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CSI 5163 (95.573) ALGORITHM ANALYSIS AND DESIGN  
Conceptions of algorithms 

 

Divide and Conquer 

Dynamic Programming 

Greedy Algorithm 
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Algorithmic Paradigms 

 

 Divide-and-conquer.  Break up a problem into two sub-

problems, solve each sub-problem independently, and combine 
solution to sub-problems to form solution to original problem.  

 

 Dynamic programming.  Break up a problem into a series of 

overlapping sub-problems, and build up solutions to larger and 

larger sub-problems. 

 

 Greedy.  Build up a solution incrementally, myopically optimizing 
some local criterion. 
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Dynamic Programming History 

 Bellman.  Pioneered the systematic study of dynamic 

programming in the 1950s. 

 

 Etymology. 

 Dynamic programming = planning over time. 

 Secretary of Defense was hostile to mathematical research. 

 Bellman sought an impressive name to avoid confrontation. 

 "it's impossible to use dynamic in a pejorative sense" 

 "something not even a Congressman could object to" 

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography. 
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Dynamic Programming Applications 

 Areas.  

 Bioinformatics. 

 Control theory. 

 Information theory. 

 Operations research. 

 Computer science:  theory, graphics, AI, systems, …. 

 

 Some famous dynamic programming algorithms.  

 Viterbi for hidden Markov models. 

 Unix diff for comparing two files. 

 Smith-Waterman for sequence alignment. 

 Bellman-Ford for shortest path routing in networks. 

 Cocke-Kasami-Younger for parsing context free grammars. 
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Dynamic Programming 

General idea: try to avoid computing the solution of the same sub problems more 
than once, by storing the computed sub solutions. 

This technique is used for optimization problems. 

Computing is done from bottom to top. 

 

There are usually 4 steps in any dynamic programming algorithm: 

 Characterize the structure of the optimal solution. 

 Define the optimal solution recursively 

 Compute the optimal solution from bottom to top.  

 Combine the solutions for smaller problems stocked in the array to construct an 
optimal solution of the original problem 
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Dynamic Programming 

Problem:  Matrix-chain multiplication 
How to compute efficiently the product: M = M1 M2 … Mn Mi : di, di+1 

 M = (...(M1 * M2 )* M3)... Mn)  

 M = (M1 * M2 )*(M3 * M4) * ... Mn)  

    ......... 

 M = (M1 * (M2 * ... (Mn-1 * Mn)...) 

 To compute the product of 2 matrices A(p,q) and B(q,r) we need p*q*r 
multiplications. 

(A1 x (A2 x A3)) x A4  
Coût(A2 x A3 ) = 20  x 50 x 1 
Coût(A1 x (A2 x A3 )) = 10 x 20 x 1 
Coût((A1 x (A2 x A3)) x A4 ) = 10 x 1 x 100 
Total Cost = 2200 

A1 x (A2 x (A3 x A4 )) 
Cost(A3 x A4 ) = 50  x 1 x 100 
Cost(A2 x (A3 x A4 )) = 20 x 50 x 100 
Cost(A1 x (A2 x (A3 x A4 ))) = 10 x 20 x 100 
Total Cost = 125000 
 

A =   A1 x A2 x  A3  x A4  
 10x20   20x50    50x1    1x100 
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Dynamic Programming 

How to find the most efficient way to insert the paranthesis. 

A direct approach by checking all possibilities will not 

work. 

 

 

 

M = (M1 M2 … Mi) (Mi+1 Mi+2 … Mn) 

T(i) T(n-i) 

T(n)   =    T(i)  T(n-i) 
i=1 

n-1 

T(1) = 1 

T(n) = 1/n (     ) 
2n -2 

  n-1 

T(n)  (4n/n3/2) 
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Dynamic Programming 

 Dynamic programming approach 

 







1n

1k

))1(O)kn(T)k(T()n(T

1) Structure of an optimal solution 

For 1   i  j  n,, m[i, j] denotes the optimal solution for the product Mi Mi+1 … Mj  

If M = (M1 M2 … Mi) (Mi+1 Mi+2 … Mn) is an optimal solution then : 

(M1 M2 … Mi) is an optimal solution for M1 … Mi  

AND 

(Mi+1 Mi+2 … Mn) is an optimal solution for Mi+1 … Mn 

  0     (i = j) 
m[i,j] =    
  min { m[i,k] + m[k + 1, j] + di-1dkdj }   (i < j) 
  i<k<j  

)2( n
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Dynamic Programming 

 Dynamic programming approach 

 How to compute m[1, 6]? 

}   d d d     j]   1,     m[k     k] m[i,   { min ] j , i [ m j k 1 - i 
j k i 

    
<  

1 2 3 4 5 6 

1 

2 

3 

4 

5 

6 

0 

0 

0 

0 

0 

0 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x x 

x 

x 

x 

x 

m[1,6] 

Solution 
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Dynamic Programming 

Matrix-Chain-Order( p, n ) 

{ 

 for i = 1 to n 

 m[i,i] = 0 

 for len = 2 to n 

 for i = 1 to n - len + 1 

  j = i + len - 1 

  m[i,j] = 8 

 for k = i to j-1 

  q = m[i,k] + m[k+1,j] + d[i-1]*d[k]*d[j] 

  if q < m[i,j] then 

        m[i,j] = q 

        s[i,j] = k 

 return s 

} 
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Dynamic Programming 

Shortest path: Floyd algorithm  

Let G = (V,E) be a connected weighted graph, find all shortest paths between any two 

vertices in G. 

A 

B 

C 
D 

E 

100 

20 5 

50 

50 

10 

10 

30 

C A 
B 

 Structure of an optimal solution: If a shortest path between A and B 

contains a vertex C then the sub paths  between A and C and between C 

and B are optimal. 

 1 2 3 4   
1  0  5        

2  50   0   15   5   

3  30      0   15   

4  15      5   0   
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Dynamic Programming 

The algorithm: We maintain a 2 dimensional array D (initialized with L). Vertices of the graph are 
numbered from 1 to n. There are n iterations. After iteration k, D will contain the shortest paths 
between any two vertices (i, j), using only vertices from the set {1, 2, …, k}. 

At iteration k and for every pair of vertices (i, j) we check whether or not the introduction of vertex k will 
give a better shortest path. 

Phase k:   
   L = D0 , D1 , …….Dn = D 

Case 1. Adding vertex k does not give a better solution: Dk [i,j] =  Dk-1[i,j]  
Case 2. All shortest paths between i and j using the vertices {1, 2, …, k} use the vertex k as an 

intermediary vertex. 
 
 

Dk [i,j] = Dk-1[i,k]+ Dk-1[k,j]} 
   Dk[i,j] = min ( Dk-1[i,j] , Dk-1[i,k] + Dk-1[k,j] ) 
 

We need a second 2 dimensional array P in order to keep track of the actual shortest path 
between any two vertices: 

if  D[i,k]+D[k,i] < D[i,j] 

     then    

  D[i,j]  = D[i,k]+D[k,i]  

  P[i,j] = k 
 
 

k i j 
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Dynamic Programming 

    

   0 5       

   50   0   15   5  

   30      0   15  

   15      5   0  

     

D0=L 

 0   5        

 50   0   15   5   

 30   35   0   15   

 15   20   5   0 

D1 

Example: 

 0   5 20   10  

 50   0   15   5  

 30   35   0   15  

 15   20   5   0 

D2 

A 

B 

C 

D 

30 
15 

5 

15 

15 
50 

5 

5 
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Dynamic Programming 

 0   5  20   10 

 45   0   15   5  

 30   35   0   15  

 15   20   5   0 

D3 

Cont … 

 

 

 0   5  15   10  

 20   0   10   5  

 30   35   0   15  

 15   20   5   0 

D=D4 

 0   5 20   10  

 50   0   15   5  

 30   35   0   15  

 15   20   5   0 

D2 

0 0 4 2 

4 0 4 0 

0 1 0 0 

0 1 0 0 

P 
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Dynamic Programming 

Floyd(n, L[ ] [ ], P[ ][ ]) 

 array D  of size n x n 

 array P  of size n x n 

 D = L; P=0 

 for(k=1; k<=n; k++) 

     for(i=1; i<=n; i++) 

  for(j=1; j<=n; j++) 

      if D[i,k]+D[k,j] < D[i,j]  

    D[i,j] = D[i,k]+D[k,j] 

   P[i, j] = k 

 return D 

 

n 

n 

n 

O(n3) 

Constant 
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Greedy Algorithm 

Problem: Making change for n cents using the least number of coins. 

Greedy algorithm: At each step, return the largest possible coin  
Example 1:  Coins: 25c      10c      5c       1c  
Making change of 87c: 3 x 25c     + 1 x 10c   + 2 x 1c  
 
Example 2:  Coins: 25c      10c      12c 5c       1c  
Making change of 16c: 1 x 12c     + 4 x 1c  

(Optimal solution: 1x 10c  + 1x 5c  +  1x 1c (3 coins)) 
 

function change(C: set {coins}; s: integer): set with repititions 
  S :=   {solution} 
  while s > 0 do 
  p := largest coin in C such that its value does not exceed s;    
  S := S  {p} 
  s := s-p 
  return S 
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Greedy Algorithm 

A greedy algorithm go through a sequence of steps with a set of 
choices at each step. It makes the choice that looks best at the 
moment. 

Greedy algorithms are usually simple and easy to implement. 
Typically used for optimization problems. 
 
Greedy algorithms do not always lead to an optimal solution 
 
 

General Scheme of a greedy algorithm: 
C: set of candidates 
S :=  
while S is not a solution  and  C   
  x := element in  C that maximizes the  selection criteria    
 C := C - x 
 if (S  {x}) is realizable then S := S  {x} 
 
if S is a solution then return S 
 else return no-solution 
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Greedy Algorithm 

Greedy algorithm for a task scheduling problem: minimizing 

the total waiting time. 
We have a set of n tasks {1, 2, …, n} to be processed sequentially by a 

single processor. Each task has a processing time ti. The goal is to 

minimize the total waiting time of all tasks 

 (time spent by client i in the system: from start to finishing  of task i) 
i=1 

n 

Example: 3 tasks  
There are 6 possible orders: 

 

123:   5  + (5 + 10)  + (5 + 10 + 3) =  38 

132:   5  + (5 + 3) +   (5  + 3 + 10) = 31 

213:   10 + (10 + 5) + (10 + 5 + 3) = 43 

231:   10 + (10 + 3) + ( 10 + 3 + 5) = 41 

312:    3 + (3 + 5) + (3 + 5 + 10) =  29 

321:    3 + (3 + 10) + ( 3 + 10 + 5 ) = 34 

t1 = 5 

 

t2 = 10 

 

t3 = 3 
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Greedy Algorithm 

Greedy algorithm:  at each step we choose a task, among the ones left,  
with a minimum processing time.  

Theorem. The greedy algorithm always lead to an optimal scheduling 
Proof. Let I = (i1,i2,…,in) an arbitrary permutation of the tasks {1,2, …, n}. 

If the tasks are scheduled according to the order I then the total waiting  
 
time is:  T(I) = ti1 + (ti1  + ti2 ) + (ti1  + ti2  + ti3 ) + ….. 
 
Suppose  I:    1  2  …..….. a  ………... b ………….… n  
 where          a < b    and     tia > tib  
If we inverse the positions of a and b in I 
   I’:    1  2  …..….. b  ………... a ………….… n 

          ti1 ti2 …..….tib ………...tia  ……….… tin  
 

k=1 

n 

=  (n - k + 1) tik  

T(I') = (n - a + 1) tib + (n - b + 1) tia +    (n - k + 1) tik  
 

k = 1 

k  {a,b} 

n 
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Greedy Algorithm 

Thus: 

T(I') = (n - a + 1) tib + (n - b + 1) tia +    (n - k + 1) tik  
 k = 1 

k  {a,b} 

n 

T(I) - T(I')  = (n - a + 1) (tia- tib)   + (n - b + 1) (tib - tia) 

      = (b-a) (tia- tib) > 0  

Therefore the scheduling I’ is better than I. Thus the greedy 

algorithm is always optimal, and any optimal solution is 

necessarily constructed using the greedy algorithm. 

k=1 

n 

T(I) =  (n - k + 1) tik  
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Greedy Algorithm 

i  gi  di 

1 50 2 

2 10 1 

3 15 2 

4 30 1 

Another Scheduling problem: n unit-time tasks with deadlines and 

penalties. A set S={1, 2, …, n} of n unit-tasks. 

A set of n integer deadlines d1, d2, …, dn, such that 1≤di≤n for each i, and 

task i is supposed to finish by time di 

A set of n non negative weights g1, g2, …, gn such that a gain gi is 

incurred if task i is finished by time di. 

Possibles Seq:         gain 

 1  50 

 2  10 

 3  15 

 4  30 

 1,3  65 

 2,1  60 

 2,3  25 

 3,1  65 

 4,1  80 

 4,3  45 

The sequences 1 et 1, 2, 3 corresponds to the 

same gain. Only task 1 leads to a gain. 
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Greedy Algorithm 

A set of tasks is realizable if there exists at least one ordering of the tasks T that 
permits to all tasks in T to be executed before the delay. 

 
Theorem: A set of tasks T is realizable if and only if all tasks of T are executed 

before the delay when the tasks of T are sorted in increasing order with respect 
to delay. 

Proof: Assume that S is realizable with some order:  

t1 t2  … ti  … tj … tk    with  d(tj) < d(ti). 

By exchanging ti et tj i the order of S we obviously obtain a realizable order: 

 t1 t2  … tj  … ti … tk 

 

Repetitively, we obtain an increasing order which is realizable. The converse is 
obviously true. 

 

 

How do we know if a set of tasks is realizable? 

It is enough to test the tasks in one specific order: increasing order with respect to 
delay.  
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Greedy Algorithm 

Greedy Algorithm: 
 At each step, take  the task not considered yet, and with the largest value 

gi. If the new set of tasks is realizable, add that task to the solution, 
otherwise disregard the task. 

 

Sort the set of tasks in decreasing order T with respect to gain 
S:=  
repeat 
 Choose the task e T  with the largest gain 
  T := T - e 
 If S  e  is realizable 
  S := S  e  
until T is empty 

O(n log n) 

Number of steps n-1. Need (i-1) comparisons to add the ith 

task, i comparisons to verify that if the set is realizable 

 [(i-1) + i]  = n2 -1  
i=2 

n 
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Greedy Algorithm 

Huffman Code 
 A statistical compression of data, it permits to reduce the 

length of the coding of an alphabet.  

 The Huffman code (1952) is an optimal  variable length, 

that is the average length of the coded text is minimal.  

 We notice a size reduction of the order of 20 to 90%.  
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Greedy Algorithm 

 Codes with fixed length: each character is coded 

with the same number of bits. 

 For C characters we need log2 C bits 

 Simple, and easy to manipulate 

N 110 

B 101 

T 100 

S 011 

I 010 

E 001 

A 000 

A E I S T B N 

0 

0 

0 1 0 1 

1 0 

0 1 0 

1 

1 
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Greedy Algorithm 

 Example 2 

 

A E I S T B 

N 

0 

0 

0 1 0 1 

1 0 

0 1 

1 

1 

000    001    010   011    100   101 

11 

N 11 

B 101 

T 100 

S 011 

I 010 

E 001 

A 000 

 variable length 
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 Example 3 

Greedy Algorithm 

  I 

B 

A E T 

S N 

0 

0 

0 

0 

0 1 

1 

1 

1 1 0 

1 

00000   00001 

0001 

001 

01 10 11 

Symbol Code 

00001 N 

001 B 

11 T 

00000 S 

0001 I 

10 E 

01 A 

TEST = 11100000011 
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Greedy Algorithm 

110 

101 

100 

011 

010 

001 

000 

Code 

Fixed length 

441 

15 

54 

96 

12 

36 

105 

123 

Total Bits 

Variable length 

5 

18 

32 

4 

12 

35 

41 

Frequency 

363 

25 

54 

64 

20 

48 

70 

82 

Total Bits Code 

Char. 

0000
1 

N 

001 B 

11 T 

00000 S 

0001 I 

10 E 

01 A 
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Greedy Algorithm 

 A coding should have the prefix property to 

avoid the ambiguity: a binary sequence cannot 

be the code of a characters and in the same time 

the start of the code of another character.  

 Prefix codes could be represented by binary 

trees. Characters are placed as leafs and the code 

is the reading of the unique path from the root to 

the leaf. 
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Greedy Algorithm 

0 

0 

0 

0 

0 1 

1 

1 

1 1 0 

1 

00000   00001 

0001 

001 

01 10 11 

11010000111  = 11  01  00   001  11  
 

  I 

B 

P A E T 

S N 
Prefixe!! 

Ou 11  01  00001 11 

00 P 

Symbole Code 

00001 N 

001 B 

11 T 

00000 S 

0001 I 

10 E 

01 A 
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Greedy Algorithm 

Problem: 

 Input 

 A list of characters with frequencies.  

 Output 

 The binary tree for the variable length code 

 Total cost =  

 ls = number of bits of the code of character s 

 fs = frequency of the character  s 

s ss fl
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CSI 3505 

Algorithmes Voraces 

Huffman Algorithm(1952) 

 Greedy algorithm for variable length optimal code 
 

 The algorithm is of greedy type: construct a longer path for 
a character with smaller frequency.   

 For each character we construct a tree with a single vertex 
labelled with the frequency of the character. 

 At each stage of the algorithm, we merge the trees with the 
smallest labels on their root into a new tree with a new 
root. The new root is  labelled with the sum of the labels of 
the old roots. The roots of the old trees become the left and 
right child of the new root. 

 The algorithm ends when we arrive to a unique tree. 
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Greedy Algorithm 

I P A E T S L 

32 25 12 4 30 18 5 

I P A E T 

32 25 12 30 18 

T1 

S L 

9 

P A E T 

32 25 30 18 

T1 I 

S L 

T2 

21 
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Greedy Algorithm 

T1 I 

T 

P 

A E 

S L 

T2 

T3 

41 35 32 39 

T1 I 

P 

A 

S L 

T2 

T3 

41 39 

T E 

T4 

67 
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Greedy Algorithm 

T1 I 

T 

P 

A E 

S L 

T2 

T3 

T4 T5 

67 80 

T1 I 

T 

P 

A E 

S L 

T2 

T3 

T4 T5 

147 

T6 
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Greedy Algorithm 

T1 I 

T 

P 

A E 

S L 

T2 

T3 

T4 T5 

147 

T6 

Code 

0 

0 

0 

0 1 

1 

1 

1 1 0 

1 0 

Symbol Code 

00001 L 

001 P 

11 T 

00000 S 

0001 I 

10 E 

01 A 
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I 

T 

P 

A E 

S L 

T E A 

P 

S L 

I 

Greedy Algorithm 
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Greedy Algorithm 

An efficient implementation: use heaps for vertices « priority list » 

Huffman (C) 

 n = number of characters in C 

  Initialization of the heap Q, (using the frequencies as priority) 

 for i in 1..n-1 do 

  z = new vertex on tree 

  x = Extract-Minimum (Q) 

  y = Extract-Minimum (Q) 

  left-child z = x 

  right=child z = y 

  f[z] = f[x] + f[y] 

  Insert (Q, z) 

 end for 

 Return tree 

O(n) 

log (n) 

Total Complexity: O(n logn) 
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Another example: Dynamic Programming 

Longest common subsequence problem 
Sequences X =<x1, x2, ..., xs> and Y=<y1, y2, ..., yt> 

Z =<z1, z2, ..., zk> is a subsequence of X if there exists a strictly 
increasing sequence <i(1), i(2), ..., i(k)> of indices of X such that for all j, 

xi(j) = zj 

 

<A, C, Z, K> is a subsequence of <C, A, F, C, C, Z, K, Y> with index 
sequence <2, 4, 6, 7> or <2, 5, 6, 7> 

 

Z is a common subsequence of X and Y if Z is a subsequence of both X 
and Y. 

 

X=<A, B,C , B, D, A, B> Y=<B, D, C, A, B, A> 

A COMMON SUBSEQUENCE (CS) B,C, A 

A longest CS (LCS) B, C, B, A 

 

12/30/2005 39 
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Another example: Dynamic Programming 

Brute force: try all common subsequence– 
takes exponential time 

X =<x1, x2, ..., xi> “Xi is the i-th prefix of X” 

 

Theorem: Let Z=<z1, z2, ..., zk> be any LCS of X and Y. 

(1) If xs = yt then xk=xs=yt and Zk-1 is an LCS of Xs-1 
and Yt-1 

(2) If xs  yt then zk  xs implies that Z is an LCS of Xs-1 
and Y 

(3) If xs  yt then zk  yt implies that Z is an LCS of X 
and Yt-1 
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Another example: Dynamic Programming 

Proof. (1) if zk xs, then we could append xs=yt, to Z and gets a CS of length k+1. 
If there were a CS W of Xs-1 and Yt-1 with length k, then we could append 
xs=yt to W and get a CS of X and Y of length k+1. Thus, a CS of Xs-1 and Yt-1 
with length k is an LCS i.e. Zk-1 is an LCS of Xs-1 and Yt-1  

 

 

 

 

 

(2) if zk xs, then that Z is a CS of Xs-1 and Y. If there were a CS W of Xs-1 and Y 
with length greater than k, then W would also be a CS of Xs and Y. 

 

 

 

 

 

 

(3) Same argument as (2) 

q 

q 

q 

q 

q 

q 
Y 

Z 

Xs-1 

Y 

W 

X 

q 

r 

q 

Y 

Z 

Xs-1 

Y 

W 

X 
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Another example: Dynamic Programming 

Recursive solution for finding LCS of X and Y 
If xs=yt then find an LCS of Xs-1 and Yt-1, and then append xs=yt to 

this LCS 
If xsyt then solve two problems: 

 (1) Find a LCS of Xs-1 and Y; (2) find an LCS of X and Yt-1; 

whichever of these two LCS’s is longer, that’s an LCS of X and Y. 
 

 

c[i, j]=length of an LCS of the sequences Xi and Yj 

when i=0 or j=0 the c[i, j] =0 

when i>0, j>0, and xi =yj then c[i, j]= c[i-1, j-1]+1 
when i>0, j>0 and xi  yj the c[i, j] = max {c[i, j-1], c[i-1, j]} 

    

  Complexity: O(st) 
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Another example: Dynamic Programming 

LCS-Length(X, Y) 

set c[i, 0]’s and c[0, j]’s to 0 

for i=1 to s 

for j=1 to t 

if xi=xj the c[i, j] = c[i-1, j-1]+1 

else c[i, j]=max{ c[i, j-1], c[i-1, j]} 
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Greedy vs. Dynamic Programming 

 0-1 knapsack problem 

A thief robbing a store finds n items 

i-th item has weight w[i] and is worth v[i] dollars (w[i] 
and v[i] are integers). 

If the thief can carry at most L weight in his knapsak, 
what items should he take to make the most 
profitable heist? 

 

 Fractional knapsack problem: same as above, except 
that the thief can take fractions of items (e.g. an 
item might be gold dust) 
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Greedy vs. Dynamic Programming 

Optimal substructures property:  

Consider the most valuable load that weights ≤ L 
pounds in 0-1 problem, if we remove item j from this 
load, the remaining load must be the most valuable 
load weighting at most L=w[j] that can be taken 
from the n-1 original items excluding j. 

In fractional problem, if we remove w pounds of item j, 
the remaining load must be the most valuable load 
weighting at L=w that can be taken from the n-1 
original items plus w[j] – w pounds of item j. 
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Greedy vs. Dynamic Programming 

A greedy solution for the fractional problem 

Compute the v[i]/w[i] for each item i. 

Sort in decreasing order the items according to the 
values of v[i]/w[i] 

For items i=1 to n 

 take as much of item I as there while not exceeding 
weight limit L 

 

Running time:  O(n log n) 

The same greedy algorithm does not work for the 0-1 
knapsack problem  
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Greedy vs. Dynamic Programming 

Items Weight Gain 

Item 1 10 60 

Item 1 20 100 

Item 1 30 120 

knapsack Greedy: 160 Optimal: 220 

20 

10 

20 

30 

Take the most expensive does not work: fails for L=30 
Dynamic programming solution for 0-1 problem: 

Sort items by increasing weight. Let i be the highest-numbered item in an 

optimal solution S for an L kilo knapsack and items 1..n. 

Then S’=S-{i} must be an optimal solution for items 1..i-1 and an L-w[i] kilos 

knapsacks. 

The value of solution S is v[i] plus the value of solution S’. 

Let c[i, wj]=the value of the solution for items 1..i and maximum weight w 

when i=0 or w=0 the c[i, w] =0 

when w[i] >w, then c[i, w]= c[i-1, w] 

when i>0 and w w[i], then c[i, w] = max {v[i]+c[i-1, w-w[i]], c[i-1, w]} 
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Greedy vs. Dynamic Programming 

Dynamic 0-1-Knapsack: 
for w=0 to L 

 c[0, w]=0 

for i=1 to n 

c[i, 0]=0 

for w=1 to L 

if w[i] ≤ w then 

 if v[i] + c[i-1, w-w[i]] > c[i-1, w] 

  then c[i, w] = v[i] + c[i-1, w-w[i]] 

  else c[i, w]=c[i-1, w] 

else c[i, w] = c[i-1, w] 
Complexity: O(nL) 


