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On Factor Graphs and the Fourier Transform
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Abstract—We introduce the concept of convolutional factor
graphs, which represent convolutional factorizations of mul-
tivariate functions, just as conventional (multiplicative) factor
graphs represent multiplicative factorizations. Convolutional and
multiplicative factor graphs arise as natural Fourier transform
duals. In coding theory applications, algebraic duality of group
codes is essentially an instance of Fourier transform duality.
Convolutional factor graphs arise when a code is represented as a
sum of subcodes, just as conventional multiplicative factor graphs
arise when a code is represented as an intersection of supercodes.
With auxiliary variables, convolutional factor graphs give rise
to “syndrome realizations” of codes, just as multiplicative factor
graphs with auxiliary variables give rise to “state realizations.”
We introduce normal and co-normal extensions of a multivariate
function, which essentially allow a given function to be represented
with either a multiplicative or a convolutional factorization, as is
convenient. We use these function extensions to derive a number of
duality relationships among the corresponding factor graphs, and
use these relationships to obtain the duality properties of Forney
graphs as a special case.

Index Terms—Duality, factor graphs, Forney graphs, Fourier
transform, graphical models, normal realizations, state realiza-
tions, syndrome realizations, Tanner graphs.

I. INTRODUCTION

THE excellent performance of turbo codes and low-den-
sity parity-check codes has made the subject of codes on

graphs and iterative decoding algorithms a major research focus
in coding theory. The graphical models that are relevant to this
paper are Tanner graphs [1], Tanner–Wiberg–Loeliger (TWL)
graphs [2], [3], factor graphs [4], and Forney (normal) graphs
[5].

Briefly, a Tanner graph [1] is a bipartite graph that expresses
the relationship between codeword symbols—represented as
symbol vertices—and the (typically linear) constraints—repre-
sented as check vertices—that define valid codewords. Every
check vertex connects, via edges, to the symbol vertices that
it checks. A TWL graph [2], [3] is a modified Tanner graph
which contains state vertices, representing auxiliary symbols.
These auxiliary symbols are not codeword symbols, but they
often simplify the code description. Trellis representations of
codes, in which the trellis states form the auxiliary symbol
alphabets, may be viewed as an expanded form of TWL graph.
A Forney graph (or normal realization) [5] arises from a
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TWL graph satisfying the requirement that all symbol vertices
have degree one and all state vertices have degree two. This
requirement leads to a significant simplification of the graph,
as the state and symbol vertices may be suppressed, leading
to a graph (a Forney graph) in which graph edges (and “half
edges”) represent symbols and graph vertices represent the
codeword-defining constraints placed on these symbols. TWL
graphs associated with trellises naturally obey the necessary
degree restrictions and so immediately give rise to the corre-
sponding Forney graphs. An important and elegant property of
Forney graphs, not shared with TWL graphs in general, is that
a local dualization procedure—in which local constraints are
replaced with their duals, and certain variable sign changes are
introduced—applied to a Forney-graph realization of a group
code yields a Forney-graph realization of the dual code.

In Tanner, TWL, and Forney graphs, the common underlying
philosophy is to use a set of constraints to define a behavior
in some configuration space. The framework of factor graphs
[4] adopts a somewhat different philosophy: a factor graph
represents the factorization structure of a multivariate func-
tion (e.g., the joint probability mass function of a number of
random variables). Suppose the function factors into several
functions (local factors), each involving a subset of the vari-
ables. The corresponding (bipartite) factor graph has a factor
vertex corresponding to each local factor, and a variable vertex
corresponding to each variable. An edge joins a factor vertex to
a variable vertex if and only if the corresponding variable is an
argument of the corresponding local factor.

A factor graph serves as a model of a code by representing the
code’s indicator function—the -valued function defined
on the appropriate configuration space that takes value only
on the set of valid codewords. (Via scaling, such an indicator
function may become a probability mass function that is uni-
form on valid codewords and is zero on noncodewords.) When
the code is defined via a number of local constraints, i.e., as the
intersection of a number of supercodes, then the code’s indi-
cator function factors as the product of indicator functions for
the local constraints [4], and hence Tanner, TWL, and Forney
graphs may all be considered as instances of a factor graph.

Motivated by the elegant duality properties of Forney graphs
[5], the results of this paper were developed from an attempt to
determine the factor-graph relevance of Forney-graph duality. In
this work, we discover that factor graphs have natural “duals,”
which we call convolutional factor graphs. We now refer to the
original factor graphs as multiplicative factor graphs. Similar to
a multiplicative factor graph, a convolutional factor graph is also
a bipartite graph, but it represents the convolution (rather than
the multiplication) of local factors.

Given a function represented by a multiplicative factor graph,
we show that the Fourier transform of the function can be repre-
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sented by a convolutional factor graph, where each local factor
is the Fourier transform of its counterpart in the multiplicative
factor graph. We refer to such a pair of factor graphs as dual
factor graphs. In coding theory it is well known that the indi-
cator function of a group code and that of its dual code are,
up to scale, a Fourier transform pair. This implies that when a
factor graph represents a code, the dual factor graph represents
the dual code, and that every pair of corresponding factors in the
two graphs represent a pair of dual local codes. Thus, via con-
volutional factor graphs, we obtain a duality theory for Tanner
and TWL graphs without imposing degree restrictions on their
vertices.

As noted earlier, when a code is defined as the intersection
of a number of supercodes, the indicator function naturally fac-
tors multiplicatively. This observation is the basis on which the
parity-check matrix of a linear code gives rise to a multiplica-
tive factor graph. We show that when a code is defined as the
sum of a number of subcodes, the indicator function naturally
factors convolutionally. This dual observation is the basis on
which the generator matrix of a linear code gives rise to a con-
volutional factor graph. This result, in retrospect, is interesting
in its own right, since it naturally motivates the introduction of
convolutional factor graphs, regardless of any particular duality
properties.

Prior to this work, graphical models for codes have been
mostly concerned with “state realizations” from which the code
of interest is obtained by puncturing the auxiliary variables.
In this work, we show that convolutional factor graphs yield
natural “syndrome realizations” from which the code of interest
is obtained by shortening the auxiliary variables.

It is also interesting to reveal the relationship between
Forney-graph duality and factor-graph duality. In this paper, we
show that every factor graph (multiplicative or convolutional)
representing a function can be normalized or “conormalized”
to another factor graph representing a function closely related
to . We develop a set of duality results for such normalized
and conormalized factor graphs, and re-interpret Forney-graph
duality in this framework.

The notion of Fourier transform is well defined for func-
tions defined on locally compact abelian (LCA) groups. These
groups include the real numbers (under addition), the integers
(under addition), the compact interval (under addition
modulo ), the circle group of unit-magnitude complex
numbers (under complex multiplication), finite abelian groups,
the direct product of any finite collection of these groups, etc.,
as may arise in many applications in coding theory and beyond.
However, for simplicity and ease of reading, in this paper we
give results only for finite abelian groups.

The remainder of the paper is organized as follows. In
Section II, we introduce the key mathematical components
forming the foundation of this paper, where we also develop
some needed mathematical operations, including function
extensions, multivariate convolution, etc. In Section III, we
describe character groups and the Fourier transform over finite
abelian groups. In Section IV, we extend the notion of factor
graphs to include both multiplicative and convolutional factor
graphs, and present their roles in intersection and sum rep-
resentations of codes and the duality between the two types

of factor graphs. State and syndrome realizations are also
discussed in this section. In Section V, we introduce normalized
and conormalized forms of factor graphs, the duality between
these forms, and its connection to Forney-graph duality. In
Section VI, we provide some brief conclusions.

II. PRELIMINARIES

A. Finite Abelian Groups

In this paper, we will deal with complex-valued functions de-
fined on finite abelian groups; however, as noted, most of our
results will hold (with some modification) to the more general
case of LCA groups, which is the general setting in which Pon-
tryagin duality applies. An excellent and readable review of the
relevant concepts in the context of the dynamics of group codes
is given in [6].

The size of a finite abelian group will be denoted as
. With one exception—the circle group defined in

Section III—abelian groups will be written additively, i.e.,
the group operation is denoted by , the identity element is
denoted by , and the inverse of group element is denoted by

. We will write to mean that is a subgroup of .
We will also write to mean that the groups and

are isomorphic.
Let be a finite abelian group and suppose that and

. Then both the intersection and the sum

of and are subgroups of . An element
can be written as (where , ) in
exactly different ways. From this it follows that if
elements and are selected independently and
uniformly at random, then there is equal probability of obtaining
each element of the sum . In other words, the sum of
two independent uniform random variables over finite abelian
groups and is uniform over the sum .

An abelian group is an internal direct product of subgroups
and if and . Since

, it follows that every group element may be
written uniquely as a sum , where and

, so .
We will take notational advantage of the correspondence be-

tween the element in the external direct product
and the element in the internal direct product. Using
this correspondence, we may denote any either by a pair

, or by a sum with and . We
refer to as the first coordinate of , and to as the second
coordinate of . Throughout the paper, the notation
will be used to denote an internal direct product, though we will
often use the ordered pair notation of external direct products to
denote individual elements of . This standard abuse of
notation should not result in any confusion.

Of course, may also be the direct product of more than two
subgroups. If is a finite index set, we will use
the notation to mean that
and for every ,

. In this case, an element has coordinates. We will
often refer to subgroups of as (group) codes.
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If , then there is a natural correspondence
between the elements of and the set of cosets

of in , under which the subgroup is isomorphic to the
quotient group . Thus, the elements of may be used
either to label or as representatives for the elements of .

Let be a subgroup of the direct product . We define
the projection of on as . The projection
of on consists of all elements of whose first
coordinate agrees with the first coordinate of some element of

, and whose second coordinate is free to be any element of
. Dually, we define the cross section of on as

. The cross section of on consists of all elements
of whose second coordinate is zero. Clearly, we have

(1)

If is regarded as a code, then we refer to
as a punctured code associated with , and the second

coordinate of the elements of is said to be the punctured
coordinate. Likewise, we refer to as a shortened code as-
sociated with , and the second coordinate of the elements of

is said to be the shortened coordinate. These definitions
slightly contravene conventional coding-theoretic usage, as usu-
ally codewords are restricted to their unpunctured and unshort-
ened coordinates. For the purposes of this paper, however, it is
convenient to maintain the subgroup relationship (1) within the
ambient group .

B. Functions on Finite Abelian Groups

A complex-valued function on an abelian group is a map
that maps each to a complex value . The

set of all complex-valued functions on is denoted . If
is a subgroup of (or, more generally, a subset of ), we will
denote the restriction of to as .

An important class of functions in this paper are the indicator
functions associated with propositional (i.e., true/false) func-
tions with domain . If is a propositional function, then
the indicator function is defined as

if
otherwise.

The following special cases arise often enough to merit special
notation: i) the “Kronecker delta” and ii)
the “subgroup indicator” , defined for any
subgroup . In particular, note that is the constant
function . The scaled subgroup indicator function

will also be useful; this function may be interpreted as a proba-
bility mass function that is uniform over the elements of , and
zero over elements not in .

Let be any subgroup of . A function is said to
be -impulsive if for all . A function

is said to be -periodic if for all
and all . An -periodic function may be regarded

as a function on the quotient group , since maps every
element of a fixed coset of in to the same value.

The only functions that are both -impulsive and -periodic
are scalar multiples of the indicator function .

A function on a direct product group may
be regarded as a function of two variables:
and . If is - or -impulsive or if is - or

-periodic, then may be regarded as a local function, i.e., as
a function of only one variable.

Specifically, if is -impulsive, then it is natural
to regard as being a function only on , i.e., to identify
with the restricted function . For each ,
this function takes value . Likewise, if

is -periodic, then, as noted above, it is natural to
regard as being a function on , i.e., to identify with
the restricted function . For each , this
function takes value .

Conversely, we may extend a given local function of one vari-
able to a function of two variables in two dual ways, both of
which will play an important role in this paper.

Specifically, given a function , we may define a cor-
responding -impulsive function in by

if , and otherwise. We call the impulsive ex-
tension of . For later use, we note that can be written
as the product .

Likewise, given a function , we may define a cor-
responding -periodic function in by

for all . We call the periodic extension of .
In the following subsection, we will see that impulsive ex-

tensions are needed to define the convolution of local functions,
just as periodic extensions are needed to define the multiplica-
tion of local functions.

C. Factorization of Functions

Factorization of functions plays a fundamental role in this
work. We will consider two dual types of function product: mul-
tiplication and convolution, and hence two dual types of func-
tion factorization.

Multiplication of two functions is defined in the
usual way, as , i.e., as the pointwise
function product. Convolution of two functions is
defined, in the abelian group case [7], as

More generally, for finite index set , the
product (either multiplicative or convolutional) of the elements
of a family of functions in is given as

where denotes the relative complement of in
, and where the “ ” operation must be replaced with either

a multiplication (“ ”) operation or a convolution (“ ”) opera-
tion. Both multiplication and convolution are commutative and
associative.

We remark that convolution arises naturally when considering
sums of independent random variables. If and are inde-
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pendent random variables distributed over , with probability
mass functions and , respectively, then the sum
(the sum taken in ) is distributed with probability mass func-
tion . Convolution also arises naturally as the ring product
in the group ring (see, e.g., [7, p. 245]).

A function is said to factor multiplicatively as the
product of if . If ,
then we may allow and to be local functions provided that
we are careful to extend and to in the appropriate way.
We follow the usual convention that each factor is replaced with
its corresponding periodic extension. Thus, if and

, then the multiplication is defined as

(2)

Likewise, a function is said to factor convolutionally
as the product of if . Again, if

, then we may allow and to be local functions,
provided that we are careful to extend and to in an
appropriate way. Here we follow the dual convention that each
factor is replaced with its corresponding impulsive extension.
Thus, if and , then the convolution

is defined as

(3)

To see that the impulsive extension gives a reasonable defini-
tion of the convolution of local functions, observe that

and

Convolving the two functions, we find that

In other words, the convolution of the two local functions and
is performed via their common argument , with the

remaining variables interpreted as parameters. This interpreta-
tion can be made precise by viewing the function as
a family of functions in indexed by and the function

as a family in indexed by . Convolving the
two families yields a third family indexed by , which
may be viewed as the function . From this
perspective, multiplication of two local functions may also be
viewed as a multiplication of two families of functions. Any rea-
sonable definition of multiplication or convolution should give
a result that is consistent with this perspective. It is possible to
show that local functions and can generally be extended
to global functions (i.e., elements of ) in only one
way that makes convolution of the extended functions consis-
tent with this “variables-as-parameters” view, and that is to use

impulsive extensions as in (3). Likewise, there is in general only
one way to extend and to create a consistent multiplica-
tion, and that is to use periodic extensions as in (2).

An important special case arises when , in which
case may be regarded as the local function
and may be regarded as the local function . In
this case, multiplication and convolution coincide, as stated in
the following theorem.

Theorem 1: Let and be local
functions with no variable in common. Then

.
Proof: This follows directly from (2) and (3).

In other words, a separable (product) function may be re-
garded as either an ordinary multiplicative product or as a con-
volutional product of the appropriate (periodic or impulsive) ex-
tensions of the component local functions. We will make use of
this simple observation in Section V.

In this paper, we will often consider general factoriza-
tions of the following type. For any positive integer , let

be an index set, and let be
the direct product of a family of subgroups of

. For any nonempty subset of , let be the
subgroup of formed as the direct product of those indexed
by . We will let denote an arbitrary element of
and denote an arbitrary element of . Since each element
of has coordinates, we may regard a function as
the function of variables , where
variable takes values in group .

Now let be another index set, which will
be used to index a collection of local factors, and suppose that
factors (either multiplicatively or convolutionally) as a product
of local functions , , where each is a
nonempty subset of for each . Such a factorization may
be denoted as

(4)

where the generic function product operator must be replaced
with multiplication or convolution according to the given type
of factorization.

D. Sampling and Averaging of Functions

Given any subgroup of , we define the -sampling of a
function as the process of multiplying by the indicator
function . That is, given a function , the -sampling
of is the function , which takes value
when , and otherwise. Thus, an -sampled function
is -impulsive. Indeed, a function is -impulsive if and only
if it is invariant under -sampling, i.e., if and only if .
We note that -sampling behaves as a projection, i.e.,

Likewise, we define the -averaging of a function as
the process of replacing by its average value over the coset
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of . This process may be performed by convolving with
the uniform probability mass function , since

the average value of over the coset . In other words, given
a function , the -averaged function is .
An -averaged function is by definition -periodic. Indeed,
a function is -periodic if and only if it is invariant under

-averaging, i.e., if and only if . We note that
-averaging behaves as a projection, i.e.,

In the case when is an indicator function for some subgroup
of , then, as the following theorem shows, -sampling

and -averaging of give rise to indicator functions for the
intersection and sum groups, respectively.

Theorem 2: If and are subgroups of a finite abelian
group , then

and

Proof: The product if and only if
and , which occurs if and only if

is an element of both and . The convolution
represents the probability mass function of the sum of

two independent random variables uniformly distributed over
and , which is uniformly distributed over the sum group

.

In the special case of a group code with indi-
cator function , the -sampling of yields

the indicator function for the cross section of on . Simi-
larly, the -averaging of yields

the uniform probability mass function over the projection of
on .

III. FOURIER TRANSFORM DUALITY IN

FINITE ABELIAN GROUPS

Time–frequency duality is probably the most fundamental
concept and the most useful tool in signal analysis. As all elec-
trical engineers know, convolution of signals in the time do-
main is equivalent to multiplication of the Fourier transforms
of the signals in the frequency domain. The theory of Fourier
transforms on LCA groups is well developed (see, for example,
[7]–[9]), and will be used, in the finite abelian group setting
of this paper, to establish various duality results. We begin by
defining the “frequency domain,” that is, the character groups.

A. Character Groups

The circle group (or -torus) is the group of unit-magnitude
complex numbers under complex multiplication. Following [7],
we will denote the circle group by . As we have already noted,
we will write the group operation of multiplicatively.

A character of a finite abelian group is a homomorphism
mapping into the circle group. The set of charac-

ters of forms an abelian group , called the character group
of , under the group operation defined by

(5)

for any . The identity character is the trivial homo-
morphism that maps every to . Outside coding
theory, the character group of is usually referred to as the
“dual group” of , but to avoid confusion with “dual codes,”
we will not use this terminology.

The evaluation of a character at is often
written as a pairing . The pairing is “bihomomorphic” in
the sense that the two relationships

hold for all and all . A character and
a group element are said to be orthogonal if .

For any fixed , the mapping from into
is a homomorphism, and hence is an element of , the char-
acter group of . In fact, all characters of are obtained in
this manner, and the natural map taking to is an isomor-
phism between and . This result—that and are
naturally isomorphic—is often referred to as Pontryagin duality.

In the case of a finite abelian group, in addition to having
, we also have , so in particular . For

example, consider the cyclic group under
integer addition modulo , in which the element generates the
entire group. If is a character of , and the value is
specified, then the value is determined for all ,
since, e.g., , , etc. In
particular, , so must be a complex

th root of unity, i.e., an integer power of . The map that
takes to the character with value is an
isomorphism between and the distinct characters of .

It is well known that the character group of a finite direct
product , where , is itself a
direct product. This direct product may be written

for subgroups having the properties that i) the re-
striction is the character group of , and ii) if ,

for all and all . From the latter
property it follows that the pairing
is given by the componentwise product
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B. Orthogonal Subgroups

A character is said to be orthogonal to a subgroup
of if it is orthogonal to all elements of , i.e., if for
all . The set of all characters of orthogonal to is
the orthogonal subgroup associated with . If is regarded as
a code, then is the dual code. The second major Pontryagin
duality result is the fact that (the dual of the dual of

) is isomorphic to under the same map that associates
with , and hence we may write . We have

and . It is also easy to see that in a direct
product group we have .

Let be a subgroup of and let be any character of . The
restriction of every character of is a character of ,
and it can be shown that, as ranges over , all characters
of are obtained in this way, i.e., . Indeed,

is a group homomorphism from to having kernel
. Two characters of coincide on ,

i.e., , if and only if and are elements of the
same coset of in . By a standard isomorphism theorem
of group theory, we have , which
yields the following theorem.

Theorem 3: If is a finite abelian group and , then
. Dually, .

In the finite abelian group setting of this paper, we have
; hence, . From Theorem 3 and the

fact that , it follows that . Thus, we ob-
tain the standard coding theory result that the number of code-
words in a group code multiplied by the number of codewords
in the dual code is equal to the cardinality of the ambient group.

We now collect together several useful duality properties that
relate sum and intersection groups and their orthogonal groups.
The most fundamental of these is the sum/intersection duality
provided by the following theorem.

Theorem 4 (Sum/Intersection Duality): If and are
subgroups of a finite abelian group , then

and

Proof: An element in the intersection is orthog-
onal to every element of and every element of , and hence
is orthogonal to every element of ; thus, a)

. On the other hand, since , an el-
ement in must be orthogonal to every element
of and likewise orthogonal to every element of ; hence,

. Thus, b) . Together a)
and b) give the first half of the theorem. To show the second half,
replace and in the first half with and , respec-
tively. We then have . Taking
the dual of both sides and applying the second Pontryagin du-
ality result yields the desired result.

Theorem 4 also gives the following projection/cross section
duality.

Theorem 5: Let be a subgroup of the direct product
. Then and .

Proof: We have

Similarly

Applied to codes, Theorem 5 yields the standard coding
theory result that if a code is obtained by puncturing a
code , then the dual of is obtained by shortening , and
likewise, if is obtained by shortening , then the dual of
is obtained by puncturing .

C. Fourier Transform

Before giving the definition of the Fourier transform of
complex-valued functions defined on finite abelian groups,
it is useful to establish the following lemma, which, among
other applications, can be used to verify the Fourier inversion
formula.

Lemma 1: If is a subgroup of a finite abelian group and
is an arbitrary character of , then

(6)

Proof: Let denote the left-hand side of (6). If
then the summand for all , so that .
If , then for some we have . Then

Since , we conclude that .

Now, let be a complex-valued function on . The
Fourier transform of is the function defined as

The inverse Fourier transform is given by

as may be verified by replacing with its definition, and
then applying Lemma 1 to the resulting expression. The inverse
Fourier transform operator will be denoted as .

When is a cyclic group, this definition of the Fourier
transform reduces to the well-known discrete Fourier transform
(DFT) used in signal processing. When is , the Fourier
transform is the Hadamard transform. Most properties of the
DFT carry over to this more general notion of Fourier trans-
form; e.g., see [10] for a comprehensive review.

D. Duality Properties of the Fourier Transform

The Fourier transform exhibits numerous duality properties,
among which the following convolution theorem is of central
importance for this paper. The proof of this result is standard;
see, e.g., [7].

Theorem 6 (Convolution Theorem): If and are com-
plex-valued functions over a finite abelian group , then

and
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More generally, if is a finite index set for a family
of complex-valued functions on

and

In the application of factor-graph models to codes, the fol-
lowing theorem is equally important, as it shows that the Fourier
transform of the indicator function for a code is (up to scale) an
indicator function for the dual code.

Theorem 7: Let be the (unscaled and scaled)
subgroup indicator functions for a subgroup of a finite abelian
group . Then

or, equivalently,

where are the (unscaled and scaled) sub-
group indicator functions for the orthogonal subgroup .

Proof: We have

where the last equality follows from Lemma 1. The second part
of the theorem follows from the fact that .

In particular, setting , and noting that , we
obtain and .

Applying these results to Theorem 2 gives another way to es-
tablish sum/intersection duality. If is a finite abelian group
and and are subgroups of , then has indicator
function . Applying the Fourier trans-
form yields which we know
is equal to and, hence, via Theorem 7, we have

. Likewise ;
therefore, , which es-
tablishes that .

Let be a subgroup of a finite abelian group . The fol-
lowing theorem establishes the duality between -sampling or

-averaging a function , and the corresponding -av-
eraging or -sampling of the Fourier transform .

Theorem 8 (Sampling/Averaging Duality): Let be a sub-
group of a finite abelian group , and let be a function
on . Then

a) ;
b) ;
c) is -impulsive if and only if is -periodic; and
d) is -periodic if and only if is -impulsive.

Proof: Properties a) and b) follow from Theorems 6 and 7.
Property c) follows from a) and the fact that a function is

-impulsive if and only if . Likewise, property d)
follows from b) and the fact that a function is -periodic if
and only if .

Likewise, there is a duality between impulsive and periodic
extensions of a local function and the corresponding impulsive
and periodic extensions of the Fourier transform of .

Theorem 9: Let be the direct product , and let
be a local function on with Fourier transform

. Then

and

where the impulsive and periodic extensions of are taken with
respect to and the impulsive and periodic extensions of
are taken with respect to .

Proof:

where the third equality follows from Lemma 1. This proves
the second equality. The first equality can be proved in the same
manner by considering the inverse Fourier transform of .

Recall that multivariate multiplication and convolution of
local functions are defined in terms of the corresponding peri-
odic and impulsive extensions. Theorem 9 allows us to extend
the convolution theorem to multivariate functions.

Theorem 10 (Multivariate Convolution): If is a direct
product , and local functions
and have respective Fourier transforms

and , then

and

More generally, suppose that is the direct product
for some finite index set , and that a given

function factors as a product of local functions as in
(4). Then

Proof: We will only prove the last equality to establish the
scaling factor. We have
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where the third equality follows from Theorem 9.

IV. DUAL FACTOR GRAPHS

A. Two Types of Factor Graphs

We will now consider factor-graph representations for com-
plex-valued functions defined on a finite direct product of finite
abelian groups. We will consider functions that factor (either
multiplicatively or convolutionally) as a product of local func-
tions, as in the general factorization setting of Section II-C.

As in Section II-C, let be a positive integer and let
be an index set for the components of the direct

product . For any nonempty subset of , let
be the subgroup of defined as . A function

will be regarded as a function of variables
, where variable takes values in group .
Let , and for any , let be

some nonempty subset of . Suppose a given function de-
fined on factors (either multiplicatively or convolutionally, as
in Section II-C) as

(7)

where local factor is a complex-valued function defined on
. For each , it is convenient to define as the subset

of that indexes the local factors having as an argument, i.e.,
.

The factorization (7) may be visualized with the aid of the
factor graph , defined in the following way. The symbol

denotes a bipartite graph with two vertex classes: one class
containing variable vertices, each representing one of the vari-
ables , , and the other class containing function
(factor) vertices, each representing one of the local functions

, . An edge connects variable vertex with func-
tion vertex if and only if appears as an argument of ,
i.e., if and only if or, equivalently, . The
graph represents the multiplicative factorization

, and is referred to as a multiplicative factor
graph. The graph represents the convolutional factoriza-
tion , and is referred to as a convolutional
factor graph. We will write instead of when the
function is clear from context.

Example 1: Let be the direct product of finite abelian
groups , , and , and let , ,
and be three local functions. The generic
factorization

is represented by the bipartite graph shown in Fig. 1. De-
pending on the product operation associated with , this graph
can represent either the multiplicative factorization

Fig. 1. Bipartite graph G of Example 1.

or the convolutional factorization

B. Factor-Graph Duality

Using the notation of the previous subsection, let
be a direct product group, where

is a finite index set. As observed in Section III, the character
group of is the direct product . If is
a nonempty subset of , we let denote the direct product

, and we note that . An arbitrary
element of will be denoted as , and an arbitrary
element of will be denoted as .

Also, as in the previous subsection, let be
an index set for a set of local functions ,
where, for each , is a subset of .

Finally, let denote a function product (either multiplication
or convolution) and let denote the dual product, i.e., so that

and .
We define the pair of factor graphs, and , rep-

resenting the factorizations

respectively. The two factor graphs and are said
to be a pair of dual factor graphs. The reader is cautioned to
note that is not necessarily the Fourier transform of , since
needed scale factors may be missing. However, in light of the
multivariate convolution theorem, the following theorem is
immediate.

Theorem 11: A pair of dual factor graphs represent (up to
scale) a Fourier transform pair.

C. Convolutional Tanner Graphs

As previously defined, let be a finite index set and
be a direct product group. In coding theory, one may

consider a set of local codes , , where has
indicator function , where . We consider
two dual ways to define a group code using these local
codes.

A code may be defined by regarding each local code as a
local constraint in the following sense. For each , a valid
codeword of restricted to the positions indexed by must
be a codeword of , and the code is the set of all words
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Fig. 2. (a) Multiplicative Tanner graph for the (7; 4) Hamming code C . (b) Convolutional Tanner graph for the (7;3) dual Hamming code C . Local functions
denoted “+” are indicator functions for a single parity-check code, whereas local functions denoted “=” are indicator functions for a repetition code.

that satisfy all of these local constraints. The local code con-
strains only the coordinates indexed by , leaving the co-
ordinates in free; thus, in effect creates the code

, and is obtained as

(8)

By Theorem 2, the indicator function is

Thus, the indicator function of code may be represented
by a multiplicative factor graph.

On the other hand, a(nother) code may be defined by re-
garding each local code as a generating subgroup ,
where is the identity element of . Then is the
sum of all such subgroups, i.e.,

(9)

By Theorem 2, the scaled indicator function is

Thus, the scaled indicator function of code may be rep-
resented by a convolutional factor graph, which we call a con-
volutional Tanner graph.

In the case of a linear code defined over a finite field , the
local codes that give rise to a code may be defined via the
rows of a parity-check matrix or generator matrix for . If is
an matrix with entries from , then the th row defines
a pair of dual local codes of length , each a subspace of

, where denotes the set of columns of that have
a nonzero coordinate in row . If is considered as a parity-
check matrix for a code , then is defined by interpreting
the th row as a parity-check equation, so that is a linear
code of dimension . In this case, is obtained via (8)
and hence has a Tanner-graph representation [1]. On the other
hand, if is considered as a generator matrix for , then
is defined by interpreting the th row as a generator, so that
is a linear code of dimension . In this case, is obtained via
(9) and hence has a convolutional Tanner-graph representation.

The following example will clarify this construction. We will
consider a binary linear block code of length as a subgroup of
the additive group .

Example 2: Let , let and let
, where . Let

The matrix has , so we define .
We have , , and

, indicating the location of the nonzero elements of
.
If is taken as the parity-check matrix of the

Hamming code , then is defined by the single parity-check
equation . Thus, has indicator function

and has indicator function

which can be represented by the multiplicative Tanner graph in
Fig. 2(a).

Dually, if is taken as the generator matrix for the
dual Hamming code , then is the one-dimensional repe-
tition code with scaled indicator function

Thus has scaled indicator function

which can be represented by the convolutional Tanner graph in
Fig. 2(b).

In a more general setting of group codes, let
. An -symbol code is

obtained in a kernel representation if is the kernel
of a group homomorphism mapping into some
abelian group . Often, the abelian group itself decomposes as
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a direct product , where , and
the homomorphism decomposes as a set of homomorphisms

such that, for every

where , and is obtained by restricting
to the positions indexed by . Then the kernel
of each homomorphism forms a local code ,

with indicator function

and the code is the intersection ,
with indicator function

as before.
Dually, an -symbol code is obtained in an image

representation if is the image of some homomorphism
mapping some finite abelian group into . Often

the homomorphism decomposes as a set of homomorphisms
, such that for every

Then, the image of each homomorphism forms a local
code , with scaled indicator function

and the code is the sum , with scaled indicator
function

as before.
In essence, a kernel representation works by “cutting away:”

starting from the entire configuration space, the code is specified
as the intersection of a number of supercodes. On the other hand,
an image representation works by “building up:” starting from
the zero word, the code is specified as the sum of a number of
subcodes. Kernel representations fit naturally with multiplica-
tive factor graphs, while image representations fit naturally with
convolutional factor graphs.

D. Factor Graphs With Auxiliary Variables

Instead of considering the finite abelian group as the direct
product , in this subsection, we consider as the direct
product , where is another index set and
each indexes some subgroup of . We will associate
with each index a variable , referred to as an auxiliary
variable, taking values from . We will denote the subgroups

by and of by .
Let be a subgroup of , which we refer to as a “behavior.”

We will consider two dual ways to realize a code from
behavior . The punctured code is obtained
by puncturing the auxiliary variables. The shortened code

is obtained by shortening the auxiliary variables.
(One might also consider codes obtained from a behavior by

puncturing some coordinates and shortening other coordinates,
however, we will not consider such representations here.) The
usual purpose of introducing auxiliary (“hidden”) variables is
to achieve some simplification of a factor-graph model for a
code. For example, auxiliary variables can be introduced to
eliminate graph cycles, resulting in a cycle-free representation
such as a trellis.

Theorem 2 relates indicator functions for with those for the
shortened and punctured codes. We have

(10)

(11)

which shows that there is a close (essentially trivial) relation-
ship between a multiplicative factor-graph representation of
and multiplicative factor-graph representation of the shortened
code , and likewise between a convolutional factor-graph
representation of and the punctured code .

Specifically, let be a multiplicative factor-graph rep-
resentation for a given behavior . According to (10), a multi-
plicative factor graph for the shortened code is obtained
by introducing a factor for every auxiliary variable ,

. Each local factor in the original graph may be re-
placed with the function obtained by -sampling, i.e., replacing

with , where is
an index set for the auxiliary variables incident on . As the
auxiliary variables then no longer appear as arguments of the
modified functions, edges between and the auxiliary
variables may be deleted. In effect, the auxiliary variables are
connected to Kronecker delta functions and disconnected from
the rest of the graph. It is easy to see that the result is a multi-
plicative factor graph for . The auxiliary variables and their
neighbors can, in fact, be deleted from the graph, resulting in a
multiplicative factor graph for the shortened code (as conven-
tionally defined).

Likewise, there is a trivial relationship between a convolu-
tional factor-graph representation for the punctured code
and a convolutional factor-graph representation for . By a pro-
cedure similar to that described in the previous paragraph, each
local factor is replaced with the function obtained by -av-
eraging, i.e., replacing with and then
deleting all edges incident on the auxiliary variables. The auxil-
iary variables are connected to scaled indicator functions for the
corresponding symbol alphabet and disconnected from the rest
of the graph. Again, it is easy to see that the result is a convo-
lutional factor graph for , and if the auxiliary variables and
their neighbors are deleted, the result is a convolutional factor
graph for the punctured code (as conventionally defined).

Unlike the situation described in the previous two paragraphs,
there is a nontrivial relationship between a multiplicative factor-
graph representation for and a multiplicative factor-graph
representation for the punctured code . Likewise, there is
a nontrivial relationship between a convolutional factor-graph
representation for and a convolutional factor-graph represen-
tation for the shortened code . In the former case, the mul-
tiplicative factor graph representing is essentially a (gener-



MAO AND KSCHISCHANG: ON FACTOR GRAPHS AND THE FOURIER TRANSFORM 1645

alized) state realization [5] or TWL graph [2] of , where the
auxiliary variables are referred to as state variables. The latter
case provides a natural dual representation, which we refer to as
a (generalized) syndrome realization for in which the auxil-
iary variables are referred to as syndrome variables. The ratio-
nale for this latter nomenclature should be clear: a given config-
uration in yields a valid codeword of if and only if the
syndrome variables are zero. We will not study syndrome real-
izations further; however, see [11], [12]. We will conclude this
section by stating the following obvious relationship between
state and syndrome realizations.

Theorem 12: The dual of a generalized state realization for
a code is a generalized syndrome realization for . Like-
wise, the dual of a generalized syndrome realization for is a
generalized state realization for .

Proof: This follows from Theorems 5 and 11.

V. FACTOR-GRAPH NORMALIZATION

In this section, we define notions of normalization for factor
graphs, similar to those of Forney [5], and address the connec-
tion between factor-graph duality and Forney-graph duality.

A. Normalization and Conormalization

Let be a function defined on a finite abelian group
that factors multiplicatively as for

some functions . Similarly, let be a func-
tion that factors convolutionally as for
some functions . In these factorizations, the func-
tions and “interact” (either multiplicatively or convolu-
tionally) via the common variable . Let and be “replicas”
of the variable , i.e., two different variables defined over the
same alphabet as that of . The function

mapping into is a separable function, in which the two
factors do not “interact.” However, this function must somehow
be closely related both to and . Before expressing this re-
lationship, we define the following four functions in .
Let

(12)

(13)

(14)

(15)

Clearly, and have a multiplicative factorization
(and, hence, correspond to a multiplicative factor graph),
whereas and have a convolutional factorization
(and, hence, correspond to a convolutional factor graph). We
refer to as the normal extension of , and we refer to

as the conormal extension of . Likewise, and
are referred to as the normal and conormal extensions of

, respectively.
The following theorem shows that and can be obtained

by averaging the normal or conormal extensions that factor mul-
tiplicatively and by sampling the normal or conormal extensions
that factor convolutionally.

Theorem 13:

(16)

(17)

Proof: We have

where the second equality follows from the identity

Likewise

where the last equality follows from the same identity as in the
previous case. Similarly, we have

and

where the last equality follows by applying the result of the pre-
vious case.

Theorem 13 generalizes to give normal and conormal exten-
sions for general multiplicative and convolutional products of
local functions—as in (7)—in a straightforward (though nota-
tionally cumbersome) way. Perhaps the easiest way to describe
these extensions is to describe the corresponding factor graphs
as follows.
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A factor graph for the normal or conormal extension of a
function is obtained by introducing an independent “replica” of
each variable that appears as an argument of each local factor,
thereby obtaining a completely separable product of local func-
tions. This separable product may be interpreted either multi-
plicatively or convolutionally, as is convenient. The independent
factors are then “coupled” by forming the product (either mul-
tiplicative or convolutional) with an appropriately defined indi-
cator function, as in Theorem 13. We refer to the factor graph
corresponding to the normal (resp., conormal) extension of a
function as the normalized (resp., conormalized) factor graph
associated with that extension.

For example, suppose that the function has a factor graph
. The following procedure will create the normalized and

conormalized factor graphs associated with the normal and
conormal extensions of .

Factor-Graph (Co)Normalization Procedure:
For every variable vertex having degree :
1) Let denote the neighbors of .
2) Isolate (i.e., delete all edges incident on ) and create

independent replica variable vertices having
the same alphabet as .

3) Attach replica to local factor .
4) Create a new local code indicator vertex

—chosen according to Table I—and con-
nect variable vertex and its replicas to .

The resulting factor graph represents the normal or
conormal extension of provided that each newly introduced
local factor vertex (the local code indicator) is
defined appropriately, according to Table I. For example, if the
original factor graph is multiplicative then the conormalized
(convolutional) factor graph is obtained by selecting

The normalization and conormalization procedures may also
be understood as a local graph transformation, in which the local
neighborhood of each variable vertex is transformed by substi-
tution of an appropriate tree, as shown for multiplicative graphs
in Fig. 3(a) and (b), respectively, and for convolutional factor
graphs in Fig. 3(c) and (d), respectively.

We remark that, in the normalized or conormalized factor
graphs, all variable vertices have degree either one or two; in
particular, all introduced replica variable vertices have degree
two, and all original variable vertices have degree one. The
reader may verify that this normalization procedure (applied to
multiplicative factor graphs) is identical to the normalization
procedure of Forney [5].

Let be a direct product group, and let
and be complex-valued func-

tions on that factor multiplicatively and convolutionally,
respectively, as in (7). Let be the direct product group
needed to define all replica variables in the (co)normalization
procedure defined above, and denote an element of as .
The following theorem is the generalization of Theorem 13.

TABLE I
LOCAL CODE INDICATOR FUNCTIONS IN (CO)NORMALIZATION

OF A FACTOR GRAPH

Theorem 14:

where are the normal and conormal
extensions of , respectively, and are
the normal and conormal extensions of , respectively.

We remark that working with normal or conormal extensions
of a given product of local factors gives the system modeler
freedom to select the function product type (multiplication or
convolution) that is most convenient in any given application.
The resulting factor graph is not more complicated than the orig-
inal one. As we will see in the next section, the Fourier trans-
form of a (co)normal extension is a (co)normal extension of the
Fourier transform, and hence, this modeling freedom will ex-
tend also to the Fourier transform domain.

B. Duality Relationships of Normal Extensions

Now we consider the normalization and conormalization of
a pair of dual factor graphs and representing
a multiplicative product and its Fourier transform,
a convolutional product, , respectively. Due to the
well-known duality between parity-check codes and repetition
codes over any finite abelian group, the new function vertices
introduced in the normalization procedure on and the
corresponding function vertices introduced in the normalization
procedure on represent (up to scale) pairs of Fourier
transforms.

By the multivariate convolution theorem (Theorem 10), the
normalized factor graphs and are a pair
of dual factor graphs, representing (up to scale) a Fourier trans-
form pair and , respectively. For the same reason,
the conormalized factor graphs and are
a pair of dual factor graphs, representing (up to scale) a Fourier
transform pair and , respectively.

Furthermore, by the Sampling/Averaging Duality Theorem
(Theorem 8), the recovery of by -averaging of
(summing over the replica variables) corresponds to the re-
covery of by -sampling of (setting the dual replica
variables to zero) in the dual domain. Likewise, the recovery of

by -sampling of corresponds to the recovery of
by -averaging of in the dual domain.

These various relationships are summarized in the commuta-
tive diagram of Fig. 4.
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Fig. 3. (a) Normalization and (b) conormalization transformations for multiplicative factor graphs; (c) normalization and (d) conormalization transformations for
convolutional factor graphs. Local factors designated with an “=” sign indicate an equality constraint; local factors designated with a “+” sign indicate that the
incident variables must sum to zero. The small circles represent sign inverters.

Fig. 4. Commutative diagrams summarizing the relationships between dual
factor graphs and the corresponding normalized and conormalized factor graphs.
The symbols in each corner are mnemonic, indicating the local code indicator
type in each corresponding (co)normal graph.

C. Duality Relationships of Normal Realizations of Codes

In the context of coding theory, let the multiplicative factor
graph represent a group code , where the func-
tion vertices represent the local codes that intersect to form , as
in (8). Then the convolutional factor graph represents
the dual code , where the function vertices represent
the dual of the local codes that sum to form , as in (9).

Let the normalized factor graph and the conor-
malized factor graph of represent, respec-
tively, two codes and , contained in ,
where represents the product of alphabets corresponding
to all the replica variables. Then the normalized factor graph

and the conormalized factor graph of
represent, respectively, the dual codes and
contained in . By Theorem 2, code

may be regarded as the projection of on restricted
to , or as the cross section of on restricted to

. Dually, code may be regarded as the cross section of
on restricted to , or as the projection

on restricted to . These relationships, implied by the
commutative diagram of Fig. 4, are explicitly summarized in

Fig. 5. Commutative diagrams summarizing the relationships between dual,
normalized, and conormalized factor-graph representations of codes. (With a
slight abuse of notation, instead of using the indicator functions, we use the
represented codes as the subscripts of the factor graphs.)

the commutative diagram in Fig. 5. Clearly, and
are, respectively, state and syndrome realizations

of . Likewise, and are, respectively,
syndrome and state realizations of . Similar duality rela-
tionships are expressed in a similar way by Koetter in [13].

The Forney-graph (or normal-graph) duality of [5] can be
understood using this diagram. Suppose that we start with a
Tanner graph of code , which is essentially the multiplica-
tive factor graph in Fig. 5. Forney’s normalization pro-
cedure on the Tanner graph is identical to the normalization pro-
cedure on multiplicative factor graphs in this paper, and the re-
sulting Forney graph is essentially the normalized multiplica-
tive factor graph . Forney’s dualization procedure on
the normalized factor graph involves dualizing each
local code represented by the function vertex and inserting a
sign inverter between each replica variable vertex and the newly
introduced function vertex connecting to it, which gives rise
to the dual Forney graph, a multiplicative factor graph iden-
tical to . Forney-graph duality then states that punc-
turing the replica (state) variables in code and
gives rise to the pair of dual codes and —a result that
can be obtained by following the arrows in the diagram from
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Fig. 6. Duality relationships between (co)normalized state and syndrome realizations. The pair dual codes of interest are C and C .

TABLE II
LOCAL CODE INDICATOR FUNCTIONS FOR AUXILIARY VARIABLES IN

(CO)NORMALIZATION OF A CODE REALIZATION

to and from to . In ef-
fect, the Forney-graph duality results are identical to those illus-
trated in Fig. 5, “skipping over” the convolutional factor graphs.

D. Normalizing Realizations With Auxiliary Variables

A slight complexity arises when the factor graph prior to nor-
malization does not represent the code of interest, but rather is
a state or syndrome realization of the code. In a state realization
(as defined in Section IV-D), the represented behavior is punc-
tured on state variables to recover the code of interest. Conor-
malizing a state realization produces a new realization having
variable vertices and their replicas as well as state variables and
their replicas. In order to recover the code of interest, this be-
havior would need to be punctured at the state variables and
shortened at the replicas of the state variables and hence this
new realization would be neither a valid state realization nor a
valid syndrome realization. A similar complication arises when
conormalizing a syndrome realization.

These complications are easily addressed, however, by
treating the (hidden) auxiliary variables slightly differently in
the process of normalization than the other variables in the
graph (which we refer to as primary variables). This different
treatment of primary and auxiliary variables is also required
in the construction of Forney graphs: see the separate “symbol
replication” and “state replication” procedures in [5, Sec. III-B].
The main difference in the normalization procedure is that,
once replicas of an auxiliary variable have been introduced,
the original auxiliary variable is deleted, and the local code
indicator function is suitably modified, according to Table II.
As degree-one auxiliary variables may be absorbed by suitably
modifying the neighboring local factor, without loss of gener-
ality, we assume that all auxiliary variables appearing in the
graph have degree at least two.

Following is the factor graph (co)normalization procedure for
code realizations with auxiliary variables.

Factor-Graph (Co)Normalization Procedure with
Auxiliary Variables:
For every primary variable vertex, apply the factor graph
(co)normalization procedure described in Section V-A. For
every auxiliary variable vertex :
1) Let denote the neighbors of .
2) Isolate (i.e., delete all edges incident on ) and create

independent replica variable vertices having
the same alphabet as .

3) Attach replica to local factor .
4) Create a new local code indicator vertex —

chosen according to Table II—and connect the replicas
to .

5) Delete auxiliary variable vertex .

The duality relationships between (co)normalized state and
syndrome realization are shown in the diagram in Fig. 6. In the
diagram, the multiplicative factor graph representing
behavior is a state realization of code , and the convolu-
tional factor graph representing the dual behavior

is a syndrome realization of the dual code . The nor-
malized factor graphs of and
of represent a pair of normalized dual behaviors,

and , respectively, and similarly for and
. The code is a projection of and a cross

section of , and likewise, the dual code is a cross
section of and a projection of .

VI. CONCLUDING REMARKS

The Fourier transform naturally induces convolution as a
function product that is dual to multiplication. Just as mul-
tiplication may be defined via periodic extensions of local
functions, we have shown that convolution may be defined via
impulsive extensions of local functions. We have introduced
convolutional factor graphs as a natural graphical representation
of the convolutional factorization structure of a multivariate
function, just as conventional (multiplicative) factor graphs are
a representation of a multiplicative factorization. If a function
is represented by one type of factor graph, its Fourier transform
is represented by the dual type, with the same underlying graph
structure.
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Applied to coding theory, this Fourier transform duality
yields code duality, as the Fourier transform of an indicator
function for a code yields a scaled indicator function for the
dual code. The natural dual to a conventional Tanner graph
is a convolutional Tanner graph; the former expresses a code
as the intersection of supercodes and may be obtained from a
parity-check matrix description, and the latter expresses a code
as the sum of subcodes and may be obtained from a generator
matrix description. In code realizations with auxiliary variables,
multiplicative factor graphs give rise to state realizations in
which the code of interest is obtained by taking a projection,
and convolutional factor graphs give rise to syndrome realiza-
tions in which the code of interest is obtained by taking a cross
section.

By introducing normal and conormal extensions, we have
generalized the normalization procedures of Forney [5] to
the case of multivariate functions. We show that the elegant
Forney-graph duality properties of [5] are easily understood in
this framework.

An important consequence of working with normalized or
conormalized functions is that the choice of function product
(multiplication or convolution) essentially becomes arbitrary,
and so this choice can be made according to convenience. In
either case, the factor graphs corresponding both to and its
Fourier transform have the same underlying graph. Function
normalization entails no significant expansion of computa-
tional effort for local message-passing algorithms; e.g., the
sum–product algorithm operates in a normalized multiplicative
factor graph with the same complexity as in the original graph.
Since the dual graph of a multiplicative graph may also be
chosen to be multiplicative, the sum–product algorithm can
also be applied in the Fourier transform domain; and in fact,
this may result in decreased computational complexity when
the Fourier transforms of the local factors are somehow sim-
pler to process than the local factors themselves. (In coding
applications, the duals of high-rate local codes are low rate, and
may be easier to decode.) These observations lead us to believe
that Forney graphs are, for most practical purposes in coding
applications, the preferred graphical code representation, as the
elegant and useful duality properties that they possess come at
no significant increase in the computational complexity of local
message-passing algorithms. In applications beyond coding
theory, it may be, for the same reasons, that the normalized
factor graphs introduced here may also be preferable to other
representations.

As convolution and the Fourier transform occur in many areas
of science and engineering, the extension of factor graphs to in-
clude convolutional factorization and the introduction of factor-
graph duality may potentially have applications in some of these
areas. A first step in this direction is taken in [14]; see also [15].
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