
820 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

A Factor Graph Approach to Link Loss Monitoring in
Wireless Sensor Networks

Yongyi Mao, Member, IEEE, Frank R. Kschischang, Senior Member, IEEE, Baochun Li, Member, IEEE, and
Subbarayan Pasupathy, Fellow, IEEE

Abstract—The highly stochastic nature of wireless environments
makes it desirable to monitor link loss rates in wireless sensor net-
works. In a wireless sensor network, link loss monitoring is partic-
ularly supported by the data aggregation communication paradigm
of network traffic: the data collecting node can infer link loss rates
on all links in the network by exploiting whether packets from var-
ious sensors are received, and there is no need to actively inject
probing packets for inference purposes. In this paper, we present
a low complexity algorithmic framework for link loss monitoring
based on the recent modeling and computational methodology of
factor graphs. The proposed algorithm iteratively updates the esti-
mates of link losses upon receiving (or detecting the loss of) recently
sent packets by the sensors. The algorithm exhibits good perfor-
mance and scalability, and can be easily adapted to different statis-
tical models of networking scenarios. In particular, due to its low
complexity, the algorithm is particularly suitable as a long-term
monitoring facility.

Index Terms—Factor graphs, link loss monitoring, network to-
mography, sensor networks, sum-product algorithm.

I. INTRODUCTION

RECENT technological advances have made it feasible to
deploy large-scale sensor networks using low-cost sensor

nodes. However, as the scale of sensor networks becomes
larger, two key challenges potentially arise. First, node failures.
Due to their inherent instability and energy constraints, sensor
nodes are prone to failures. It would, thus, be useful to deter-
mine which set of nodes or which geographical areas within
the network are experiencing high loss rates. Such information
is potentially valuable to the design of fault-tolerant protocols
or monitoring mechanisms, so that the problem areas may be
redeployed, and critical data may be rerouted to avoid these
failure-prone areas suffering high loss rates. Second, resource
constraints. Since sensor nodes have limited computational re-
sources, any algorithms developed for wireless sensor networks
must not rely on the assumption of unlimited resources, and
must sparingly use the limited resources that do exist. Further,
due to wireless characteristics such as fading and interference,
wireless sensor networks are subject to stringent bandwidth
resource constraints. One cannot rely on the use of active

Manuscript received December 15, 2003; revised July 30, 2004.
Y. Mao is with the School of Information Technology and Engineering,

University of Ottawa, Ottawa, ON K1N 6N5, Canada (e-mail: yymao@site.
uottawa.ca).

F. R. Kschischang, B. Li, and S. Pasupathy are with the Edward S. Rogers
Sr. Department of Electrical and Computer Engineering, University of
Toronto, Toronto, ON M5S 3G4, Canada (e-mail: frank@comm.utoronto.ca;
bli@eecg.utoronto.ca; pas@comm.utoronto.ca).

Digital Object Identifier 10.1109/JSAC.2005.843557

acknowledgments—which are not scalable or bandwidth-effi-
cient—in the design of sensor network algorithms.

Motivated by the needs (fault-tolerance and reliability) and
constraints (bandwidth and computational power) illustrated
above, in this paper, we concentrate on the problem of effi-
ciently determining link loss rates in wireless sensor networks.
Particularly, we attempt to efficiently determine link loss rates
based on the data aggregation communication paradigm in
sensor networks. Due to the obvious need of centralized sensor
data processing and monitoring, the paradigm of data aggre-
gation, also referred to as data fusion, has been critical to the
effective operation of sensor networks. Work in this area has
been previously presented (refer to [1] as an example) and
continues to be actively researched. In the process of data ag-
gregation, a subset of nodes in the network attempts to forward
the sensor data they have collected back to a center (or sink)
node via a reverse multicast tree.

More specifically, in the process of data aggregation, before a
node sends its data to the next node in the path to the sink, it waits
to receive data from all of its child nodes in the reverse multicast
tree (or until a specified period of time has elapsed). The node
then aggregates its own data with the data it has received from
its child nodes, and forward this aggregated data to the sink via
the reverse multicast tree. Information about which nodes’ data
is present in the aggregated data must also be sent to the sink.
Thus, data fusion saves communication overhead at the cost of
additional computation and memory resources. Fig. 1 depicts a
simple example of a sensor network using the data aggregation
paradigm.

In wireline networks, the field of network inference, also
referred to as network tomography, involves the estimation
of network performance parameters using measurements. In
wireline networks, inferring link losses requires either network
multicast support (which is not always the case), or sending
series of back-to-back packet pairs with unicast (see, e.g., [3]
and [4] and the references included therein). In the case of mul-
ticast-based link loss inference, a center node sends out a batch
of multicast probing packets to all terminals and, upon receiving
the acknowledgments from the terminals whether these probing
packets are received, performs statistical inference on the link
loss rates. In addition to requiring the multicast protocol to be
supported by the network, such a strategy perturbs the network
by sending out extra packets solely for the purpose of probing.
Similar observations can also be made in the case of inference
with unicast-based packet-pair measurements, though it does
not require specific support from the network layer. Injecting ad-
ditional traffic will further aggravate the link losses at the loaded

0733-8716/$20.00 © 2005 IEEE



MAO et al.: A FACTOR GRAPH APPROACH TO LINK LOSS MONITORING IN WIRELESS SENSOR NETWORKS 821

Fig. 1. Data aggregation (fusion) in wireless sensor networks: an example.
Node B sends its data (B) destined for the center node, to node A. Node C
similarly sends its data (C) destined for the center node, to node A. Node A then
aggregates is own data (A) with that of nodes B and C, and sends the fused data
(A, B, C) to the center node. With data aggregation, each node is only required
to transmit once per data collection round. However, without data aggregation,
node A would have to transmit three times per data collection round: once to
send its own data to the center node, once to forward node B’s data, and once
to forward node C’s data.

links, which makes it impractical as a long-term monitoring
daemon in sensor networks, given existing resource constraints.

In this paper, we propose and examine a new and efficient
mechanism to monitor link losses in wireless sensor networks.
In a wireless sensor network, a set of terminal (sensor) nodes
send data, concerning some measurements of the physical
world, to a center (data-collecting) node via a set of wirelessly
connected links. We take advantage of the data aggrega-
tion communication paradigm in sensor networks, where the
data-carrying traffic flows from the terminals to the center via a
reverse multicast tree. Such a characteristic potentially enables
the implementation of simple protocols and algorithms for
constant link loss monitoring at virtually no cost. Our original
contributions are twofold. First, we present a novel algorithm
for the purpose of link loss inference, based on the recent
methodology of factor graphs and the sum-product algorithm
[2]. We show that this algorithm has very low complexity,
and demonstrate by simulations its excellent performance and
scalability. Second, we are one of the first to consider network
inference exploiting reverse multicast trees for data aggregation
in sensor networks. Most existing research in this area has
dealt with the traditional multicast and unicast communication
paradigms in wireline networks, where probes are sent from
a single source to one or several receivers (see, e.g., [3], [4],
[13]–[16], [19], and [26]).

The remainder of this paper is organized as follows. We will
first present the formulation of the problem in Section II, and
introduce the algorithm in Section III. We will then give the
simulation results and some discussion in Section IV and close
this paper with a brief conclusion in Section V.

II. MODEL AND PROBLEM FORMULATION

We consider a sensor network as a directed graph, where each
node represents either a terminal (sensor), a router, or the center

(data collecting) node, each directed edge represents the link
between these nodes, and the direction of an edge indicates the
direction of the data flow on the link. Based on the data aggrega-
tion paradigm, we consider a reverse multicast tree rooted at the
data collecting node, where messages are sent from leaf nodes
to the data collecting node. We will not allow, except for the data
collecting node, degree-two nodes in the graph; that is, if a de-
gree-two node is not the data collecting node, it is suppressed in
the graph. In this setting, what we refer to as a “link” is not nec-
essarily in its physical sense, since a “link” can be a path con-
sisting of several connected physical links as long as no other
paths are branched from an intermediate node in the path. It can
be verified that such a notion of “link” is defined without loss
of generality, as far as loss rates are concerned. In this paper,
the term “path” of a network refers to a path that starts from a
terminal node and ends at the center node.

We assume that all terminal nodes send packets constantly,
in a synchronous manner, to the center node along the tree (in
Section IV, we will briefly discuss the possibility of relaxing this
assumption). Each intermediate node in the tree, upon receiving
the packets from its children, creates an aggregated packet and
forwards it to its parent. Here, the notion of “packet” is also more
conceptual than implementational. For example, we will not re-
quire packets sent by different nodes to have the same size, and
rather assume that the aggregated packet sent by any interme-
diate node is large enough to “bundle” all the information con-
tained in its children’s packets. Throughout this paper, a packet
sent from a sensor is said to be “received” or to “have arrived” if
the data contained in the packet is received by the data collecting
node in the aggregated packet. As part of the transmission pro-
tocol, for every packet transmitted by a terminal node, the center
node expects it to arrive within a certain time frame; and if the
packet is not received within that time frame, then a packet loss
is suggested to have occurred on one of the links along the path.
Based on successive observations on whether packets from each
terminal have arrived, the center node can infer the link loss rates
on all links in the network.

Formally, we will use to denote the set of links of the net-
work of interest, and to denote all the paths in the network.
Associate to each link a state , taking values from
{0, 1}; when link is at state 0 (“bad state”), no packet will
pass through , and when link is at state 1 (“good state”), all
packets can pass through . For each path , let its state

be the logic AND of all the links consisting of , for which
we write

where denotes the logic AND operator and “ ” reads “
is a link contained in .” For example, in the toy example of a
sensor network in Fig. 2, there are three links , , and , and
two paths and ; and the links states and path states
are related by , and . Clearly,
if and only if when the state of path is 1 can packets pass
through . Then, whether a packet will be received essentially
indicates the state of the path along which the packet is to travel.

At any time instant, the state of every link can be
regarded as a Bernoulli random variable with probability



822 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

Fig. 2. Toy example of a sensor network.

taking value 1 and with probability taking value 0. In
this paper, we use

to denote the probability mass function of a Bernoulli random
variable parametrized by .

We will assume that at each link is quasi-static, namely,
over a relatively small time window in which hundreds or thou-
sands of packets may be sent by any terminal, stays as a con-
stant. Suppose that during a time window, there are batches
of synchronized packets transmitted from each terminal to the
center, where the th batch of packets are transmitted at time ,

, from all the terminals synchronously. Let
be the link state of at time , then the path state of path

at time is

experienced by the packet transmitted at and traveling along
; the observation whether the packets in the th batch have

arrived indicates the states of all paths at time .
Collectively, we denote ,

, ,
, and . The problem

of link loss inference in the network is then the problem of es-
timating based on the observation of . In this paper,
we set up the problem as, for each , finding that maxi-
mizes the posterior probability of conditioned
on the observation . In addition, it is important to realize
that changes with time. Thus, we ideally desire an algorithm
to have a sufficiently low complexity so as to serve as a daemon
tracking the link loss rates constantly.

III. FACTOR GRAPH APPROACH

Link loss inference belongs to the relatively recent area
of networking research, network tomography (see [3], [4],
[13]–[22], [26], [27], etc.). Typical network tomography prob-
lems include the inference of link loss or delay characteristics
from end-to-end measurements [3], [13]–[19], [22], [26], [27],
the estimation of origin-destination traffic intensities from
link measurements [23]–[25], and the inference of network
topology [20], [21].

Prior to this work, most of the literature on link loss infer-
ence concerns wireline networks, where multicast packets are
sent actively to probe the network. When multicast addressing
is not supported by the network, there have been alternative pro-
posals on link loss inference based on sending unicast probing
packets, where clever protocols (for example, using back-to-
back packets) are incorporated which essentially turns the in-
ference problem to a multicast problem (see, for example, [13]
and [14]).

For the multicast link loss inference problem, Caceres et al.
[3] present an maximum-likelihood (ML) estimator for the link
loss rates that is asymptotic optimal (namely, approaching the
true ML estimator for asymptotically large number of probes).
The expectation-maximization algorithm is also presented as
a solution to this problem [15], [26]. It may be arguable that
these techniques can be applied to link loss inference in wire-
less sensor networks, a main perspective of this paper is, how-
ever, the concern of the algorithm complexity when it is used
as a long-term monitoring daemon. Comparing with previous
works, the factor graph approach we present, although subop-
timal, demonstrates good performance and most importantly,
very low complexity.

In this section, we will first give a brief introduction on the
factor-graph framework as an modeling inference methodology,
and then proceed to introduce our algorithm. The performance
of the algorithm will be shown in the next section.

A. Factor Graphs and the Sum-Product Algorithm

Recently, the notion of factor graphs has attracted intense
research interest in areas of electrical engineering and computer
science, since it was recognized that the framework of factor
graphs and an iterative algorithm, called the sum-product al-
gorithm—which operates on factor graphs—unify a variety of
previously discovered important algorithms, such as the Viterbi
algorithm, BCJR algorithm, Kalman filtering, FFT, belief prop-
agation, forward-backward algorithm, etc. In particular, in the
community of error correction coding, it is shown that factor
graphs and the sum-product algorithm underlie the method-
ology of the most celebrated error control coding schemes,
turbo codes [8] and low-density parity-check codes [9]–[11].

To date, the notion of factor graphs includes multiplicative
factor graphs and convolutional factor graphs [2], [5], [6]. In
this paper, we will mainly deal with multiplicative factor graphs,
referred to as factor graphs from here on, for simplicity.

A factor graph is a bipartite graph representing the factor-
ization structure of a multivariate function into a product of
functions (factors), each involving only a subset of the vari-
ables. There are two types of vertices in the graph, variable
vertices, representing the variables of the global multivariate
function, and function vertices, representing the factors in the
factorization; a variable vertex is connected to a function vertex
by an edge if the variable is an argument of the factor. For
example, Fig. 3 is a factor graph representing the factoriza-
tion , where each square box is a
function vertex representing factor , , or , and each circle
is a variable vertex representing variable , , , or .



MAO et al.: A FACTOR GRAPH APPROACH TO LINK LOSS MONITORING IN WIRELESS SENSOR NETWORKS 823

Fig. 3. Factor graph representing f (x ; x )f (x ; x )f (x ; x ).

A factor graph can be used as a probabilistic graphical model
which represents a joint probability mass function (PMF)1 of
random variables. In this case, each variable node represents a
random variable, and each factor represents either the joint or
conditional joint PMF (PDF) of a subset of random variables,
and conditioned upon any subset of random variables corre-
sponding to a cut-set of the graph, the separated two subgraphs
(induced by removing the cut-set vertices) are independent. For
example, let , , , and be a set of random vari-
ables where conditioned on , random variables , , and

are independent of each other. Then, the joint PMF of the
four random variables may be represented by the factor graph
in Fig. 3, where we may interpret as the joint PMF
of and , as the conditional PMF of given

, and as the conditional PMF of given .
We note that the interpretation of , , and is in general not
unique; for example, may represent the conditional
PMF of given , may represent the conditional
PMF of given , and may represent the joint
PMF of and . That is, as a probabilistic model, a factor
graph representing a joint PMF fundamentally specifies a set of
conditional independence relationships and the functions (fac-
tors) represented by the function vertices may take an arbitrary
scale, subject to the constraint that the product of the functions
satisfy as a PMF or PDF (the sum or integral of the product over
all variables equals to 1).

A useful function for representing a deterministic constraint
in a factor graph is the constraint indicator function: let
be a constraint (a boolean proposition) on a possibly vector-
valued variable , then the constraint indicator function of
is defined as

if
otherwise

That is, the constraint indicator function evaluates to 1 if the
constraint is satisfied, and to 0, otherwise.

Unifying various algorithms, the sum-product algorithm
is an algorithm that operates iteratively on a factor graph
by “passing messages” between function vertices and vari-
able vertices. The “messages” are essentially functions (for
continuous-valued variables) or tables (for discrete valued
variables) computed in the intermediate steps of the algorithm.
If is a function that factors according to a

1PMF or probability density function (PDF). For simplicity, we will often
omit mentioning the term PDF.

factor graph having no cycles, it is known that the sum-product
algorithm can simultaneously compute ,

, and in par-
allel, where , refers to summation2 over all variables
except . For a concrete understanding of the sum-product
algorithm, the reader is referred to [2] and [7]. In essence,
what underlies the sum-product algorithm is the distributive
law between multiplication and summation (or the generalized
distributive law on any semiring, with arbitrarily defined mul-
tiplication and summation [7]).

When the function represented by the factor
graph is a joint (or conditional joint) PMF, then the objective of
the sum-product algorithm coincides with the objective of many
inference problems, i.e., finding the maximizing configuration
for marginal PMF .3 Clearly, our formula-
tion for the link loss inference problem in the previous section
is such an example.

When the factor graph representing the function
contains cycles, it has been shown in various

recent works that the sum-product algorithm can still be
used as an excellent approximation algorithm, particularly
when the objective is to find the maximizing configuration
for and not the maximum itself.
In fact, the decoding methods for turbo codes [8] and
low-density parity-check codes (see, e.g., [11]) are precisely
the sum-product algorithm applied on factor graphs with
cycles, and the performance of the sum-product algorithms
enables these codes to achieve the Shannon limit of digital
communications. An intuitive explanation on why the
algorithm works so well is that the factor graphs used in these
schemes are large and sparse, and the effects of cycles fades
away after a few iterations. Also, due to the fact that the graphs
are sparse, the complexity of the algorithm is essentially linear
in the average vertex degree, which make the sum-product
algorithm highly scalable.

In the cases when the factor graph contains cycles, the passing
of messages in the factor graph may be carried out in various or-
ders, typically referred to as the schedules of the algorithm [2],
[28]. For example, a popular schedule, known as the “flooding”
schedule, is that in each iteration, all variable vertices first pass
messages and then all function vertices pass messages, where
the message-passing rules (the definitions of the messages) stay
the same. Summary messages may also be computed at each
iteration for the purpose of identifying convergence. The algo-
rithm is usually terminated upon convergence of the summary
messages or upon reaching a preset number of iterations.

It should be noted that when the factor graph contains cycles,
any schedule of the sum-product algorithm will lead to a sub-
optimal solution to the maximization problem. However, it has
been reported that by adjusting the schedule of the algorithm
there can be extra gain in the suboptimality, i.e., the found solu-
tion can be closer to the true optimal configuration [28].

2In fact, the summation operation here can be made more general. In partic-
ular, if the summation operation is the max operation, the sum-product algorithm
is referred to as the max-product algorithm. See also footnote 3.

3In some inference problems, the objective is to find the maximizing config-
uration for the joint PMF f(x ; . . . ; x ); this can be solved using the max-
product algorithm on the factor graph representing f ; see [2].



824 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

B. Proposed Algorithm

We assume that for each takes discrete values from
set , where is a positive integer.
With no a priori knowledge, we assign to each a uni-
form prior over .

Let the joint PMF of parametrized by be denoted by
. Upon the assumption that each link suffers from

independent link loss rates, we have

(1)

Then, the joint PMF of , and factors as

(2)

where is a the conditional PMF of

given , and in fact

(3)

Then, our objective becomes finding for each that
maximizes

(4)

Notice that the objective of finding for each , the maxi-
mizing for function

precisely coincides with the objective of the sum-product algo-
rithm,4 and function

(5)

is also ready to be represented by a factor graph as of Fig. 4(a).
That is, the sum-product algorithm can be used to simultane-
ously find for all in parallel.

If we further express the factors and in (5) ac-
cording to (1) and (3), the factor graph can be expanded to a form
similar to Fig. 4(b). Note that in the factor graph of Fig. 4(b),
we consider the case where and the network takes the
topology in Fig. 2 to simplify the factor graph, merely for illus-
tration purpose.

4More rigorously speaking, the objective of the sum-product algorithm is to
find the marginals, not the maximum of the marginals.

Fig. 4. (a) Factor graph representing the function B (X ;� )
P (X ;X ) and (b) its expanded form, by letting n = 2 and taking the
network as of Fig. 2.

The sum-product algorithm will be applied on the factor
graph in Fig. 4(b) to obtain the estimate of for each ,
which maximizes (4). Although the factor graph in Fig. 4(a)
is cycle-free, typically its expanded form as of Fig. 4(b) con-
tains cycles. This makes the application of the sum-product
algorithm an approximation algorithm. Notice in Fig. 4(b),
the factor graph consists of “layers” of subgraphs, each corre-
sponding to a time instant . This allows a natural schedule
for message-passing in the sum-product algorithm, i.e., first
passing messages in each layer, which we refer to as “in-
tralayer” message passing, and upon convergence, each layer
of the graph passes messages to the vertices representing ,
which we refer to as “interlayer” message passing. With such a
schedule, the processing of the path state at each time instant
can be carried out independently, this will serve to significantly
reduce the complexity in long-term monitoring, as will be
addressed in Section IV.

We now present the algorithm.
Step 1—Intralayer Message Passing: The goal of this step

can be understood as obtaining the posterior distribution for
each link state at time instant , conditioned upon observation
on the th batch of packets. In each layer, we use a “flooding”
schedule similar to what was explained in Section III-A. One
may follow the recipe discussed in [2] for the derivation the mes-
sage-passing rule, where for the th layer, the involved vertices
are variable vertices representing and , and the function
vertices representing . Following the derivation, one should



MAO et al.: A FACTOR GRAPH APPROACH TO LINK LOSS MONITORING IN WIRELESS SENSOR NETWORKS 825

see that the message-passing rule can be in fact made more com-
pact by, in each layer, disregarding the vertices representing
and passing messages only between the function vertices
and the vertices—note that the messages passed from the

vertices stay as constant from iteration to iteration; this is
simply because the vertices are leaf vertices. We will then
use to denote function vertex that connects to , to
denote variable vertex .

The message-passing rule for Step 1 is summarized as fol-
lows, where each message is a single number representing the
(posterior) probability of a link taking state 1 (this is possible
since each message is originally a function defined on {0, 1},
but since the values of the function at 0 and at 1 are dependent,
i.e., summing to 1, one can reformulate the message as a single
number).

In the initialization phase, each vertex passes message
representing the uniform distribution over the link state

to every adjacent function vertex . That is,
.

In the propagation phase, then messages are passed itera-
tively between the variable vertices and function vertices

. Similar to the “flooding” schedule in Section III-A,
each iteration begins with every function vertex passing mes-
sages to all its adjacent variable vertices ; then every vari-
able vertex passes messages to its adjacent vertices ; the
message sent from any vertex to any of its neighbor vertex is
calculated using only the incoming messages from .
The message passed from a function vertex to a variable
vertex is given by

if

if
(6)

and the message passed from a variable vertex to a function
vertex is given by

(7)
At the end of each iteration, a summary message is computed
for each variable vertex using all incoming messages to , as

(8)

The iterative process is terminated when the summary mes-
sages converge to a steady state or when a preset maximum
number of iterations is reached.

We will denote the computed value in the th layer of the
graph by . One may verify that when each layer of the factor
graph is cycle-free, then the algorithm converges definitely with

TABLE I
AVERAGE NUMBER OF LINKS THAT A PATH CONTAINS AND

THE AVERAGED NUMBER OF PATHS THAT A LINK JOINS

a finite number of iterations, and the computed is precisely
the posterior of given the observation .

Step 2—Interlayer Message Passing: In this step, we apply
the sum-product algorithm by passing-messages from every
layer of the graph to vertices [through the
vertices representing function ], to compute the posterior

. Due to the simple cycle-free graph structure at
this level [that shown in Fig. 4(a)], this step of the sum-product
algorithm can be in fact formulated in the following closed
form:

(9)
We then choose that maximizes (9) as the estimate of .
This can be done by evaluating the function for every element
of numerically and finding the maxi-
mizing value .

IV. SIMULATION AND DISCUSSION

A. Simulation Setup

To investigate the performance and the scalability of the
proposed algorithm, we generate sensor networks with random
tree topologies, consisting of 5000, 10 000, 20 000, and 50 000
nodes. Table I lists the averaged number of links that a path
contains in a network and the averaged number of paths that a
link joins.

To each edge (link) in the network, a random loss rate
( ) is assigned, where is drawn from distribution with
probability density function

Easy to generate and tune, this random variable has the ex-
pected value .

At time instant , the state of edge is generated from
the Bernoulli distribution parametrized by , and the state
of each path is observed by the center node via the th batch
of packets. In each simulation, the number of packet batches
is chosen as 50, 100, 200, 500, 1000, and 2000, and the average
value of over all the links of each network is chosen as 0.9,
0.92, 0.94, 0.96, and 0.98.

For Step 1 of the algorithm, we conservatively set the max-
imum number of iterations to 30 (we observe in simulation that
in the majority of cases, the algorithm converges within 10–15
iterations). In the second step of the algorithm, we discretize
to levels. Estimation error is computed for each link



826 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

Fig. 5. RMSE for �� = 0:9 (left) and for �� = 0:98 (right), as a function of the number n of batches.

Fig. 6. RMSE with n = 2000 (left) and with n = 500 (right), as a function of ��.

as . For each simulated network, the root mean square
error (RMSE) is computed as

B. Simulation Results

Figs. 5 and 6 show the RMSE as a function of the number of
batches, and as a function of the , respectively, for each sim-
ulated network. These results exhibit the general performance
trend of this algorithm, which is also observed in other param-
eter settings of our simulations.

First, the estimation error decreases as the number of batches
increases. However, it is worth noting that error will have a
lower bound of , the quantization error of . If we can
infinitely quantize , as the number of packet batches ap-
proaches infinity, we expect approaches the actual .

Second, the algorithm favors large networks. That is, in gen-
eral, the larger the network, the better the algorithm performs.

This is because, as the network grows, the factor graph cor-
responding to the network becomes more sparsely connected;
to a certain extent, Table I indicates the sparsity of the factor
graphs. This result is consistent with the observation of the sum-
product algorithm in other applications where the factor graph
contains cycles (see, for example, [11]), since the independence
assumption [2] of the incoming messages in that case is a closer
approximation.

Third, without the need of increasing the number of batches,
the same or better estimation accuracy can be achieved for large
networks. For practical purposes, our simulations suggest that
500–2000 packet batches are sufficient for inferring the link loss
rates in large networks.

Furthermore, the estimation error decreases as increases.
This implies that more batches are required for the same estima-
tion error, as the average loss rate increases. In another experi-
ment, we observe that in the 50 000-node network, based on the
observations of 2000 batches of packets, the RMSE increases
from 0.03 to 0.11, as decreases from 0.8 to 0.7. That is, sig-
nificantly more batches are needed for an accurate inference of



MAO et al.: A FACTOR GRAPH APPROACH TO LINK LOSS MONITORING IN WIRELESS SENSOR NETWORKS 827

the latter loss rates. This is consistent with the discussion in [3]
and [15]. Fortunately, in reality, action should have been taken
before the network experiences such heavy link losses, and there
is unlikely a need for inferring the link losses for these cases.

In summary, the simulation results suggest that the loss-rate
estimates obtained from the proposed algorithm are sufficiently
accurate for any practical purpose.

C. Implementation and Complexity

The complexity of this factor-graph based algorithm is linear
in the number of batches and in the number of links. This
is in the same order as the existing algorithms (e.g., [3] and
others). However, as we will explain next, when the algorithm
is implemented as a constantly running monitoring daemon, its
complexity for inferring loss rates at any time instant is in fact
independent of the number of packet batches . This makes the
proposed algorithm much more suited for long-term monitoring
purpose, as compared with other algorithms. We describe this
implementation next.

As one may notice, a salient feature of this algorithm is its in-
dependent processing of the path states obtained by observing
each batch of packets. That is, in practice, we may implement
the link-loss monitoring daemon based on the path states ob-
tained by observing a moving window of the most recent
batches of packets, and little computation is in fact needed to
infer the current link loss rates. In detail, we may fix a choice of

, then as the monitoring daemon is initiated, upon observing
the arrival or loss of the packets in the batch, we start com-
puting (for all ), for , sequentially.
This only involves Step 1 of the algorithm. After obtaining the
arrival or loss of the packets in the th batch, we finish com-
puting . Then, we move to Step 2 of the algorithm and for
each , compute the posterior

(10)
and find the maximizing . After this initial computation, at
any later time instant , , the posterior of the link-loss
rate for any link can be simply updated recursively by

That is, at any time instant , we only need to compute
according to Step 1, and reuse the previously computed poste-
rior of . This significantly decreases the required computa-
tion. In this implementation, the computational complexity for
inferring link loss rates at any time instant becomes indepen-
dent of . Comparing with other existing algorithms as men-
tioned earlier (the complexity of which all increases with ),
this translates to an appealing computational saving of hundreds
or thousands of folds, if the algorithm is to be implemented as
a monitoring daemon.

It is worth noting that with this “moving window” implemen-
tation, one should expect a tradeoff between the estimation ac-
curacy and the estimation sensitivity to the change of link loss
rates. That is, for a small window size , the estimate is less ac-
curate, but can better track the change of with time; whereas
for a large window size , the estimate is more accurate (pro-
vided the link loss rates stay static), but is less sensitive to the
change of link loss rates.

D. Extension to Other Models

Until this point, we have assumed that packets are constantly
sent from the terminals to the center in a synchronous manner.
In fact, the proposed approach can be adapted to other network
scenarios where packets are sent by the terminals asynchro-
nously, or when the terminals do not send packets continuously.
However, in those cases, there will be a need of a reliable sig-
naling mechanism from the terminals to the center, or a deli-
cate protocol that allows the center to be aware of a packet sent
from a terminal. For example, an out-of-band signaling mech-
anism may be employed, whereby each terminal node informs
the center node directly or via multiple hops when it transmits a
packet to the center. Then, the center node will expect the arrival
of the packets sent from the terminals; upon receiving (or not
receiving) the packets, the center node can perform link loss in-
ference using the method presented in this paper. Alternatively,
similar mechanisms may be made possible via higher level pro-
tocols. For example, with transmission control protocol (TCP),
when a short series of out-of-order packets are received, conges-
tion is assumed to have occurred and source transmission rates
are reduced using window-based flow control. Built on TCP, by
checking the order of the received packets, a node (intermediate
node or center node) can decide whether an expected packet has
arrived—it is safe to assume that with high probability an ex-
pected packet is lost, if a number of out-of-order packets are
received. With this strategy, the details of such a protocol will
depend on the data-fusion mechanism employed in the sensor
network.

The independent identically distributed (i.i.d.) assumption of
link losses in our model is perhaps in reality over simplified.
In those cases, direct application of the algorithm presented in
this paper may lead to less accurate estimates. Nevertheless,
we note that the framework of factor graphs is a universal lan-
guage for probabilistic modeling, and can be applied to models
with arbitrary dependency structure. By using the simple i.i.d.
assumption, this paper establishes a “proof of concept” for
applying factor graph-based approaches to link loss inference
in sensor networks. To demonstrate how to extend the presented
method to more realistic (non-i.i.d.) loss models, we give a
small contrived example: in the toy example shown in Fig. 2, we
will allow loss rates of link and link to be dependent. Then,
this dependency can be modeled by introducing a function

to the joint distribution ,
i.e.,



828 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 4, APRIL 2005

Fig. 7. Factor graph for the example in Fig. 2, where � and � are modeled
as dependent. The function node � is to model this dependency.

where function accounts for the dependency between
and . By properly choosing function , one can obtain any
desired dependence model between and . The factor graph
representing the above factorization is shown in Fig. 7. For real
networks, it is possible that the loss rates at a number of links
have dependency. This would correspond to function node(s) in
the factor graph connecting the variable nodes representing the
loss rates at these links.

The sum-product algorithm can be derived similarly on such
a graph for the inference of . Specifically, one may notice as
in Fig. 7 that such a factor graph still contains “intralayer” con-
nections and “interlayer” connections. However, it is possible in
this case that the structure of “interlayer” connections contains
cycles (Fig. 7 is not such an example; if we introduced two extra
function nodes connecting and and connecting

and , the resulting graph would be such an example).
On such a graph, one may still carry out the two-step passing
of messages for the sum-product algorithm. The “intralayer”
message passing may remain the same as we presented earlier,
whereas the “interlayer” message-passing may potentially need
modification. Alternatively, one may consider different mes-
sage-passing schedules. We expect the tradeoff between estima-
tion accuracy and computational complexity to depend on the
structure of the graph and the choice of message-passing sched-
ules. In practice, more careful investigation of this tradeoff is
likely to be necessary.

Finally we remark that the sum-product algorithm is not the
only algorithm for factor-graph based inference. Other algo-
rithms, such as the max-product algorithm, the EM algorithm
and various variational methods5 have also been developed in
the framework of factor graphs (see, e.g., [2] and [29]). The
performance and complexity of these algorithms for solving the
problem of this paper certainly deserve further investigation.

V. CONCLUSION

In this paper, we exploit the data-aggregation characteristic
of wireless sensor networks in the implementation of a link loss
monitoring daemon, where the network-wide link loss rates are

5In fact, it has been shown that in a variational formulation, the sum-product
algorithm on factor graphs with cycles may be understood as iterative maxi-
mization of Bethe free energy [30]. Such a nature appears similar to the method
of [31], where the true likelihood function is approximated by a “pseudolikeli-
hood function” for computational tractability.

inferred upon observing whether packets sent from terminals
have arrived. We present a factor-graph based algorithm for this
purpose. We show that with very low complexity, this algorithm
gives a good estimation of link loss rates, and the algorithm
scales particularly well for large networks. We are one of the
first to explore the design space toward efficient network infer-
ence algorithms in large-scale sensor networks with respect to
link loss rates, and the first to use the factor-graph model and the
sum-product algorithm to derive suboptimal but computation-
ally lightweight inference mechanisms. We also take the com-
munication paradigm of data aggregation into consideration in
our design, which leads to the development of a network infer-
ence algorithm with virtually no costs of active probes.

On a side note, we would like to remark that the recent notion
of factor graphs and other related graphical models are flexible
modeling frameworks. Equipped with a set of well-developed
efficient algorithms, such methodologies may be found useful in
many networking scenarios, beyond this particular application
in sensor networks.

REFERENCES

[1] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,” IEEE Trans. Netw.,
vol. 11, no. 1, pp. 2–16, Feb. 2003.

[2] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[3] R. Caceres, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-based
inference of network-internal loss characteristics,” IEEE Trans. Inf.
Theory, vol. 45, no. 7, pp. 2462–2480, Nov. 1999.

[4] M. Coates, A. O. Hero III, R. Nowak, and B. Yu, “Internet tomography,”
IEEE Signal Process. Mag., vol. 19, no. 3, pp. 47–65, May 2002.

[5] Y. Mao and F. R. Kschischang, “On factor graphs and the Fourier trans-
form,” in Proc. IEEE Int. Symp. Inf. Theory, Washington, DC, Jun. 2001,
p. 224.

[6] , “On factor graphs and the Fourier transform,” IEEE Trans. Inf.
Theory, 2005, to be published.

[7] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 325–343, Mar. 2000.

[8] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” in Proc. IEEE Int.
Conf. Commun., Geneva, Switzerland, May 1993, pp. 1064–1070.

[9] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA:
MIT Press, 1963.

[10] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes,” Electron. Lett., vol. 33, no. 6, pp.
457–458, Mar. 1997.

[11] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[12] M. J. Coates and R. Nowak, “Network Inference from Passive Unicast
Measurements,” Elec. Comput. Eng., Rice Univ., Houston, TX, Tech.
Rep. TR-0002, 2000.

[13] M. Coates and R. Nowak, “Network loss inference using unicast
end-to-end measurement,” in Proc. Seminar IP Traffic, Measurement,
Modeling, Monterey, CA, Sep. 2000, pp. 28:1–9.

[14] A. Bestavros, K. Harfoush, and J. Byers, “Robust identification of shared
losses using striped unicast probes,” in Proc. IEEE Int. Conf. Netw. Pro-
tocols, Osaka, Japan, Nov. 2000, pp. 22–33.

[15] C. Ji and A. Elwalid, “Measurement-based network monitoring and
inference: Scalability and missing information,” IEEE J. Sel. Area
Commun., vol. 20, no. 4, pp. 714–725, May 2002.

[16] N. G. Duffield, F. L. Presti, V. Paxson, and D. Towsley, “Inferring
link loss using striped unicast probes,” in Proc. IEEE INFOCOM,
Anchorage, AK, Apr. 2001, pp. 915–923.

[17] A. Adams, T. Bu, R. Caceres, N. G. Duffield, T. Friedman, J. Horowitz, F.
L. Presti, S. B. Moon, V. Paxson, and D. Towsley, “The use of end-to-end
multicast measurements for characterizing internal network behavior,”
IEEE Commun. Mag., pp. 152–159, May 2000.



MAO et al.: A FACTOR GRAPH APPROACH TO LINK LOSS MONITORING IN WIRELESS SENSOR NETWORKS 829

[18] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting shared conges-
tion of flows via end-to-end measurement,” in Proc. ACM SIGMETRICS,
Santa Clara, CA, Jun. 2000, pp. 915–923.

[19] R. Caceres, N. G. Duffield, J. Horowitz, D. Towsley, and T. Bu, “Mul-
ticast-based inference of network-internal characteristics: Accuracy
of packet loss estimation,” in Proc. IEEE INFOCOM, Mar. 1999, pp.
371–379.

[20] N. G. Duffield, J. Horowitz, and F. L. Presti, “Adaptive multicast
topology inference,” in Proc. IEEE INFOCOM, Anchorage, AK, Apr.
2001, pp. 1636–1645.

[21] N. G. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Multicast
topology inference from measured end-to-end loss,” IEEE Trans. Inf.
Theory, pp. 26–45, 2002.

[22] N. G. Duffield and F. L. Presti, “Multicast inference of packet delay
variance at interior network links,” in Proc. IEEE INFOCOM, Tel-Aviv,
Israel, Mar. 2000, pp. 1351–1360.

[23] Y. Vardi, “Network tomography: Estimation source-destination traffic
intensities from link data,” J. Amer. Stat. Assoc., vol. 91, no. 433, pp.
365–377, 1996.

[24] C. Tebaldi and M. West, “Bayesian inference on network traffic using
link count data (with discussion),” J. Amer. Stat. Assoc., vol. 93, no. 442,
pp. 557–576, Jun. 1998.

[25] J. Cao, D. Davis, S. V. Wiel, B. Yu, and Z. Zhu, “Time-varying net-
work tomography: Router link data,” J. Amer. Stat. Assoc., vol. 95, pp.
1063–1075, 2000.

[26] N. G. Duffield, J. Horowitz, D. Towsley, W. Wei, and T. Friedman,
“Multicast-based loss inference with missing data,” IEEE J. Sel. Area
Commun., vol. 20, no. 4, pp. 700–713, May 2002.

[27] T. Bu, N. Duffield, F. L. Presti, and D. Towsley, “Network tomography
on general topologies,” presented at the ACM SIGMETRICS, Marina
Del Rey, CA, Jun. 2002.

[28] Y. Mao and A. H. Banihashemi, “Decoding low-density parity-check
codes with probabilistic schedule,” IEEE Commun. Lett., vol. 5, no. 10,
pp. 414–416, Oct. 2001.

[29] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential fam-
ilies and variational inference,” Dept. Stat., Univ. California, Berkeley,
CA, Tech. Rep. 649, 2003.

[30] D. J. C. MacKay, J. S. Yedidia, W. T. Freeman, and Y. Weiss, ““A con-
versation about the Bethe free energy and sum-product,” Tech. Rep.,”
MERL, TR-2001-18, 2001.

[31] G. Liang and B. Yu, “Maximum pseudolikelihood estimation in network
tomography,” IEEE Trans. Signal Process., vol. 51, pp. 2043–2053, Aug.
2003.

Yongyi Mao (S’99–M’03) received the B.S.E. degree
from Southeast University, Nanjing, China, in 1992,
the Medical degree from Nanjing Medical University,
Nanjing, China, in 1995, the M.S. degree in medical
biophysics and the Ph.D. degree in electrical engi-
neering from the University of Toronto, Toronto, ON,
Canada, in 1998 and 2003, respectively.

He is currently an Assistant Professor at the
School of Information Technology and Engineering,
University of Ottawa, ON, Canada. His research
interest includes statistical inference, graphical

models, and their applications in communications and bioinformatics.

Frank R. Kschischang (S’83–M’91–SM’00)
received the B.A.Sc. degree (with honors) from
the University of British Columbia, Vancouver,
BC, Canada, in 1985, and the M.A.Sc. and Ph.D.
degrees from the University of Toronto, Toronto,
ON, Canada, in 1988 and 1991, respectively, all in
electrical engineering.

He is a Professor of Electrical and Computer
Engineering and Canada Research Chair in Com-
munication Algorithms at the University of Toronto,
where he has been a faculty member since 1991.

During 1997–1998, he spent a sabbatical year as a Visiting Scientist at the
Massachusetts Institute of Technology (MIT), Cambridge. He has taught
graduate courses in coding theory, information theory, and data transmission.
His research interests are focused on the area of coding techniques, primarily
on soft-decision decoding algorithms, trellis structure of codes, codes defined
on graphs, and iterative decoders.

Dr. Kschischang is a recipient of the Ontario Premier’s Research Excellence
Award. From October 1997 to October 2000, he served as the Associate Editor
for Coding Theory for the IEEE TRANSACTIONS ON INFORMATION THEORY. He
was a member of the Technical Program Committee for the 1995 International
Symposium on Information Theory (ISIT) held in Whistler, BC, Canada, he was
Co-Chair and organizer of the 1997 Canadian Workshop on Information Theory
held in Toronto, and he served as Publicity Chair for the 1998 ISIT held at MIT.
He was Program Co-Chair of the 2004 ISIT held in Chicago.

Baochun Li (M’00) received the B.Engr. degree in
computer science and technology from Tsinghua
University, China, in 1995 and the M.S. and Ph.D.
degrees in computer science from the University of
Illinois at Urbana–Champaign, Urbana, in 1997 and
2000, respectively.

Since 2000, he has been with the Department of
Electrical and Computer Engineering, University of
Toronto, Toronto, ON, Canada, where he is currently
an Assistant Professor and holds the Nortel Networks
Junior Chair in Network Architecture and Services.

His research interests include network-level and application-level quality-of-
service provisioning, wireless ad hoc networks, and mobile computing.

Dr. Li was the recipient of the IEEE Communications Society Leonard G.
Abraham Award in the field of communications systems in 2000.

Subbarayan Pasupathy (M’73–SM’81–F’91) was
born in Chennai (Madras), Tamilnadu, India, on
September 21, 1940. He received the B.E. degree in
telecommunications from the University of Madras,
Madras, India, in 1963, the M.Tech. degree in
electrical engineering from the Indian Institute of
Technology, Madras, in 1966, and the M.Phil. and
Ph.D. degree in engineering and applied science
from Yale University, New Haven, CT, in 1970 and
1972, respectively.

He joined the faculty of the University of Toronto,
Toronto, ON, Canada, in 1973 and became a Professor of Electrical Engineering
in 1983. He has served as the Chairman of the Communications Group and as
the Associate Chairman of the Department of Electrical Engineering, Univer-
sity of Toronto. His research interests are in the areas of communication theory,
digital communications, and statistical signal processing. He is a registered Pro-
fessional Engineer in the province of Ontario. During 1982–1989, he was an Ed-
itor for Data Communications and Modulation for the IEEE TRANSACTIONS ON

COMMUNICATIONS. He has also served as a Technical Associate Editor for the
IEEE Communications Magazine (1979–1982) and as an Associate Editor for
the Canadian Electrical Engineering Journal (1980–1983). He wrote a regular
humor column entitled Light Traffic for the IEEE Communications Magazine
during 1984–1998.

Dr. Pasupathy was awarded the Canadian Award in Telecommunications
in 2003 by the Canadian Society of Information Theory and was elected as
a Fellow of the Engineering Society of Canada in 2004. He was elected as a
Fellow of the IEEE in 1991 for contributions to bandwidth efficient coding and
modulation schemes in digital communication.


	toc
	A Factor Graph Approach to Link Loss Monitoring in Wireless Sens
	Yongyi Mao, Member, IEEE, Frank R. Kschischang, Senior Member, I
	I. I NTRODUCTION

	Fig. 1. Data aggregation (fusion) in wireless sensor networks: a
	II. M ODEL AND P ROBLEM F ORMULATION

	Fig. 2. Toy example of a sensor network.
	III. F ACTOR G RAPH A PPROACH
	A. Factor Graphs and the Sum-Product Algorithm


	Fig. 3. Factor graph representing $f_{1}(x_{1}, x_{2})f_{2}(x_{2
	B. Proposed Algorithm

	Fig. 4. (a) Factor graph representing the function $\prod _{i=1}
	Step 1 Intralayer Message Passing: The goal of this step can be 

	TABLE I A VERAGE N UMBER OF L INKS T HAT A P ATH C ONTAINS AND T
	Step 2 Interlayer Message Passing: In this step, we apply the su
	IV. S IMULATION AND D ISCUSSION
	A. Simulation Setup


	Fig. 5. RMSE for $\bar {\alpha }=0.9$ (left) and for $\bar {\alp
	Fig. 6. RMSE with $n=2000$ (left) and with $n=500$ (right), as a
	B. Simulation Results
	C. Implementation and Complexity
	D. Extension to Other Models

	Fig. 7. Factor graph for the example in Fig. 2, where $\alpha _{
	V. C ONCLUSION
	C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. 
	F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, Factor graphs
	R. Caceres, N. Duffield, J. Horowitz, and D. Towsley, Multicast-
	M. Coates, A. O. Hero III, R. Nowak, and B. Yu, Internet tomogra
	Y. Mao and F. R. Kschischang, On factor graphs and the Fourier t
	S. M. Aji and R. J. McEliece, The generalized distributive law, 
	C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit
	R. G. Gallager, Low Density Parity Check Codes . Cambridge, MA: 
	D. J. C. MacKay and R. M. Neal, Near Shannon limit performance o
	T. Richardson and R. Urbanke, The capacity of low-density parity
	M. J. Coates and R. Nowak, Network Inference from Passive Unicas
	M. Coates and R. Nowak, Network loss inference using unicast end
	A. Bestavros, K. Harfoush, and J. Byers, Robust identification o
	C. Ji and A. Elwalid, Measurement-based network monitoring and i
	N. G. Duffield, F. L. Presti, V. Paxson, and D. Towsley, Inferri
	A. Adams, T. Bu, R. Caceres, N. G. Duffield, T. Friedman, J. Hor
	D. Rubenstein, J. Kurose, and D. Towsley, Detecting shared conge
	R. Caceres, N. G. Duffield, J. Horowitz, D. Towsley, and T. Bu, 
	N. G. Duffield, J. Horowitz, and F. L. Presti, Adaptive multicas
	N. G. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, Multi
	N. G. Duffield and F. L. Presti, Multicast inference of packet d
	Y. Vardi, Network tomography: Estimation source-destination traf
	C. Tebaldi and M. West, Bayesian inference on network traffic us
	J. Cao, D. Davis, S. V. Wiel, B. Yu, and Z. Zhu, Time-varying ne
	N. G. Duffield, J. Horowitz, D. Towsley, W. Wei, and T. Friedman
	T. Bu, N. Duffield, F. L. Presti, and D. Towsley, Network tomogr
	Y. Mao and A. H. Banihashemi, Decoding low-density parity-check 
	M. J. Wainwright and M. I. Jordan, Graphical models, exponential
	D. J. C. MacKay, J. S. Yedidia, W. T. Freeman, and Y. Weiss, A c
	G. Liang and B. Yu, Maximum pseudolikelihood estimation in netwo



