) (resp. P(j]|1)) of a received bit being
quantised to level j given that a 0 (resp. a 1) was transmitted. From that we can
work out the probability P(0|j) (resp. P(1|j)) that a 0 (resp. 1) was transmitted
given that we are in level j. Hence we arrive at Rely. Lastly, the most basic
approach simply takes the least reliable bit in a symbol and uses its value as the
overall reliability of the symbol (Rels). These three reliability measures were felt
to be the most natural ones. It can easily be seen that the higher the computed
reliability of a symbol is, the more likely it is to be correct.

Figure[ (respectively Figure B) contains the results for a [16, 8, 9] ([16,12, 5])
extended RS code over the AWGN channel (see Section B2 for the Rayleigh chan-
nel results), decoded using algorithm Al with a maximum number of decoding
tries corresponding to the number of order-2 (order-2 and order-1) reprocess-
ing attempts with and without sorting. Note that, to compute the probabilities
accurately for Relp, we need to know at which signal-to-noise ratio (SNR) the
bits were transmitted. As this information is not always available in practice, we
computed the probabilities for a SNR of 1dB adjusted by the code rate, R say,
i.e. SNR= R -10%! and used these values throughout. (The simulations showed
that - if anything - this approach proved slightly better than using the exact
values for the different SNRs.)
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Fig. 1. Sorted vs unsorted [16,8,9] ex- Fig. 2. Sorted vs unsorted [16, 12, 5] ex-
tended RS code - 529 decoding tries tended RS code - 1177 and 49 decoding

tries

As can be seen all reliability measures result in a marked improvement over
the unsorted case. The reason why Rels is slightly worse than the other two
(except in the case of 1177 decoding tries for the higher rate code) can be ex-
plained by the observation that the number of different reliability levels attached
to each symbol in that method is rather low (4 compared to 26 for Rel; and 35
for Rely). At 1177 decoding tries, the algorithm performs close to maximum-
likelihood decoding in any case - it is not important whether or not the least
distorted symbols are used as an information set.

Because there was no significant difference between sorting the symbols of
the received words according to Rel; or Rels we used sorting by Rel; in all the
remaining simulations.

4 Number of Decoding Tries

The most crucial feature of the proposed algorithms is the number of decoding
tries they entail. The more decoding tries the more likely it is that we find the
maximum-likelihood solution. However, as Fossorier and Lin [3] demonstrated
the actual gain obtained from further decoding tries has to be measured against
the extra computation involved.

Figure Blis an example of how the maximum number of decoding tries (using
algorithm A1) after sorting (with respect to Rely) can affect the performance
of a code and how this performance compares to the unsorted case. Note that
41449, 5489, and 529 correspond to the number of decoding tries given by order-
4, order-3, and order-2 reprocessing respectively. There is a marked improvement
of about 1dB going from 529 decoding tries to 5489 but only a slight improvement
of roughly 0.25dB when 41449 attempts are used instead of 5489 which does not
justify the almost 8-fold increase in number of decoding tries. However, even then
the complexity of the proposed algorithm is several orders of magnitude lower
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Fig. 3. [16, 8, 9] extended RS code - dif- Fig.4. [16,12,5] extended RS code -
ferent numbers of permitted decoding different numbers of permitted decod-
tries ing tries

than that of the Viterbi algorithm which would have to deal with 168 ~ 4.3 - 10°
states for this code.

Figure M shows the effect of different numbers of permitted decoding tries
(using algorithm A1) for a [16,12, 5] extended RS code. This time we restricted
the number of decoding tries to lie in between 49 and 1177(= number of decoding
tries for order-1 and order-2 reprocessing respectively). Note that decoding after
sorting with a maximum of 250 decoding tries slightly outperforms unsorted
decoding with maximum 1177 decoding tries and there is only a very slight
improvement going from 500 to 1177 decoding tries.

5 Measures of Complexity

The complexity of each algorithm is expressed in terms of additions, multiplica-
tions and comparisons which, for simplicity, are considered equivalent operations.
All the estimates we give are based on our implementation; the idea is to give
a rough idea of how much computational effort has to be expended on decod-
ing. To enable us to compare the results with other algorithms and to eliminate
the code rate as a factor, for each code considered we measure the complexity
in operations per information bit. We compare our results throughout with the
Viterbi algorithm applied to a convolutional code of rate R = 0.5 and memory
k = 7 even though the rate of the RS codes vary. Higher rate convolutional codes
are usually obtained by puncturing which does not greatly affect the number of
operations which can be estimated at 128 comparisons (= number of states) plus
256 additions (= number of branches).

Our implementation of the A1 and A2 algorithms require, before the re-
encoding starts, computing the metric and some values for the stopping criterion
(n(g — 1)? comparisons and nlq additions), sorting the symbols according to
reliability (approximately nlog,(n) comparisons) and reducing a (k, n) matrix to
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reduced echelon form (REF) (nk? multiplications and nk(k — 1) additions). This
latter is performed twice in A2 (two directions of decoding), so the preliminary
operations for algorithm Ar (r=1,2) total:

PopAr = n(logy(n) +1g+ (¢ — 1)* + r(k* + k(k — 1))). (1)

For each decoding try (both algorithms), there are the following approximations:
re-encoding ((n — k)k multiplications and (n — k)(k — 1) additions), determining
the distance from the received word ((n — 1) additions), determining whether
the stopping criterion is satisfied ((n + 2 + nlogy(n) comparisons and n — k + 1
additions), determining the best solution (1 comparison per decoding try after
the first). Thus altogether the algorithm Ar (r=1,2) requires the following total
operations (where DT is the number of decoding tries).

TopAr = PopAr + DT(2(n — k)k + 2n + nlogy(n) +2) + (DT —1) (2)

The estimates for our implementation of the Chase part of A3 are based on a
very general algorithm presented in Stichtenoth [6] and due to A.N.Skorobogatov
and S.G.Vladut. The following are the operations per decoding try: Computing
the syndrome ((n — k)n multiplications and (n — k)(n — 1) additions), checking
whether the syndrome is 0 (n — k comparisons), reducing the (¢,¢+ 1) syndrome
matrix to REF ((¢ + 1)#> multiplications and (¢ 4+ 1)t(t — 1) additions), finding
the error locator polynomial (¢(¢ +1)/2 multiplications and the same number of
additions), determining the roots of that polynomial (a maximum of ¢t multipli-
cations, gt additions and ¢ comparisons), finding the error values ((t+1)(n — k)?
multiplications and (¢ 4+ 1)(n — k)(n — k + 1) additions), obtaining the codeword
(t additions) and computing the distance from the received word and applying
the stopping criterion ((n — 1) + (n — k 4+ 1) additions and (n + 2 4+ nlog,(n))
comparisons). Thus, denoting by DT'C' the number of decoding tries involved
in the error-only decoder, the total number of operations required for the A3
algorithm is given by

TopA3=TopAl + DTC-(2(n —k)n+ (t+1)(2t* + 2¢ + (n — k)(2(n — k) + 1))
+t+3n—k+ 24 g+ nlogy(n)) (3)

As all our algorithms apply a stopping criterion it is easy to see that the
higher the SNR, the fewer the decoding attempts needed on average. In our
simulation we computed the average number of decoding tries per received word
which is then used to compute the total number of operations as given by the
above formulae. It is worth noting that the complexity of all three algorithms is
dominated by the number of decoding tries. Only for high SNRs, when the aver-
age number of decoding tries becomes very small, do the preliminary operations
contribute significantly to the average number of operations per information bit.
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6 Comparing the Three Decoding Algorithms in Terms
of Performance and Complexity

6.1 AWGN Channel

Figures [3, [7] and [0 show the performance of the algorithms when applied to
respectively a [16,8,9], a [16,10,7] and a [16, 12, 5] extended RS code. The num-
bers next to the various algorithms indicate the number of permitted decoding
tries, e.g. for the [16,8,9] code, the A2 algorithm was run with maximum 1500
decoding tries for each side, and the A3 algorithm was run with 529 (first num-
ber) Dorsch-style decoding tries permitted and the same maximum number of
Chase-style decoding tries. We have included the performance of Forney’s GMD
[l and an error-only decoder to enable the reader to compare the new algo-
rithms with two standard ones. Tables[dl, 2 and B show how many decoding tries
were needed for each algorithm at various SNRs. Figures ] [8 and [0 show the
complexity of the algorithms based on the figures in the tables.

Table 1. Ave. num. of decoding tries ([16, 8, 9] extended RS code)

Algorithm 1dB 2dB 3dB 4dB~ 5dB
A1[41449] 40018 36407 27781 14732 4353
A1[3000] 2012 2636 1985 1076 316
A2[1500,1500] 2902 2666 2006 1063 310
A3[529,529]  [519,519] [462, 462] [356, 355] [189, 187] [57, 55]

T
——  uncoded e—=o CC(0.5,7)

o—=o  A1[3000] =—=  A1[3000]
10 = A2[1500,1500] | | +——  A2[1500,1500]
o—  A3[529,529] +——=  A3[529,529]

#——*  Forneys GMD
Error-only

ops per info bit

1 2 3 4 5 6 7 8 9 10 1 15 2 25 3 35 4 45 5 55 6
snrin dB snrin dB

Fig. 5. [16,8,9] extended RS code de- Fig.6. Complexity of the algorithms
coded using A1, A2, and A3 ([16, 8, 9] extended RS code)

Comparing Figure[Bl with Figure[7] in terms of the BER at various SNR there
is hardly any difference between the [16, 8, 9] and the [16, 10, 7] codes, probably
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Table 2. Ave. num. of decoding tries ([16, 10, 7] extended RS code)

Algorithm 1dB 2dB 3dB 4dB_ 5dB
A1[3000] 2865 2513 1805 882 229
A2[1500,1500] 2908 2460 1811 883 229
A3[821,301]  [795,291] [693, 254] [497, 181] [241, 87] [64, 22]

uncoded
A1[3000]
A2[1500,1500] | |
A3[821,303]

Forneys GMD
Error-only

T T
CC(0.5,7)
A1[3000]
A2[1500,1500]
A3[821,301]

ops per info bit

5 6
snrin dB

Fig. 7. [16, 10, 7] extended RS code de-
coded using Al, A2, and A3

15 2 25 3 35 4 45 5 55 6
snrin dB

Fig. 8. Complexity of the algorithms
([16, 10, 7] extended RS code)

Table 3. Ave. num. of decoding tries ([16, 12, 5] extended RS code)

Algorithm  1dB__ 2dB__ 3dB _4dB 5dB 6dB
A1[500] 482 401 305 145 44 7
A2[250,250] 477 403 304 145 44 7
A3[49,17]  [46,15] [41,14] [29, 10] [16, 5] [6,2] [2, 1]

uncoded
A1[500]
A2[250,250]
A3[49,17)
Forneys GMD
Error-only

BER

CC(05,7)
AL[500]
A2[250,250]
A3[49,17]

%

ops per info bit

5 6
snrin dB

Fig. 9. [16, 12, 5] extended RS code de-
coded using Al, A2 and A3

4
snrin dB

Fig.10. Complexity of the algorithms
([16, 12, 5] extended RS code)
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due to the fact that these decoding algorithms are suboptimal and hence do not
achieve the full potential of the lower rate code. In addition, in both Figure[6 and
Figure[8 the pair of curves “A1[3000]” and “A2[1500, 1500]” overlap. However,
whereas the A3 algorithm appears to be the best choice for the [16,10,7] code
in terms of both performance and complexity, for the rate 1/2 code, A2 slightly
outperforms the other two algorithms and (like A3) allows a straightforward
parallel implementation, so it is the preferable choice for this code.

In the case of the [16,12,5] extended RS code the Al algorithm performs
slightly better than the other two. However, it is worth noting that the A3
algorithm achieves good results with a very low maximum number of decoding
tries and that by slightly increasing the number of decoding tries for the A3
algorithm, from [49,17] to [100,50], say, one gets a similar performance to the
Al algorithm while still having a lower complexity and the advantage of being
able to implement it in parallel. This time even for low SNRs the complexity
of A3 is only slightly worse than that of the Viterbi algorithm. At higher SNRs
all algorithms achieve good results with few decoding tries resulting in very few
operations per information bit.

6.2 Rayleigh Fading Channel ([16, 8,9] Extended RS Code Only)

In our simulations we have assumed a perfectly interleaved Rayleigh fading chan-
nel, i.e. the fading amplitudes for each bit were completely independent and no
channel side information was used in the decoding. We have used the same metric
as for the AWGN channel.

Table 4. Ave. num. of decoding tries ([16,8,9] extended RS code (Rayleigh
channel))

Algorithm 2dB 3dB 1dB 5dB 6dB 7dB 8dB
A1[3000] 3000 2029 2865 2670 2383 1941 1307
A2[1500,1500] 3000 2964 2879 2726 2359 1944 1400
A3[529,529]  [529,529] [518, 518] [506, 506] [475, 475] [426, 425] [346, 345] [250, 248

Figure [l shows that the results for the Rayleigh fading channel do not
differ very much from the ones we obtained for the AWGN channel. We see,
as for AWGN in Section [3, that sorting with respect to the reliability measure
Rel; or Rely (the two curves overlap) is better than Rels. Furthermore, as in the
AWGN channel, sorting with 529 decoding tries yields a better performance than
unsorted decoding with 5489 decoding tries. For the Rayleigh fading channel,
sorting yields a coding gain of about 2dB when compared to the unsorted case
with the same number of decoding tries. This time it seems that the algorithms
Al and A2 perform identically. However, looking at the computed BER values,
there is an indication that A2 might outperform A1 slightly for SNRs higher than
these. In terms of complexity - see Figure [2]and Table B - the only difference
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Fig.11. [16,8,9] extended RS code de- Fig.12. Complexity of algorithms
coded using A1,42,A3 (Rayleigh) ([16, 8,9] extended RS code (Rayleigh))

from the AWGN channel is that the average number of decoding tries decreases
more slowly which is obviously due to the nature of the Rayleigh fading channel.
Note that, again, the curves for “A1[3000]” and “A2[1500,1500]” overlap.

7 Conclusion

In this paper we have introduced three suboptimal decoding algorithms for RS
codes all of which achieve a reduction in complexity of several orders of magni-
tude over the Viterbi algorithm for these codes whilst keeping the loss in coding
gain very small. These algorithms are not restricted to RS codes and could be
applied to any linear block code. They achieve their full potential with high rate
codes where a small number of decoding tries yields almost maximum-likelihood
decoding performance with low decoding complexity.
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