

Chapter 23: Turing Machine Languages I. Theory of Automata II. Theory of Formal Languages → III. Theory of Turing Machines ...

Equivalent Variations of the Turing Machines:

- 1. Non deterministic TM = deterministic TM
- 2. nPDA = Push Down Automatas with n stacks. $2PDA = nPDA = TM \text{ for all } n \ge 2$
- 3. Turing Machines with n tapes $(n \ge 2)$ et n tape heads has the same capacity as a Turing Machine with one tape head.
- 4. Turing Machines with a tape infinite to the left and to the right has the same capacity as a Turing Machines with a tape finite to the left but infinite to the right.

- Definition. A language L over the alphabet S is recursively enumerable if there exists a Turing machine such that for every word w∈L, w is accepted, and for every word w∉L, either w is rejected (crashes) or w causes the machine to go into an infinite loop.
- <u>Definition</u>. A language L over an alphabet S is recursive there exists a Turing machine such that for every word w∈L, w is accepted, and for every word w∉L, w is rejected (crashes).

- Theorem. If there exist two Turing machines T_1 and T_2 that accept languages L_1 and L_2 , then there exists a Turing machine that accepts $L_1 + L_2$.
- <u>Proof:</u> (abbreviated) It is possible to build a Turing machine that simulates running the input on the two machines alternately.
 - First, transform T₁ which accepts L₁ to a Turing machine such that for every word that is not in L₁, the machine loops forever. Call the new machine T₁'. Do the same for L₂.

Insert a special character # in the first cell. Whenever the character # is read the machine crashes. Our machine now crashes in only one situation: when there are no transitions for a read character.

- For every state and every character x that has no existing exit edge we add a new transition (x, x, R) going to a new state SMWHERE.
- From the state SMWHERE we will always get into an infinite loop by putting transitions that stay in SMWHERE and of the form (y, y, R) for every character y.

- The initial steps of the new Turing machine must make 2 copies of the input word on the tape. (See next page.)
- A SIMULATE- T_1 ' state in T_3 begins simulation of the next step of T_1 '.
- For each state x_i of T₁', a set of states of T₃ performs the simulation of the a step of execution starting from x_i.
- A state FIND-Y pushes the tape head right until it finds a state in T₂'.
- Similarly, SIMULATE- T_2 ', states for simulating the execution from each state in T_2 ', and a state FIND-X must be added to T_3 .

SIMULATE-T₁' and SIMULATE-T₂'

a b b Δ Δ	• • •
-------------------------	-------

The machine T₃ will simulate both machines T₁' and T₂'. None of the two machines will crash.
If the word in in L₁, then T₂' will either accept the word or get into an infinite loop and T₁' will have time to accept the word. So T₃ will accept the

word.

- If the word is in L_2 , then T_1 ' will either accept the word or get into an infinite loop and T_2 ' will have time to accept the word. So T_3 will accept the word.
- The Turing machine T_3 accepts the language $L_1 + L_2$.

• If a language L and its complement L' are both recursively enumerable then L is recursive.

Proof: (abbreviated)

- T_1 a Turing machine for L.
- T_2 a Turing machine for L'.
- We transform both machines into new Turing machines T_1 'and T_2 'such that:
 - T₂'rejects every word in L' and gets into an infinite loop for every word in L.
 - T₁'accepts every word in L and gets into an infinite loop for every word in L'.

The machine T_3 will simulate both machines T_1 ' and T_2 '(as it was done for the union). None of the two machines will crash.

- If the word in in L, then T_2 'will get into an infinite loop and T_1 ' will have time to accept the word. So T_3 will accept the word.
- If the word is not in L, then T_1 ' will get into an infinite loop and it will give time for T_2 'to reject the word. So T_3 will reject the word.

The Turing machine T_3 makes the language L recursive.

 Theorem. If there exist two Turing machines T₁ and T₂ that accept languages L₁ and L₂, then there exists a Turing machine that accepts L₁ ∩ L₂.

 <u>Remark</u>: The complement of a recursively enumerable language is not necessarily recursively enumerable.

The Encoding of Turing machines: Example

From	То	Read	Write	Move
1	1	b	b	R
1	3	a	b	R
3	3	a	b	L
3	2	Δ	b	L

From	То	Read	Write	Move
X ₁	X_2	X ₃	X_4	X_5

Encoding a state X1,X2 (positive integers): $a^{X1}ba^{X2}b$:

X ₃ ,X ₄	Code
а	aa
b	ab
Δ	ba
#	bb

X_5	Code	
L	а	
R	b	

From	То	Read	Write	Move
1	3	a	b	R

Dr. Nejib Zaguia CSI3104-W11

14

From	То	Read	Write	Move	Code
1	1	b	b	R	ababababb
1	3	a	b	R	abaaabaaabb
3	3	a	b	L	aaabaaabaaaba
3	2	Δ	b	L	aaabaabbaaba

Code of the machine:

abababababaaabaaabbaaabaaabaaabaaabaabbaaba

Code Word Language: CWL = language((a+ba+b(a+b)⁵)*)

<u>Remark:</u> It is possible to determine if a word in CWL is the code of a Turing machine.

Language L for this machine: all words that start with b Code of the Turing machine: abaabababb abaababbb \notin L therefore abaabababb \in ALAN Dr. Nejib Zaquia CSI3104-W11

- Example: The code word for a machine that accepts language((a+b)*) is not in ALAN.
- <u>Example:</u> The code word for a machine that accepts the empty language is in ALAN.
- <u>Example</u>: The code word for a machine that accepts L=language((a+b)*aa(a+b)*) contains aa, and thus is in L. Thus the code word is not in ALAN.

- <u>Theorem.</u> There does not exist any Turing machine that accepts ALAN.
- <u>Proof:</u> Assume there is a Turing machine T that accepts ALAN. We denote the code word for T as code(T). Either $code(T) \in ALAN$, or $code(T) \notin ALAN$.
 - Case 1. code(T)∈ALAN. By definition of T, code(T)∉ALAN. A contradiction.
 - Case 2. code(T)∉ALAN. By definition of T, code(T) is not accepted by T. By definition of T, code(T)∈ALAN. A contradiction.

Thus there is no Turing machine that accepts ALAN.

<u>Theorem.</u> Not all languages are recursively enumerable.

Dr. Nejib Zaguia CSI3104-W11

- <u>Definition</u>. A universal Turing machine is a Turing machine MTU such that:
 - Input words to MTU have the form:

#w#x

where w is the code word that represents a Turing machine T and x is a word containing letters of T's input alphabet.

- MTU will operate on the data #w#x exactly the same as T would operate on x. (MTU crashes, accepts, or loops if and only if T does the same.)
- <u>Remark:</u> Universal Turing machines exist.

The Halting Problem: Does there exist a Turing machine such that given an input word w and a code word for a Turing machine T that can determine whether on not T halts (enters a HALT state) on input w?

Theorem. No Turing machine exists that can solve the halting problem.

 Proof idea: If we assume such a machine exists, we can build a Turing machine that accepts ALAN.