
Dr. Nejib Zaguia CSI3104-W11 1

CSI 3104 /Winter 2011: Introduction to Formal Languages

Chapter 23: Turing Machine Languages

Chapter 23: Turing Machine Languages

I. Theory of Automata

II. Theory of Formal Languages

 III. Theory of Turing Machines …

Dr. Nejib Zaguia CSI3104-W11 2

Chapter 23: Turing Machine Languages

Equivalent Variations of the Turing Machines:

1. Non deterministic TM = deterministic TM

2. nPDA = Push Down Automatas with n stacks.

2PDA = nPDA = TM for all n ≥ 2

3. Turing Machines with n tapes (n ≥ 2) et n tape heads has
the same capacity as a Turing Machine with one tape
head.

4. Turing Machines with a tape infinite to the left and to the
right has the same capacity as a Turing Machines with a
tape finite to the left but infinite to the right.

Dr. Nejib Zaguia CSI3104-W11 3

Chapter 23: Turing Machine Languages

● Definition. A language L over the alphabet S is

recursively enumerable if there exists a Turing

machine such that for every word wL, w is

accepted, and for every word wL, either w is

rejected (crashes) or w causes the machine to go into

an infinite loop.

● Definition. A language L over an alphabet S is

recursive there exists a Turing machine such that for

every word wL, w is accepted, and for every word

wL, w is rejected (crashes).

Dr. Nejib Zaguia CSI3104-W11 4

Chapter 23: Turing Machine Languages

 Theorem. If there exist two Turing machines T1 and T2

that accept languages L1 and L2, then there exists a
Turing machine that accepts L1 + L2.

 Proof: (abbreviated) It is possible to build a Turing
machine that simulates running the input on the two
machines alternately.

 First, transform T1 which accepts L1 to a Turing
machine such that for every word that is not in L1,
the machine loops forever. Call the new machine
T1’. Do the same for L2.

Dr. Nejib Zaguia CSI3104-W11 5

Chapter 23: Turing Machine Languages

Insert a special character # in the first cell. Whenever
the character # is read the machine crashes. Our
machine now crashes in only one situation: when
there are no transitions for a read character.

For every state and every character x that has no
existing exit edge we add a new transition (x, x, R)
going to a new state SMWHERE.

From the state SMWHERE we will always get into
an infinite loop by putting transitions that stay in
SMWHERE and of the form (y, y, R) for every
character y.

Dr. Nejib Zaguia CSI3104-W11 6

Chapter 23: Turing Machine Languages

 The initial steps of the new Turing machine must make
2 copies of the input word on the tape. (See next page.)

 A SIMULATE-T1’ state in T3 begins simulation of the
next step of T1’.

 For each state xi of T1’, a set of states of T3 performs the
simulation of the a step of execution starting from xi.

 A state FIND-Y pushes the tape head right until it finds
a state in T2’.

 Similarly, SIMULATE-T2’, states for simulating the
execution from each state in T2’, and a state FIND-X
must be added to T3.

Dr. Nejib Zaguia CSI3104-W11 7

Chapter 23: Turing Machine Languages

SIMULATE-T1’ and SIMULATE-T2’

…x1 b y1 D Db *a b ba

…b D Dba

Start of the tape

State in T1’ State in T2’

Separator of both copies

Dr. Nejib Zaguia CSI3104-W11 8

Chapter 23: Turing Machine Languages

START

SET-UP

SIMULATE T1’

SIM-x1

SIM-x3

SIM-x2

(x1,x1,R)

(x2,x2,R)

(x3,x3,R)

FIND Y

SIMULATE T2’
SIM-y1

SIM-y3

SIM-y2

(y1,y1,R)

(y2,y2,R)

(y3,y3,R)

FIND X

Dr. Nejib Zaguia CSI3104-W11 9

Chapter 23: Turing Machine Languages

The machine T3 will simulate both machines T1’ and
T2’ . None of the two machines will crash.

If the word in in L1, then T2’ will either accept the
word or get into an infinite loop and T1’ will have
time to accept the word. So T3 will accept the
word.

If the word is in L2, then T1’ will either accept the
word or get into an infinite loop and T2’ will have
time to accept the word. So T3 will accept the
word.

The Turing machine T3 accepts the language L1 + L2.

Dr. Nejib Zaguia CSI3104-W11 10

Chapter 23: Turing Machine Languages

 If a language L and its complement L’ are both
recursively enumerable then L is recursive.

 Proof: (abbreviated)

T1 a Turing machine for L.

T2 a Turing machine for L’.

We transform both machines into new Turing machines
T1’and T2’such that:
T2’rejects every word in L’ and gets into an infinite loop for

every word in L.

T1’accepts every word in L and gets into an infinite loop for
every word in L’.

Dr. Nejib Zaguia CSI3104-W11 11

Chapter 23: Turing Machine Languages

The machine T3 will simulate both machines T1’ and
T2’(as it was done for the union). None of the two
machines will crash.

If the word in in L, then T2’will get into an infinite loop
and T1’ will have time to accept the word. So T3 will
accept the word.

If the word is not in L, then T1’ will get into an infinite
loop and it will give time for T2’to reject the word. So
T3 will reject the word.

The Turing machine T3 makes the language L recursive.

Dr. Nejib Zaguia CSI3104-W11 12

Chapter 23: Turing Machine Languages

 Theorem. If there exist two Turing
machines T1 and T2 that accept
languages L1 and L2, then there exists a
Turing machine that accepts L1 L2.

 Remark: The complement of a
recursively enumerable language is not
necessarily recursively enumerable.

Dr. Nejib Zaguia CSI3104-W11 13

Chapter 23: Turing Machine Languages

 The Encoding of Turing machines: Example

3
(a,b,R)

START 1 HALT 2
(D,b,L)

(a,b,L)(b,b,R)

From To Read Write Move

1 1 b b R

1 3 a b R

3 3 a b L

3 2 Δ b L

Dr. Nejib Zaguia CSI3104-W11 14

Chapter 23: Turing Machine Languages

X3,X4 Code

a aa

b ab

Δ ba

bb

X5 Code

L a

R b

From To Read Write Move

X1 X2 X3 X4 X5

Encoding a state X1,X2 (positive integers): aX1baX2b :

From To Read Write Move

1 3 a b R

Code of the row: abaaabaaabb

Dr. Nejib Zaguia CSI3104-W11 15

Chapter 23: Turing Machine Languages

Code of the machine:

ababababbabaaabaaabbaaabaaabaaabaaaabaabbaaba

Code Word Language: CWL = language((a+ba+b(a+b)5)*)

Remark: It is possible to determine if a word in CWL is the code

of a Turing machine.

From To Read Write Move Code

1 1 b b R ababababb

1 3 a b R abaaabaaabb

3 3 a b L aaabaaabaaaba

3 2 Δ b L aaabaabbaaba

Dr. Nejib Zaguia CSI3104-W11 16

Chapter 23: Turing Machine Languages

ALAN = all words wCWL that are not accepted by the
Turing machines that they represent.

ALANCWL

Example:
(b,b,R)

START 1 HALT 2

From To Read Write Move

1 2 b b R

Language L for this machine: all words that start with b

Code of the Turing machine: abaabababb

abaabababb L therefore abaabababb ALAN

Dr. Nejib Zaguia CSI3104-W11 17

Chapter 23: Turing Machine Languages

 Example: The code word for a machine that

accepts language((a+b)*) is not in ALAN.

 Example: The code word for a machine that

accepts the empty language is in ALAN.

 Example: The code word for a machine that

accepts L=language((a+b)*aa(a+b)*)

contains aa, and thus is in L. Thus the code

word is not in ALAN.

Dr. Nejib Zaguia CSI3104-W11 18

Chapter 23: Turing Machine Languages

 Theorem. There does not exist any Turing machine that

accepts ALAN.

 Proof: Assume there is a Turing machine T that accepts

ALAN. We denote the code word for T as code(T). Either

code(T)ALAN, or code(T)ALAN.

 Case 1. code(T)ALAN. By definition of T,

code(T)ALAN. A contradiction.

 Case 2. code(T)ALAN. By definition of T, code(T) is

not accepted by T. By definition of T, code(T)ALAN.

A contradiction.

Thus there is no Turing machine that accepts ALAN.

Dr. Nejib Zaguia CSI3104-W11 19

Chapter 23: Turing Machine Languages

 Theorem. Not all languages are

recursively enumerable.

Dr. Nejib Zaguia CSI3104-W11 20

Chapter 23: Turing Machine Languages

● Definition. A universal Turing machine is a Turing

machine MTU such that:

● Input words to MTU have the form:

#w#x

where w is the code word that represents a Turing machine

T and x is a word containing letters of T’s input alphabet.

● MTU will operate on the data #w#x exactly the same as T

would operate on x. (MTU crashes, accepts, or loops if

and only if T does the same.)

● Remark: Universal Turing machines exist.

Dr. Nejib Zaguia CSI3104-W11 21

Chapter 23: Turing Machine Languages

The Halting Problem:

Does there exist a Turing machine such
that given an input word w and a code
word for a Turing machine T that can
determine whether on not T halts
(enters a HALT state) on input w?

Dr. Nejib Zaguia CSI3104-W11 22

Chapter 23: Turing Machine Languages

 Theorem. No Turing machine exists that
can solve the halting problem.

 Proof idea: If we assume such a
machine exists, we can build a Turing
machine that accepts ALAN.

