
1

Dr. Nejib Zaguia CSI5163-W14 1 1

CSI 5163 (95.573) ALGORITHM ANALYSIS AND DESIGN
Conceptions of algorithms

Divide and Conquer

Dynamic Programming

Greedy Algorithm

2

Algorithmic Paradigms

 Divide-and-conquer. Break up a problem into two sub-

problems, solve each sub-problem independently, and combine
solution to sub-problems to form solution to original problem.

 Dynamic programming. Break up a problem into a series of

overlapping sub-problems, and build up solutions to larger and

larger sub-problems.

 Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

3

Dynamic Programming History

 Bellman. Pioneered the systematic study of dynamic

programming in the 1950s.

 Etymology.

 Dynamic programming = planning over time.

 Secretary of Defense was hostile to mathematical research.

 Bellman sought an impressive name to avoid confrontation.

 "it's impossible to use dynamic in a pejorative sense"

 "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

2

4

Dynamic Programming Applications

 Areas.

 Bioinformatics.

 Control theory.

 Information theory.

 Operations research.

 Computer science: theory, graphics, AI, systems, ….

 Some famous dynamic programming algorithms.

 Viterbi for hidden Markov models.

 Unix diff for comparing two files.

 Smith-Waterman for sequence alignment.

 Bellman-Ford for shortest path routing in networks.

 Cocke-Kasami-Younger for parsing context free grammars.

Dr. Nejib Zaguia CSI5163-W14 5

Dynamic Programming

General idea: try to avoid computing the solution of the same sub problems more
than once, by storing the computed sub solutions.

This technique is used for optimization problems.

Computing is done from bottom to top.

There are usually 4 steps in any dynamic programming algorithm:

 Characterize the structure of the optimal solution.

 Define the optimal solution recursively

 Compute the optimal solution from bottom to top.

 Combine the solutions for smaller problems stocked in the array to construct an
optimal solution of the original problem

Dr. Nejib Zaguia CSI5163-W14 6

Dynamic Programming

Problem: Matrix-chain multiplication
How to compute efficiently the product: M = M1 M2 … Mn Mi : di, di+1

 M = (...(M1 * M2)* M3)... Mn)

 M = (M1 * M2)*(M3 * M4) * ... Mn)

 M = (M1 * (M2 * ... (Mn-1 * Mn)...)

 To compute the product of 2 matrices A(p,q) and B(q,r) we need p*q*r
multiplications.

(A1 x (A2 x A3)) x A4
Coût(A2 x A3) = 20 x 50 x 1
Coût(A1 x (A2 x A3)) = 10 x 20 x 1
Coût((A1 x (A2 x A3)) x A4) = 10 x 1 x 100
Total Cost = 2200

A1 x (A2 x (A3 x A4))
Cost(A3 x A4) = 50 x 1 x 100
Cost(A2 x (A3 x A4)) = 20 x 50 x 100
Cost(A1 x (A2 x (A3 x A4))) = 10 x 20 x 100
Total Cost = 125000

A = A1 x A2 x A3 x A4
 10x20 20x50 50x1 1x100

3

Dr. Nejib Zaguia CSI5163-W14 7

Dynamic Programming

How to find the most efficient way to insert the paranthesis.

A direct approach by checking all possibilities will not

work.

M = (M1 M2 … Mi) (Mi+1 Mi+2 … Mn)

T(i) T(n-i)

T(n) =  T(i) T(n-i)
i=1

n-1

T(1) = 1

T(n) = 1/n ()
2n -2

 n-1

T(n)  (4n/n3/2)

Dr. Nejib Zaguia CSI5163-W14 8

Dynamic Programming

 Dynamic programming approach







1n

1k

))1(O)kn(T)k(T()n(T

1) Structure of an optimal solution

For 1  i  j  n,, m[i, j] denotes the optimal solution for the product Mi Mi+1 … Mj

If M = (M1 M2 … Mi) (Mi+1 Mi+2 … Mn) is an optimal solution then :

(M1 M2 … Mi) is an optimal solution for M1 … Mi

AND

(Mi+1 Mi+2 … Mn) is an optimal solution for Mi+1 … Mn

 0 (i = j)
m[i,j] =
 min { m[i,k] + m[k + 1, j] + di-1dkdj } (i < j)
 i<k<j

)2(n

Dr. Nejib Zaguia CSI5163-W14 9

Dynamic Programming

 Dynamic programming approach

 How to compute m[1, 6]?

} d d d j] 1, m[k k] m[i, { min] j , i [m j k 1 - i
j k i

   
< 

1 2 3 4 5 6

1

2

3

4

5

6

0

0

0

0

0

0

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

m[1,6]

Solution

4

Dr. Nejib Zaguia CSI5163-W14 10

Dynamic Programming

Matrix-Chain-Order(p, n)

{

 for i = 1 to n

 m[i,i] = 0

 for len = 2 to n

 for i = 1 to n - len + 1

 j = i + len - 1

 m[i,j] = 8

 for k = i to j-1

 q = m[i,k] + m[k+1,j] + d[i-1]*d[k]*d[j]

 if q < m[i,j] then

 m[i,j] = q

 s[i,j] = k

 return s

}

Dr. Nejib Zaguia CSI5163-W14 11

Dynamic Programming

Shortest path: Floyd algorithm

Let G = (V,E) be a connected weighted graph, find all shortest paths between any two

vertices in G.

A

B

C
D

E

100

20 5

50

50

10

10

30

C A
B

 Structure of an optimal solution: If a shortest path between A and B

contains a vertex C then the sub paths between A and C and between C

and B are optimal.

 1 2 3 4
1 0 5  

2 50 0 15 5

3 30  0 15

4 15  5 0

Dr. Nejib Zaguia CSI5163-W14 12

Dynamic Programming

The algorithm: We maintain a 2 dimensional array D (initialized with L). Vertices of the graph are
numbered from 1 to n. There are n iterations. After iteration k, D will contain the shortest paths
between any two vertices (i, j), using only vertices from the set {1, 2, …, k}.

At iteration k and for every pair of vertices (i, j) we check whether or not the introduction of vertex k will
give a better shortest path.

Phase k:
 L = D0 , D1 , …….Dn = D

Case 1. Adding vertex k does not give a better solution: Dk [i,j] = Dk-1[i,j]
Case 2. All shortest paths between i and j using the vertices {1, 2, …, k} use the vertex k as an

intermediary vertex.

Dk [i,j] = Dk-1[i,k]+ Dk-1[k,j]}
 Dk[i,j] = min (Dk-1[i,j] , Dk-1[i,k] + Dk-1[k,j])

We need a second 2 dimensional array P in order to keep track of the actual shortest path
between any two vertices:

if D[i,k]+D[k,i] < D[i,j]

 then

 D[i,j] = D[i,k]+D[k,i]

 P[i,j] = k

k i j

5

Dr. Nejib Zaguia CSI5163-W14 13

Dynamic Programming

 0 5  

 50 0 15 5

 30  0 15

 15  5 0

D0=L

 0 5  

 50 0 15 5

 30 35 0 15

 15 20 5 0

D1

Example:

 0 5 20 10

 50 0 15 5

 30 35 0 15

 15 20 5 0

D2

A

B

C

D

30
15

5

15

15
50

5

5

Dr. Nejib Zaguia CSI5163-W14 14

Dynamic Programming

 0 5 20 10

 45 0 15 5

 30 35 0 15

 15 20 5 0

D3

Cont …

 0 5 15 10

 20 0 10 5

 30 35 0 15

 15 20 5 0

D=D4

 0 5 20 10

 50 0 15 5

 30 35 0 15

 15 20 5 0

D2

0 0 4 2

4 0 4 0

0 1 0 0

0 1 0 0

P

Dr. Nejib Zaguia CSI5163-W14 15

Dynamic Programming

Floyd(n, L[] [], P[][])

 array D of size n x n

 array P of size n x n

 D = L; P=0

 for(k=1; k<=n; k++)

 for(i=1; i<=n; i++)

 for(j=1; j<=n; j++)

 if D[i,k]+D[k,j] < D[i,j]

 D[i,j] = D[i,k]+D[k,j]

 P[i, j] = k

 return D

n

n

n

O(n3)

Constant

6

Dr. Nejib Zaguia CSI5163-W14 16

Greedy Algorithm

Problem: Making change for n cents using the least number of coins.

Greedy algorithm: At each step, return the largest possible coin
Example 1: Coins: 25c 10c 5c 1c
Making change of 87c: 3 x 25c + 1 x 10c + 2 x 1c

Example 2: Coins: 25c 10c 12c 5c 1c
Making change of 16c: 1 x 12c + 4 x 1c

(Optimal solution: 1x 10c + 1x 5c + 1x 1c (3 coins))

function change(C: set {coins}; s: integer): set with repititions
 S :=  {solution}
 while s > 0 do
 p := largest coin in C such that its value does not exceed s;
 S := S  {p}
 s := s-p
 return S

Dr. Nejib Zaguia CSI5163-W14 17

Greedy Algorithm

A greedy algorithm go through a sequence of steps with a set of
choices at each step. It makes the choice that looks best at the
moment.

Greedy algorithms are usually simple and easy to implement.
Typically used for optimization problems.

Greedy algorithms do not always lead to an optimal solution

General Scheme of a greedy algorithm:
C: set of candidates
S := 
while S is not a solution and C  
 x := element in C that maximizes the selection criteria
 C := C - x
 if (S  {x}) is realizable then S := S  {x}

if S is a solution then return S
 else return no-solution

Dr. Nejib Zaguia CSI5163-W14 18

Greedy Algorithm

Greedy algorithm for a task scheduling problem: minimizing

the total waiting time.
We have a set of n tasks {1, 2, …, n} to be processed sequentially by a

single processor. Each task has a processing time ti. The goal is to

minimize the total waiting time of all tasks

 (time spent by client i in the system: from start to finishing of task i)
i=1

n

Example: 3 tasks
There are 6 possible orders:

123: 5 + (5 + 10) + (5 + 10 + 3) = 38

132: 5 + (5 + 3) + (5 + 3 + 10) = 31

213: 10 + (10 + 5) + (10 + 5 + 3) = 43

231: 10 + (10 + 3) + (10 + 3 + 5) = 41

312: 3 + (3 + 5) + (3 + 5 + 10) = 29

321: 3 + (3 + 10) + (3 + 10 + 5) = 34

t1 = 5

t2 = 10

t3 = 3

7

Dr. Nejib Zaguia CSI5163-W14 19

Greedy Algorithm

Greedy algorithm: at each step we choose a task, among the ones left,
with a minimum processing time.

Theorem. The greedy algorithm always lead to an optimal scheduling
Proof. Let I = (i1,i2,…,in) an arbitrary permutation of the tasks {1,2, …, n}.

If the tasks are scheduled according to the order I then the total waiting

time is: T(I) = ti1 + (ti1 + ti2) + (ti1 + ti2 + ti3) + …..

Suppose I: 1 2 …..….. a ………... b ………….… n
 where a < b and tia > tib
If we inverse the positions of a and b in I
 I’: 1 2 …..….. b ………... a ………….… n

 ti1 ti2 …..….tib ………...tia ……….… tin

k=1

n

= (n - k + 1) tik

T(I') = (n - a + 1) tib + (n - b + 1) tia +  (n - k + 1) tik

k = 1

k  {a,b}

n

Dr. Nejib Zaguia CSI5163-W14 20

Greedy Algorithm

Thus:

T(I') = (n - a + 1) tib + (n - b + 1) tia +  (n - k + 1) tik
 k = 1

k  {a,b}

n

T(I) - T(I') = (n - a + 1) (tia- tib) + (n - b + 1) (tib - tia)

 = (b-a) (tia- tib) > 0

Therefore the scheduling I’ is better than I. Thus the greedy

algorithm is always optimal, and any optimal solution is

necessarily constructed using the greedy algorithm.

k=1

n

T(I) = (n - k + 1) tik

Dr. Nejib Zaguia CSI5163-W14 21

Greedy Algorithm

i gi di

1 50 2

2 10 1

3 15 2

4 30 1

Another Scheduling problem: n unit-time tasks with deadlines and

penalties. A set S={1, 2, …, n} of n unit-tasks.

A set of n integer deadlines d1, d2, …, dn, such that 1≤di≤n for each i, and

task i is supposed to finish by time di

A set of n non negative weights g1, g2, …, gn such that a gain gi is

incurred if task i is finished by time di.

Possibles Seq: gain

 1 50

 2 10

 3 15

 4 30

 1,3 65

 2,1 60

 2,3 25

 3,1 65

 4,1 80

 4,3 45

The sequences 1 et 1, 2, 3 corresponds to the

same gain. Only task 1 leads to a gain.

8

Dr. Nejib Zaguia CSI5163-W14 22

Greedy Algorithm

A set of tasks is realizable if there exists at least one ordering of the tasks T that
permits to all tasks in T to be executed before the delay.

Theorem: A set of tasks T is realizable if and only if all tasks of T are executed

before the delay when the tasks of T are sorted in increasing order with respect
to delay.

Proof: Assume that S is realizable with some order:

t1 t2 … ti … tj … tk with d(tj) < d(ti).

By exchanging ti et tj i the order of S we obviously obtain a realizable order:

 t1 t2 … tj … ti … tk

Repetitively, we obtain an increasing order which is realizable. The converse is
obviously true.

How do we know if a set of tasks is realizable?

It is enough to test the tasks in one specific order: increasing order with respect to
delay.

Dr. Nejib Zaguia CSI5163-W14 23

Greedy Algorithm

Greedy Algorithm:
 At each step, take the task not considered yet, and with the largest value

gi. If the new set of tasks is realizable, add that task to the solution,
otherwise disregard the task.

Sort the set of tasks in decreasing order T with respect to gain
S:= 
repeat
 Choose the task e T with the largest gain
 T := T - e
 If S  e is realizable
 S := S  e
until T is empty

O(n log n)

Number of steps n-1. Need (i-1) comparisons to add the ith

task, i comparisons to verify that if the set is realizable

 [(i-1) + i] = n2 -1
i=2

n

Dr. Nejib Zaguia CSI5163-W14 24

Greedy Algorithm

Huffman Code
 A statistical compression of data, it permits to reduce the

length of the coding of an alphabet.

 The Huffman code (1952) is an optimal variable length,

that is the average length of the coded text is minimal.

 We notice a size reduction of the order of 20 to 90%.

9

Dr. Nejib Zaguia CSI5163-W14 25

Greedy Algorithm

 Codes with fixed length: each character is coded

with the same number of bits.

 For C characters we need log2 C bits

 Simple, and easy to manipulate

N 110

B 101

T 100

S 011

I 010

E 001

A 000

A E I S T B N

0

0

0 1 0 1

1 0

0 1 0

1

1

Dr. Nejib Zaguia CSI5163-W14 26

Greedy Algorithm

 Example 2

A E I S T B

N

0

0

0 1 0 1

1 0

0 1

1

1

000 001 010 011 100 101

11

N 11

B 101

T 100

S 011

I 010

E 001

A 000

 variable length

Dr. Nejib Zaguia CSI5163-W14 27

 Example 3

Greedy Algorithm

 I

B

A E T

S N

0

0

0

0

0 1

1

1

1 1 0

1

00000 00001

0001

001

01 10 11

Symbol Code

00001 N

001 B

11 T

00000 S

0001 I

10 E

01 A

TEST = 11100000011

10

Dr. Nejib Zaguia CSI5163-W14 28

Greedy Algorithm

110

101

100

011

010

001

000

Code

Fixed length

441

15

54

96

12

36

105

123

Total Bits

Variable length

5

18

32

4

12

35

41

Frequency

363

25

54

64

20

48

70

82

Total Bits Code

Char.

0000
1

N

001 B

11 T

00000 S

0001 I

10 E

01 A

Dr. Nejib Zaguia CSI5163-W14 29

Greedy Algorithm

 A coding should have the prefix property to

avoid the ambiguity: a binary sequence cannot

be the code of a characters and in the same time

the start of the code of another character.

 Prefix codes could be represented by binary

trees. Characters are placed as leafs and the code

is the reading of the unique path from the root to

the leaf.

Dr. Nejib Zaguia CSI5163-W14 30

Greedy Algorithm

0

0

0

0

0 1

1

1

1 1 0

1

00000 00001

0001

001

01 10 11

11010000111 = 11 01 00 001 11

 I

B

P A E T

S N
Prefixe!!

Ou 11 01 00001 11

00 P

Symbole Code

00001 N

001 B

11 T

00000 S

0001 I

10 E

01 A

11

Dr. Nejib Zaguia CSI5163-W14 31

Greedy Algorithm

Problem:

 Input

 A list of characters with frequencies.

 Output

 The binary tree for the variable length code

 Total cost =

 ls = number of bits of the code of character s

 fs = frequency of the character s

s ss fl

Dr. Nejib Zaguia CSI5163-W14 32

CSI 3505

Algorithmes Voraces

Huffman Algorithm(1952)

 Greedy algorithm for variable length optimal code

 The algorithm is of greedy type: construct a longer path for
a character with smaller frequency.

 For each character we construct a tree with a single vertex
labelled with the frequency of the character.

 At each stage of the algorithm, we merge the trees with the
smallest labels on their root into a new tree with a new
root. The new root is labelled with the sum of the labels of
the old roots. The roots of the old trees become the left and
right child of the new root.

 The algorithm ends when we arrive to a unique tree.

Dr. Nejib Zaguia CSI5163-W14 33

Greedy Algorithm

I P A E T S L

32 25 12 4 30 18 5

I P A E T

32 25 12 30 18

T1

S L

9

P A E T

32 25 30 18

T1 I

S L

T2

21

12

Dr. Nejib Zaguia CSI5163-W14 34

Greedy Algorithm

T1 I

T

P

A E

S L

T2

T3

41 35 32 39

T1 I

P

A

S L

T2

T3

41 39

T E

T4

67

Dr. Nejib Zaguia CSI5163-W14 35

Greedy Algorithm

T1 I

T

P

A E

S L

T2

T3

T4 T5

67 80

T1 I

T

P

A E

S L

T2

T3

T4 T5

147

T6

Dr. Nejib Zaguia CSI5163-W14 36

Greedy Algorithm

T1 I

T

P

A E

S L

T2

T3

T4 T5

147

T6

Code

0

0

0

0 1

1

1

1 1 0

1 0

Symbol Code

00001 L

001 P

11 T

00000 S

0001 I

10 E

01 A

13

Dr. Nejib Zaguia CSI5163-W14 37

I

T

P

A E

S L

T E A

P

S L

I

Greedy Algorithm

Dr. Nejib Zaguia CSI5163-W14 38

Greedy Algorithm

An efficient implementation: use heaps for vertices « priority list »

Huffman (C)

 n = number of characters in C

 Initialization of the heap Q, (using the frequencies as priority)

 for i in 1..n-1 do

 z = new vertex on tree

 x = Extract-Minimum (Q)

 y = Extract-Minimum (Q)

 left-child z = x

 right=child z = y

 f[z] = f[x] + f[y]

 Insert (Q, z)

 end for

 Return tree

O(n)

log (n)

Total Complexity: O(n logn)

Dr. Nejib Zaguia CSI5163-W14 39

Another example: Dynamic Programming

Longest common subsequence problem
Sequences X =<x1, x2, ..., xs> and Y=<y1, y2, ..., yt>

Z =<z1, z2, ..., zk> is a subsequence of X if there exists a strictly
increasing sequence <i(1), i(2), ..., i(k)> of indices of X such that for all j,

xi(j) = zj

<A, C, Z, K> is a subsequence of <C, A, F, C, C, Z, K, Y> with index
sequence <2, 4, 6, 7> or <2, 5, 6, 7>

Z is a common subsequence of X and Y if Z is a subsequence of both X
and Y.

X=<A, B,C , B, D, A, B> Y=<B, D, C, A, B, A>

A COMMON SUBSEQUENCE (CS) B,C, A

A longest CS (LCS) B, C, B, A

12/30/2005 39

14

Dr. Nejib Zaguia CSI5163-W14 40

Another example: Dynamic Programming

Brute force: try all common subsequence–
takes exponential time

X =<x1, x2, ..., xi> “Xi is the i-th prefix of X”

Theorem: Let Z=<z1, z2, ..., zk> be any LCS of X and Y.

(1) If xs = yt then xk=xs=yt and Zk-1 is an LCS of Xs-1
and Yt-1

(2) If xs  yt then zk  xs implies that Z is an LCS of Xs-1
and Y

(3) If xs  yt then zk  yt implies that Z is an LCS of X
and Yt-1

Dr. Nejib Zaguia CSI5163-W14 41

Another example: Dynamic Programming

Proof. (1) if zk xs, then we could append xs=yt, to Z and gets a CS of length k+1.
If there were a CS W of Xs-1 and Yt-1 with length k, then we could append
xs=yt to W and get a CS of X and Y of length k+1. Thus, a CS of Xs-1 and Yt-1
with length k is an LCS i.e. Zk-1 is an LCS of Xs-1 and Yt-1

(2) if zk xs, then that Z is a CS of Xs-1 and Y. If there were a CS W of Xs-1 and Y
with length greater than k, then W would also be a CS of Xs and Y.

(3) Same argument as (2)

q

q

q

q

q

q
Y

Z

Xs-1

Y

W

X

q

r

q

Y

Z

Xs-1

Y

W

X

Dr. Nejib Zaguia CSI5163-W14 42

Another example: Dynamic Programming

Recursive solution for finding LCS of X and Y
If xs=yt then find an LCS of Xs-1 and Yt-1, and then append xs=yt to

this LCS
If xsyt then solve two problems:

 (1) Find a LCS of Xs-1 and Y; (2) find an LCS of X and Yt-1;

whichever of these two LCS’s is longer, that’s an LCS of X and Y.

c[i, j]=length of an LCS of the sequences Xi and Yj

when i=0 or j=0 the c[i, j] =0

when i>0, j>0, and xi =yj then c[i, j]= c[i-1, j-1]+1
when i>0, j>0 and xi  yj the c[i, j] = max {c[i, j-1], c[i-1, j]}

 Complexity: O(st)

15

Dr. Nejib Zaguia CSI5163-W14 43

Another example: Dynamic Programming

LCS-Length(X, Y)

set c[i, 0]’s and c[0, j]’s to 0

for i=1 to s

for j=1 to t

if xi=xj the c[i, j] = c[i-1, j-1]+1

else c[i, j]=max{ c[i, j-1], c[i-1, j]}

Dr. Nejib Zaguia CSI5163-W14 44

Greedy vs. Dynamic Programming

 0-1 knapsack problem

A thief robbing a store finds n items

i-th item has weight w[i] and is worth v[i] dollars (w[i]
and v[i] are integers).

If the thief can carry at most L weight in his knapsak,
what items should he take to make the most
profitable heist?

 Fractional knapsack problem: same as above, except
that the thief can take fractions of items (e.g. an
item might be gold dust)

Dr. Nejib Zaguia CSI5163-W14 45

Greedy vs. Dynamic Programming

Optimal substructures property:

Consider the most valuable load that weights ≤ L
pounds in 0-1 problem, if we remove item j from this
load, the remaining load must be the most valuable
load weighting at most L=w[j] that can be taken
from the n-1 original items excluding j.

In fractional problem, if we remove w pounds of item j,
the remaining load must be the most valuable load
weighting at L=w that can be taken from the n-1
original items plus w[j] – w pounds of item j.

16

Dr. Nejib Zaguia CSI5163-W14 46

Greedy vs. Dynamic Programming

A greedy solution for the fractional problem

Compute the v[i]/w[i] for each item i.

Sort in decreasing order the items according to the
values of v[i]/w[i]

For items i=1 to n

 take as much of item I as there while not exceeding
weight limit L

Running time: O(n log n)

The same greedy algorithm does not work for the 0-1
knapsack problem

Dr. Nejib Zaguia CSI5163-W14 47

Greedy vs. Dynamic Programming

Items Weight Gain

Item 1 10 60

Item 1 20 100

Item 1 30 120

knapsack Greedy: 160 Optimal: 220

20

10

20

30

Take the most expensive does not work: fails for L=30
Dynamic programming solution for 0-1 problem:

Sort items by increasing weight. Let i be the highest-numbered item in an

optimal solution S for an L kilo knapsack and items 1..n.

Then S’=S-{i} must be an optimal solution for items 1..i-1 and an L-w[i] kilos

knapsacks.

The value of solution S is v[i] plus the value of solution S’.

Let c[i, wj]=the value of the solution for items 1..i and maximum weight w

when i=0 or w=0 the c[i, w] =0

when w[i] >w, then c[i, w]= c[i-1, w]

when i>0 and w w[i], then c[i, w] = max {v[i]+c[i-1, w-w[i]], c[i-1, w]}

Dr. Nejib Zaguia CSI5163-W14 48

Greedy vs. Dynamic Programming

Dynamic 0-1-Knapsack:
for w=0 to L

 c[0, w]=0

for i=1 to n

c[i, 0]=0

for w=1 to L

if w[i] ≤ w then

 if v[i] + c[i-1, w-w[i]] > c[i-1, w]

 then c[i, w] = v[i] + c[i-1, w-w[i]]

 else c[i, w]=c[i-1, w]

else c[i, w] = c[i-1, w]
Complexity: O(nL)

