

Chapter 17: Context-Free Languages

- I. Theory of Automata
- → II. Theory of Formal Languages
 - III. Theory of Turing Machines ...

Dr. Nejib Zaguia CSI3104-W11

Chapter 17: Context-Free Languages

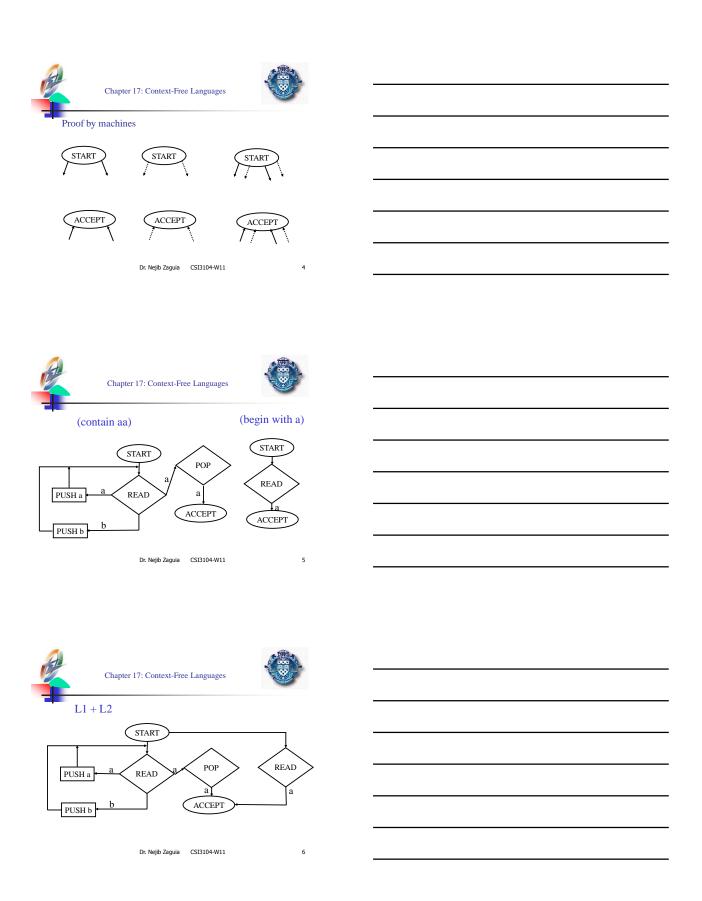
- Theorem. The set of context-free languages is closed under union, concatenation, and Kleene closure.
- Union. L_1+L_2

 L_1 and L_2 are generated by two context-free grammars G_1 and $G_2.$ We replace each nonterminal X in G_1 by $X_1,$ and each nonterminal X in G_2 by $X_2.$ We add the productions:

$$S \to S_1 \quad S \to S_2$$

 $L_1 + L_2$ is the language generated by this new CFG.

Dr. Nejib Zaguia CSI3104-W11



Example: $L_1 = PALINDROME$: $S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda$
$L_2 = a^n b^n$: $S \to aSb \mid \Lambda$
$L_1+L_2: S \to S_1 \mid S_2$
$S_1 \rightarrow aS_1a \mid bS_1b \mid a \mid b \mid \Lambda$
$S_2 \rightarrow aS_2b \mid \Lambda$
Example: $L_1 = \{aa,bb\}$: $S \rightarrow aA \mid bB$ $A \rightarrow a$ $B \rightarrow b$
$L_2 = \{\Lambda\}: S \to \Lambda$
$L_1+L_2: S \to S_1 \mid S_2$
$S_1 \rightarrow aA_1 \mid bB_1 A_1 \rightarrow a B_1 \rightarrow b$
$S_2 \rightarrow \Lambda$

Dr. Nejib Zaguia CSI3104-W11

1

Chapter 17: Context-Free Languages

• Concatenation. L₁L₂

Similar to union except we add:

$$S \rightarrow S_1 S_2$$

• Kleene star. L*

We replace S by S_1 and add:

$$S \to S_1 S \mid \Lambda$$

$$S \Rightarrow S_1S \Rightarrow S_1S_1S \Rightarrow S_1S_1S_1S \Rightarrow \dots$$

Dr. Nejib Zaguia CSI3104-W11

Chapter 17: Context-Free Languages

• <u>Theorem.</u> The intersection of two contextfree languages may or may not be contextfree.

Dr. Nejib Zaguia CSI3104-W11

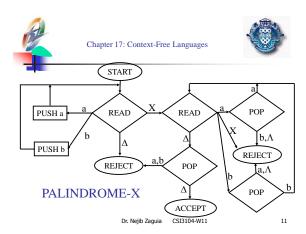
Chapter 17: Context-Free Languages

- $L1 = a^n b^n a^m$
 - $S \to XA$
 - $X \rightarrow aXb / ab$
 - $A \to aA \, / \, a$
- $L2 = a^n b^m a^m$
 - $S \to AX \\ X \to bXa \, / \, ba$
 - $A \rightarrow aA / a$

■ L1 ∩ L2 = aⁿbⁿaⁿ (is not a context-free language)

Dr. Nejib Zaguia CSI3104-W11

Chapter 17: Context-Free Languages



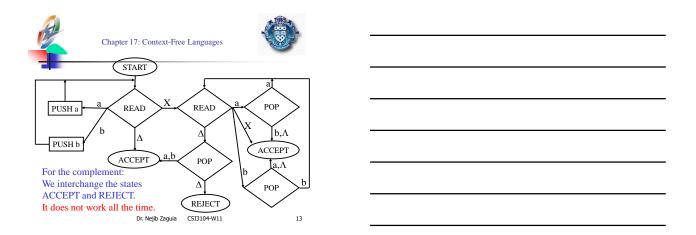
 Theorem. The intersection of a context-free language and a regular language is always context-free.

<u>Proof:</u> By constructive algorithm using pushdown automata, similar to the intersection algorithm for two finite automata.

(see manual)

Dr. Nejib Zaguia CSI3104-W11

Chapter 17: Context-Free Languages



• <u>Theorem.</u> The complement of a context-free language may or may not be context-free.

When the PDA is deterministic with other properties, we could use for the complement a similar technique as for FA

Dr. Nejib Zaguia CSI3104-W11

12

