

CSI 3104 /Winter 2011: Introduction to Formal Languages Chapter 4: Regular Expressions

Chapter 4: Regular Expressions

What are the languages with a finite representation? We start with a simple and interesting class of such languages.

A new method to define languages

■ alphabet → language

$$S = \{x\}$$

$$S^* = \{\Lambda, x, xx, xxx, ...\}$$
or directly
$$\{x\}^* = \{\Lambda, x, xx, xxx, ...\}$$

■ language → language

$$S = \{xx, xxx\} \qquad S^* = \{\Lambda, xx, xxx, xxxx, ...\}$$
 or directly $\{xx, xxx\}^* = \{\Lambda, xx, xxx, xxxx, ...\}$

■ "letter" → language

x* (written in bold)

language(
$$\mathbf{x}^*$$
) = { Λ , x, xx, xxx, ...}
or informally \mathbf{x}^* = { Λ , x, xx, xxx, ...}

- $L1 = \{a, ab, abb, abbb, ...\}$ or simply (ab^*)
- L2 = $\{\Lambda, ab, abab, ababab, ...\}$ or simply (ab)*

Several ways to express the same language

- {x, xx, xxx, xxxx, ...}
 xx* x* x* x*x* x*x* (x*)x* x*(x*) x*x*x*
- L3= $\{\Lambda, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, ... \}$ or simply $(\mathbf{a}^*\mathbf{b}^*)$

(a's before b's)

Remark: $language(a*b*) \neq language((ab)*)$

Example: S-ODD

• Rule 1: $x \in S$ -ODD

■ Rule 2: If w is in S-ODD then xxw is in S-ODD

- \bullet S-ODD = language($\mathbf{x}(\mathbf{x}\mathbf{x})^*$)
- \blacksquare S-ODD = language($(\mathbf{x}\mathbf{x})^*\mathbf{x}$)
- But not: S-ODD = language($\mathbf{x}^*\mathbf{x}\mathbf{x}^*$) $\mathbf{x}\mathbf{x}|\mathbf{x}|\mathbf{x}$

- A useful symbol to simplify the writing:
 - $\mathbf{x} + \mathbf{y}$ choose either x or y

Example:

$$S = \{a, b, c\}$$

 $T = \{a, c, ab, cb, abb, cbb, abbb, cbbb, ...\}$
 $T = language((\mathbf{a}+\mathbf{c})\mathbf{b}*)$

(defines the language whose words are constructed from either a or c followed by some b's)

L = {aaa, aab, aba, abb, baa, bab, bba, bbb} all words of exactly three letters from the alphabet {a, b}

$$L = (\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{b})$$

- (a+b)* all words formed from alphabet {a,b}
- a(a+b)* = ?
- a(a+b)*b = ?

- <u>Definition</u>: Given an alphabet S, the set of regular expressions is defined by the following rules.
 - For every letter in S, the letter written in bold is a regular expression. Λ is a regular expression.
 - 2. If $\mathbf{r_1}$ and $\mathbf{r_2}$ are regular expressions, then so are:
 - (\mathbf{r}_1)
 - $\mathbf{r}_1 \, \mathbf{r}_2$
 - r_1+r_2
 - 4. r_1 *
 - 3. Nothing else is a regular expression.

- Remark: Notice that $r_1^+ = r_1 r_1^*$
- $\mathbf{r_1} = \mathbf{r_2}$ if and only if $language(\mathbf{r_1}) = language(\mathbf{r_2})$
- Example: (a+b)*a(a+b)*
 All words that have at least one a.

abbaab: $(\Lambda)a(bbaab)$ (abb)a(ab) (abba)a(b)

- Words with no a's?
 b*
- All words formed from {a,b}?

$$(a+b)*a(a+b)* + b*$$

Thus: $(a+b)^* = (a+b)^*a(a+b)^* + b^*$

Example: The language of all words that have at least two a's.

$$(a+b)*a(a+b)*a(a+b)*$$

$$= b*ab*a(a+b)*$$

$$= (a+b)*ab*ab*$$

$$= b*a(a+b)*ab*$$

Example: The language of all words that have exactly two a's.

Another Example: At least one a and one b?

First solution:

$$(a+b)*a(a+b)*b(a+b)* + (a+b)*b(a+b)*a(a+b)*$$

- But (a+b)*a(a+b)*b(a+b)* expresses all words except words of the form some b's (at least one) followed by some a's (at least one).
 bb*aa*
- Second solution:

$$(a+b)*a(a+b)*b(a+b)* + bb*aa*$$

Thus: (a+b)*a(a+b)*b(a+b)* + (a+b)*b(a+b)*a(a+b)*= (a+b)*a(a+b)*b(a+b)* + bb*aa*

The only words that do not contain both an a and b in them are the words formed from all a's or all b's:

Thus:

$$(a+b)* =$$

$$(a+b)*a(a+b)*b(a+b)* + bb*aa* + a* + b*$$

Example: The language of all words formed from some b's (possibly 0) and all words where an a is followed by some b's (possibly 0):

$$\{\Lambda, a, b, ab, bb, abb, bbb, abbb, bbb, ...\}$$

 $\mathbf{b^* + ab^*}$ $(\Lambda + \mathbf{a})\mathbf{b^*}$

■ In general: concatenation is distributive over the + operation.

$$\mathbf{r}_1(\mathbf{r}_2 + \mathbf{r}_3) = \mathbf{r}_1\mathbf{r}_2 + \mathbf{r}_1\mathbf{r}_3$$

 $(\mathbf{r}_1 + \mathbf{r}_2) \ \mathbf{r}_3 = \mathbf{r}_1\mathbf{r}_3 + \mathbf{r}_2\mathbf{r}_3$

- Example of the distributivity rule: $(a+c)b^* = ab^*+cb^*$
- 2 operations: language(s) → language
 If S and T are two languages from the same alphabet S,
 - 1. S+T: the union of languages S and T defined as $S \cup T$
 - 2. ST: the product set is the set of words x written vw with v a word in S and w a word in T.
- Example: $S = \{a, bb\}$ $T = \{a, ab\}$ $ST = \{aa, aab, bba, bbab\}$

Language associated with a regular expression is defined by the following rules.

- The language associated with a regular expression that is just a single letter is that one-letter word alone. The language associated with Λ is $\{\Lambda\}$.
- If L_1 is the language associated with the regular expression $\mathbf{r_1}$ et L_2 is the language associated with the regular expression $\mathbf{r_2}$:
 - (i) The product L_1L_2 is the language associated with the regular expression $\mathbf{r_1r_2}$, that is: $language(\mathbf{r_1r_2}) = L_1L_2$
 - (ii) The union L_1+L_2 is the language associated with the regular expression $\mathbf{r_1}+\mathbf{r_2}$, that is: language($\mathbf{r}+\mathbf{r_2}$) = L_1+L_2
 - (iii) The Kleene closure of L_1 , written L_1^* , is the language associated with the regular expression $\mathbf{r_1}^*$, that is $language(\mathbf{r_1}^*) = L_1^*$

 Remark: For all regular expressions, there is some language associated with it.

Finite Languages are Regular

- Let L be a finite language. There is a regular expression that defines it.
- Algorithm (and proof)

Write each letter in L in bold, and write a + between regular expressions

Example: $L = \{baa, abbba, bababa\}$

baa + abbba + bababa

The regular expression that is defined by this algorithm is not necessarily unique.

Example: $L = \{aa, ab, ba, bb\}$ aa + ab + ba + bb(a+b)(a+b)or

Remark: This algorithm does not work for infinite languages. Regular expressions must be finite, even if the language defined is infinite.

Kleene star applied to a subexpression with a star

$$(a+b^*)^*$$
 $(aa+ab^*)^*$
 $(a+b^*)^* = (a+b)^*$ $(aa+ab^*)^* \neq (aa+ab)^*$ abb|abb

• (a*b*)*The letter a and the letter b are in language(a*b*). (a*b*)* = (a+b)*

- Is it possible to determine if two regular expressions are equivalent?
 - With a set of algebraic rules? Unknown.
 - With an algorithm? Yes.

Examples

• Words with a double letter: (a+b)*(aa+bb)(a+b)*

Words without a double letter: (ab)*
 But not words that begin with b or end with a: (Λ+b)(ab)*(Λ+a)

$$(a+b)*(aa+bb)(a+b)* + (\Lambda+b)(ab)*(\Lambda+a)$$

Language EVEN-EVEN defined by the expression:

$$[aa + bb + (ab + ba)(aa+bb)*(ab + ba)]*$$

Every word in EVEN-EVEN has an even number of a's and b's.

Every word that contains an even number of a's and b's is a member of EVEN-EVEN.