

Dynamic Programming	
How to find the most efficient way to insert the paranthesi A direct approach by checking all possibilities will not work. $M = (M_1 M_2 M_i) (M_{i+1} M_{i+2} M_n)$	s.
T(1) = 1 T(1) = 1 $T(n) = \sum_{n=1}^{n-1} T(n) = T(n-i)$	
$T(n) = 1/n \begin{pmatrix} 2n - 2 \\ n - 1 \end{pmatrix}$ $T(n) \in \Omega \ (4^n/n^{3/2})$	
Dr. Nejib Zaguia CSI5163-W14	7

Dynamic Programming	
<pre>Matrix-Chain-Order(p, n) { for i = 1 to n m[i,i] = 0 for len = 2 to n for i = 1 to n - len + 1 j = i + len - 1 m[i,j] = 8 for k = i to j - 1 q = m[i,k] + m[k+1,j] + d[i-1]*d[k]*d[j] if q < m[i,j] = q s[i,j] = k return s }</pre>	
Dr. Nejib Zaguia CSI5163-W14	10

Greedy Algorithm	*
$\begin{array}{c} \label{eq:Greedy algorithm: at each step we choose a task, among the ones left with a minimum processing time. \\ Theorem. The greedy algorithm always lead to an optimal scheduling Proof. Let I = (i_1,i_2,,i_p) an arbitrary permutation of the tasks { 1,2,} If the tasks are scheduled according to the order I then the total we time is: T(I) = t_{i1} + (t_{i1} + t_{i2}) + (t_{i1} + t_{i2} + t_{i3}) + = \sum_{k=1}^{n} (n - k + 1) \\ \text{Suppose I: } 1 = 2 \dots = a \dots = b \dots = k + 1 \\ \text{where } a < b and t_{i_a} > t_{i_b} \\ \text{If we inverse the positions of a and b in I} \\ \Gamma: 1 = 2 \dots = b \dots = a \dots = n \\ with it is in the scheme start in the scheme start is $	t, 3, n}. aiting - 1) t _{ik}
Dr. Nejib Zaguia CSI5163-W14	19

Greedy Algorithn	n	٢
Another Scheduling problem: n unit-time ta penalties. A set S={1, 2,, n} of n unit. A set of n integer deadlines d1, d2,, dn, s task i is supposed to finish by time di A set of n non negative weights g1, g2,, j incurred if tack i is finished by time di	sks with deadlin -tasks. uch that 1≤di≤n gn such that a ga	es and for each i, and uin gi is
incurred if task i is infished by time di.		
i gi di	sibles Seq:	gain
1 50 2	2	10
2 10 1	2	10
2 10 1	4	20
3 15 2	-	65
3 15 2 4 30 1	13	05
3 15 2 4 30 1	1,3	60
3 15 2 4 30 1	1,3 2,1 2,3	60 25
$\begin{array}{rrrr} 3 & 15 & 2 \\ 4 & 30 & 1 \end{array}$ The sequences 1 et 1, 2, 3 corresponds to the	1,3 2,1 2,3 3,1	60 25 65
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1,3 2,1 2,3 3,1 4,1	60 25 65 80
$\begin{array}{rrrr} 3 & 15 & 2 \\ 4 & 30 & 1 \end{array}$ The sequences 1 et 1, 2, 3 corresponds to the same gain. Only task 1 leads to a gain.	1,3 2,1 2,3 3,1 4,1 4,3	60 25 65 80 45

Ø	Greedy Algorithm							
	Char.	Frequency	Fixe	d length	Varial	ble length		
			Code	Total Bits	Code	Total Bits		
	Α	41	000	123	01	82		
	E	35	001	105	10	70		
	Ι	12	010	36	0001	48		
	S	4	011	12	00000	20		
	Т	32	100	96	11	64		
	В	18	101	54	001	54		
	Ν	5	110	15	0000	25		
				441	1	363		
	Dr. Nejib Zaguia CSI5163-W14 28							

1	Another examp	ole: Dynamic Programmin	
	Longest common Sequences $X = Z = $ is a increasing sequence $$	subsequence problem , xs> and Y= <y1, y2,,="" yt=""> subsequence of X if there exists a strictly 1), i(2),, i(k)> of indices of X such that for al</y1,>	l j,
	<a, c,="" k="" z,=""> is a subsec sequence <2, 4, 6, 7> c</a,>	uence of <c, a,="" c,="" f,="" k,="" y="" z,=""> with index or <2, 5, 6, 7></c,>	
	Z is a common subseque and Y.	ence of X and Y if Z is a subsequence of both X	
	X= <a, ,="" a,="" b="" b,="" b,c="" d,=""> A COMMON SUBSEQUEN A longest CS (LCS)</a,>	Y= <b, a="" a,="" b,="" c,="" d,=""> NCE (CS) B,C, A B, C, B, A</b,>	
	12/30/2005	Dr. Nejib Zaguia CSI5163-W14	39

Another example: Dynamic Programming	
LCS-Length(X, Y) set c[i, 0]'s and c[0, j]'s to 0 for i=1 to s for j=1 to t if $x_i=x_j$ the c[i, j] = c[i-1, j-1]- else c[i, j]=max{ c[i, j-1], c[i-1]-1}	⊦1 1, j]}
Dr. Nejib Zaguia CSI5163-W14	43

Greedy vs. Dynamic Programming	
A greedy solution for the fractional problem Compute the v[i]/w[i] for each item i. Sort in decreasing order the items according to the values of v[i]/w[i] For items i=1 to n	
Running time: O(n log n) The same greedy algorithm does not work for the 0-1 knapsack problem	ıg 1
Dr. Nejib Zaguia CSI5163-W14	46

Ð	Gre	eedy v	s. Dyr	nami	c Pr	ogramm	ing	٢	•
Ite	ms	Weight	Gain					20	
Ite	m 1	10	60			_		H	
Ite	m 1	20	100			20		30	
Ite	m 1	30	120			10			
Dynar Sort it optima Then S cnaps Che va Let c[v v	nic pro ems by al solut S'=S-{ acks. alue of i, wj]= then i= then w	y increasing y increasing tion S for a i} must be solution S the value o 0 or w=0 t (i] >w, their	solution g weight. n L kilo an optim is v[i] pl f the solu he c[i, w n c[i, w]=	for 0-1 Let i be knapsace al solut lus the v ition for]=0 = c[i-1,	probl e the l k and ion fo value o r items w]	em: highest-number items 1n. or items 1i-1 a of solution S'. s 1i and maxi	red item und an L mum we	in an -w[i] kilos eight w	
v	nen 1>	o and w w	Dr 1	Veiih Zan	uia C	SI5163-W14	-w[i]], (.[1=1, w]}	47

