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Abstract

This paper studies the problem of Raptor-code design for binary-input AWGN (BIAWGN) channels
using the mean-LLR-EXIT chart approach presented in [1]. We report that there exist situations where
such a design approach may fail or fail to produce capacity-achieving codes, for certain ranges of channel
SNR. Suggestions and discussions are provided pertaining the design of Raptor codes for BIAWGN

channels using the mean-LLR-EXIT chart.

. INTRODUCTION

The great success of fountain codes [2], [3] — including LT codes and Raptor codes — over
erasure channels has inspired reviving interest in the use of incremental redundancy schemes
[4] and the idea of “rateless coding” [5], [6] for communication under channel uncertainty [7].

In particular, beyond their applications in erasure channels, Raptor codes have recently been
applied in various noisy channel models including binary symmetric channels, AWGN channels
and fading channels [1], [6], [8], as well as in multi-user channels such as wireless relay channels
[9]. A milestone in the analysis of Raptor codes over noisy channels is the work of [1], where
properties of capacity-achieving Raptor codes are derived and additionally a framework of code
construction is presented. This paper follows up on the results of [1] and studies the design
issues of Raptor codes using the method in [1].

As Raptor codes are extensions of LT codes to including an LDPC precode and their decoding
is on the factor-graph representation of the global code by Belief Propagation (BP), a key of
designing a Raptor code is to determine the distribution of the output-symbol degrees in the
factor graph. A fundamental result of [1] is that over noisy channels (like BIAWGN channels)
there exists no universally capacity-achieving output degree distribution. This implies that for

BIAWGN channels the output degree distribution of a Raptor code needs to be designed based on
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the channel SNR. The authors of [1] then further suggest a design methodology for determining
the output degree distribution based on the extrinsic information transfer (EXIT) chart [10],
similar to those for LDPC codes [11], [12]. It is however worth noting that unlike its counterparts
in LDPC codes (e.g., [12]), the EXIT chart of [1] uses the expected value of the log-likelihood-
ratio (LLR) in the messages (under certain Gaussianality assumption) and tracks its trajectory
over BP iterations. For this reason, we refer to the EXIT chart of [1] as the mean-LLR-EXIT
chart or simply EXIT chart in short. Under this framework, the authors of [1] show that the
design of a Raptor code — in fact more precisely, of its output-symbol degree distribution —
is a linear programming problem, whereby efficient algorithms exist.

This paper follows up on the EXIT chart approach of [1] for constructing Raptor codes. In
particular, we are interested in effectiveness of this approach for various values of channel SNRs,
in terms of whether it is capable of producing capacity-achieving codes. The main results of this
paper is summarized as follows.

We prove that for any given parameter setting in the linear program, there exist two bounds
of channel SNR —SNRj;, and SNRy,,,, (depending on the parameter setting of the linear
program) — such that when the channel SNR is lower th&R; , the linear program fails to
give a solution, and when the channel SNR is higher #aR;,,,,,, the constructed Raptor codes
necessarily fail to achieve the channel capacity. For channel SNR between these two bounds, we
show by simulations that for relatively low channel SNR, the EXIT-chart based linear program
is capable of producing capacity-achieving Raptor codes, but as SNR increases, the constructed
Raptor codes perform at a visible gap away from the capacity. We also present suggestions for
constructing Raptor codes based on the EXIT-chart approach.

The remainder of this paper is organized as follows. To be self-contained, in Section I, we
first introduce Raptor codes with its decoding algorithm. Then in Section Ill, we review the main
results of [1], upon which this paper primarily follows up. In Section IV, we present the two
SNR bounds and their implications on the design of Raptor codes. In Section V, we report a
simulation study of codes designed for channel with SNR between the two bounds, and present

a detailed discussion on our observations. The paper is briefly concluded in Section VI.
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I[I. RAPTORCODES

A binary Raptor code is a concatenation of an LDPC precodeith an LT code. In the
LDPC precode, &-bit information vector is first mapped to /d-bit codeword ofC, where the
codeword bits are usually referred to as thput symbolsThen via the LT code, a randomly
selected fraction of input symbols are used to generate a new bit vi@kheperation and as this
process repeats, a potentially infinite stream of bits — usually referred to asitjuet symbols
— are generated and transmitted. The process terminates when the receiver is able to decode the
k-bit information vector and signals ahCKvia a feedback channel. Fig. 1 shows an example
of Raptor code represented by a factor graph, in which egche {1,2,...,k’}, represents an
input symbol, and each;, j € {1,2,...,n}, represents an output symbol. A compact form of
the factor graph is shown in Fig. 1(b), where the output symbdias been identified with its
connected parity check. Throughout this paper, Raptor code factor graphs will be represented
using this form.

A Raptor code is parameterized Ij¥, C,2(x)), where Q(x) is the output-symbol degree

distribution. SpecificallyQ(z) := Y Qqz?, where (), is the fraction of output symbols with
d=1

degreed. A related notion of output degree distributionu$z) := i wqr®t, wherew, is the
fraction of edges in the factor graph of the Raptor code connecq[i:r%g to a dégrnaput symbol.
It is then easy to show thai(z) = '(z)/' (1), or wg = dQ4/ >, dQg.

On the factor-graph representation of Raptor codes, the sum-product algorithm can be eas-

ily developed for memoryless channels. Over binary input memoryless channeig let

(y1,v2,-..,yn) be the channel output vector up to timewhere for everyj € {1,2,...,n}, y;
is the channel output for symbe}. The channel LLR message of is defined as
P(c; = 0ly;)
m07~ = log — (1)
’ P(c; = 1y;)

where throughout this paper, logarithm takes base

The sum-product algorithm operates in an iterative way where messages are passed bidirec-
tionally along each edge between the neighboring input symbols and output symbols. One may
follow the schedule of message passing on the global factor graph involving both the LT part
and the LDPC part. For the ease of analysis, we consider a schedule that first passes messages
in the LT part of the graph and upon convergence passes messages in the LDPC part of the

graph. For message passing in the LT part of the graph, in each iteration, messages are first
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(b)

Fig. 1. (a) The standard factor graph of a Raptor code truncated at block ler(@thite squares represent the parity checks
of LDPC code, white circles represent LDPC codeword bits, black squares represent the parity checks of LT code, and black

circles represent Raptor codeword bits). (b) The compact form of the factor graph in (a).

passed from output symbols to input symbols, and then from input symbols to output symbols.

At iteration/, we denote the message passed from output symholinput symbolc; by mﬁl

and the message passed from input symbdab output symbok; by mgﬂj. In each iteration,

each symbol passes messages to its neighbors along its edges. For convenience, we denote the

set of neighbors of a particular nogeby A (v). Then the message passed from output symbol
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¢; to input symbolc; at each iteratiort is

(I-1)
) my_
myl), = 2atanh | tanh (m;’]) H tanh (#) . (2)
i €N (e;)\ e}

The message passed from input syméaio output symbok; is
l l
= Yl ®
e €N ()\{ej}
After a pre-determined criterion is satisfied (such as convergence or that a maximum number of
iterations are reached), the summary message at each input syndaol be computed as
l
m; = Z mglz 4)
c;eN(c})
We note that these update equations ((2)-(4)) are simply the log-domain implementation of
the standard BP or sum-product algorithm. For a complete treatment on how these equations are

derived, the reader is referred to [13].

[1l. EXISTING RESULTS

Following [1], for a binary-input memoryless symmetric channel (BIM®C)we denote by
Cap(C) the capacity of channel and byB(C) the expectatiort(tanh(Z/2)), where random
variableZ is the channel LLRn, ; defined in (1). We note that when, ;, or, Z, is treated as a
random variable, it is independent gfsince the channel statistics we consider are time-invariant.
An important parametell(C) is then defined as

M) = Cgl(’éf?

A sequence of Raptor codés, C, Q%) (x)) indexed by increasing is said to be capacity-

(5)

achieving over a given BIMSC, if BP decoding applied t&/Cap(C) + o(k) output symbols
gives rise to decoding error probability approaching zerd approaches infinity. In [1], it is
shown that a necessary condition for a Raptor-code sequence to be capacity-achieving over a

BIMSC C is that(2; and (2, are respectively lower-bounded and converge as follows.

0% > 0 and lim QP = o, (6)
and
QP > @ and lim ) = @, )
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provided thatB(C) # 0 and Cap(C) # 0. Following [1], the lower bound and limitl(C)/2 of
), in (7) is denoted by2,(C). Since except for binary erasure channélg(C) depends on the
channel parameters for most BIMSCs — including binary-input AWGN (BIAWGN) channels,
an immediate consequence of this result is that there exists no single output-symbol degree
distribution2(z) of Raptor codes that is universally capacity-achieving for any of these channel
families.

Upon this development, the authors of [1] then present a framework of constructing Raptor
codes for agiven BIAWGN channel, which we refer to as th@ean-LLR-EXIT chart(or
simply EXIT chart) approach. Similar to density evolution (DE) [11] and to the one-dimensional
approximation of DE [12], there are two key assumptions involved in this method of construction.

1) Cycle-free assumptiomhe factor-graph representation of the Raptor codeaally cycle-

freg so that all incoming BP messages arriving at a given node in the graph can be treated
as being statistically independent.

2) Semi-Gaussian assumptidrne probability density of a message passed from an input

symbol to an output symbol along a randomly chosen edge in the graph is a mixture
of symmetricGaussian distributions. We note that a probability density function (pdf)
f(x) is said to be symmetric if (z) = ¢ f(—x) [11], and that a uni-variate symmetric
Gaussian distribution is parameterized by its mean only, as under the symmetric condition,
the variance of the Gaussian is twice its mean [12].

The first assumption is well-justified when the graph is large and sparsely connected. For the
second assumption, since the BP message sent from an input symbol is the sum of the incoming
messages arriving at the symbol, and when each input symbol has relatively high degree, the
message sent from the symbol is approximately Gaussian, under the Central Limit Theorem.
The Gaussian Mixture model in the second assumption is then a consequence of the irregularity
of the input-symbol degrees, namely that input symbols have different degree.

Now we denote by the mean of messagegﬂj along a randomly chosen edge in BP
iteration/, and bya the average degree of the input symbols in the LT component code. Under
the above assumptions and that the all-zero codeword is transmitted, it is possible to show for
BIAWGN channels thap+") and ¥ are related by

p = oy " wafa(p?), (8)
d
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with function f; defined as follows.

Falp) = 2 <atanh (tanh (g) ﬁtanh (%))) | )

whereX, (¢ =1,...,d—1) is the symmetric Gaussian random variable with meafescribing
the messagmfﬁj, and whereX1, - -- , X,_1, Z are mutually independent. We note that it is easy

to verify thatZ has symmetric Gaussian pdf with mez8NR, where SNR is the signal-to-noise
ratio of the BIAWGN channél Here we note that throughout this pagéXR is in linear scale
unless otherwise specified in unit of dB.

For eachd, we refer tof, (1) as an “elementary” EXIT chart, which can be interpreted as the
expected value of a message passed from a defoegput symbol.

It is then straight-forward to show that a given valuecofnduces a design rate (of the LT
code) Resign = 1/(a Y wy/d), and thatu*V > 1O implies that the bit error probability (BER)
of the input symbols (upon a hard decision on the messages) at itetatibis lower than that
in iteration/.

Thus the authors of [1] formulate the problem of designing a Raptor code (or the LT component
code) as finding2(z) — or equivalentlyw(x) — that maximizes the design raf.,, subject
to the constraint that BER must decrease as BP iterates. Specifically, in the design framework
of [1], one first fixes a choice of average input-symbol degremaximal output-symbol degree

D, and targeted maximal message megnand then solve the linear program

D
minimizing o Z wa/d
d=1
D

subjectto Vi=1,...,N: adefd(,ui)>,ui

= (10)
D
Z Wy = 1
d=1

Vd=1,---,D: wyg >0,

lwithout loss of generality, the BIAWGN channel is modelled¥as= X + N, whereX is the input to the channel, taking
values from{1, —1} under a one-to-one correspondence with codeword symbol alpfabe}, Y is the output from the
channel, andV is the real Gaussian noise with variange independently drawn for each channel use. Thus the ch&NRI
is defined asl /o2. Mapping back to AWGN channel models characterized in terms of noise power spectral density equal to
No/2, this definition of SNR is equivalent 2F /Ny, where E; is the input symbol energy.
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where{u; :i=1,...,N} is a set of uniformly spaced values in ran@e |

IV. BOUNDS OFCHANNEL SNR,SNRy,, AND SNRy,.,

The linear-programming framework based on the EXIT chart provides a useful tool for the
design of Raptor codes for BIAWGN channels, and the authors of [1] presented good code
examples constructed using this approach. However, the use of this approach requires the code
designer to supply to the linear program a few parameters, namgly, and D for any given
channel SNR, and to date there has been no serious effort in deriving optimal choice of these
parameters. Heuristically, valuP can be chosen as a relatively large number to include a
sufficient space of)(x). It is also understood that the value @f should be chosen depending
on the targeted errors to be erased by the LDPC precode, although such a dependency yet
requires a careful characterization. The choicexdb date also remains mostly heuristic [14]

(see also Appendix 1V), with the reason being that the best choiced#pends on solving for
the bestu(z) in the linear program.

This paper is motivated by studying the effectiveness of the linear program for various channel
SNRs. Specifically we investigate, what is the consequence, in terms of the solution of the linear
program, of a given choice of parameter setting across the range of all channels. In particular, we
are interested in whether a given parameter setting for the linear program is capable of producing
capacity-achieving codes for every channel.

Formally, we say that a given choice @f, 1o, D, SNR) is feasibleif the linear program (10)
has a solution, namely, if the constraints in the linear program define a non-empty.us@t) of

For any choice of «, 1o, D), we define the following threshold values ®KR.
SNRy (@, o) := po/2cv.
SNR}en (d; i, pio) == inf {SNR : (v, 19, D, SNR) feasible and Yy € (0, o],

folp) = falw) _ d—2
25NR — fo(p) — 2d -2

},2<d§D

and

SNRTligh(aa Hos D) = min {SNRﬁlgh(d, CY7[1/Q> 12<d< D} .
Our analysis relies on the following lemmas, the proof of which are provided in Appendices
[, 1, and Il
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Lemma 1:Let X be a symmetric Gaussian random variable with meaand /(z) be an
increasing function ofc with the property that.(—z) = —h(z), then the expectation of the

function E (h(X)) increases withu.

Lemma 2: Suppose the multivariate functian= g(z1, xo, . .., z,) has the following proper-
ties,
1) Vie (1,...,n), whenzy,...,x; 1,1, ..., x, are fixed,
g(xy, oo =iy ) = —g(Xy, Ty )

2) If x1>0,29>0,...,2, >0, theny > 0;
3) If 1 > 0,29 >0,...,2, >0, thenVi € (1,...,n), whenxy, ..., z; 1,2:1,...,z, are
fixed, the functiony strictly increases withx;.
Let Y be a random variable defined &s= ¢(X;, Xs,...,X,), where X, X5, ..., X,, are all
independent symmetric Gaussian random variables with meam, . . ., u, respectively, then
the expectatior(Y") increases withu; provided thatu,, ..., u;i—1, fiy1, - - -, i1, @re all fixed.
Lemma 3:The elementary EXIT charf;(x) as defined in (9), satisfies the following proper-
ties.
1) fs(p) >0 forall x>0 andd > 0.
2) fi(u) = 2SNR.
3) fa(n) < pand fo(p) < 2SNR.
4) For anyd > 1 andSNR, f4(u) increases withu.
5) For anyp andSNR, f;(n) decreases withl.
6) For anyd andyu, f4(u) increases wittbNR.
Theorem 1:Any (o, uo, D, SNR) is infeasible if and only ifSNR < SNR;} . (v, o).
We note that an equivalent result to this theorem was first observed by Shokrollahi [14].
Proof: First recall the constraint of the linear program, namely that for apyu; <

a) ,wafa(p:). But by Lemma 3,f,(11) decreases witld, we have, for everyy;,
defd(,ui) < deﬁ(m) = fi(p;) = 2SNR.
d d

Thus we havey; < 2aSNR. Taking p; to its maximumy, gives thatSNR > puo/2a =
SNR;.,, (@, 10), Which is a necessary condition fo, 1o, D, SNR) to be feasible. Thu$iNR <
SNR;. (@, o) is sufficient to ensuréqa, 19, D, SNR) infeasible.
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Now suppose&SNR > SNR;}  («, i), then we are to showe, 1, D, SNR) is feasible. Since
SNR; (@, f0) = po/2c, we have
2aSNR 2 Ho-

It is easy to verify that degree distributian(z) = 1 satisfies all the constraints of the linear
program, so there exists at least one feasible solution. Therétarg,;, D, SNR) is feasible. m
Theorem 2:1f SNR > SNR},,;,(a, 110, D), then the solution of the linear program is such that
we = 0.
Prior to proving the theorem, we note that given 1o, D), the theorem holds irrespective of
the choice of the LDPC precode.

Proof: We will first prove that if SNR > SNRy,.,(d; a, po) for somed > 2, then the
solution of the linear program has, = 0, which implies, if SNR > SNRj,, («, po, D), the
linear program has solution, = 0. To prove this by contradiction, suppose that the solution of
the linear program is/(x) with wy, > 0. We construct anothe¥(z) differing from w(z) only in
degreesl, 2 andd by splitting the masss, to degreel and degreel. That is, letw; = w; for all
i#1,2,d,i < D.Letd) =w; + Awg, @2 =0, 03 =wq+ (1 —N)wy for somel € (0,1) to be
determined. Under the conditiGiNR > SNRy,.,(d; «, i), clearly

d=2 _ faop) = fa(p)
2d—2 ~ 2SNR — fy(u)

Therefore there exists somesuch that

d—2 fo(p) — fa(p)
20—2 "7 SNR= falp)

Then by Lemma 3, we have

 for all e (0, pol.

Wi  We Wy w1+/\w2+wd+(1—)\)w2

T2 T T T d
and
wi (1) + wafo(p) + wafalp) < (w1 + M) fr(1) + (wa + (1 — Nwa) fa(p)-
Equivalently, )
Wy Wy
2. G722
d d
and

Y wafalp) <Y Gafalp)
d d
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for all © € (0, uo]. That is, there exista such that the constructen| =) satisfies all constraints
of the linear program and results in a lower value of the objective function. Tkwscan not
be the solution of the linear program. [ |
The essence of this theorem is simply suggesting that for any given, D), there is an upper
bound SNRy;.,(av, 110, D) of SNR above which linear program (10) fails to construct capacity-
achieving Raptor codes — noting the necessary conditiofl;offor capacity-achieving Raptor
codes developed in [1] and re-stated in Section Ill. It remains to verify $Nat;, . (c, 110, D)
has some practical significance and to assure the boundedn&36Rgf,, (o, 1o, D). To that

end, define
B fo(p)(2d — 2) — dfa(p)
= T ey

We note thaty(d) is in fact a function of SNR. Let

(11)

I(d) := {SNR : SNR > ~(d)}

and

= |J 1)

2<d<D

This allows us to simplify the formulation &NRj,,;, (@, po, D), as in the following lemma.
Lemma 4:SNRy, ., (, po, D) = inf (I N (p10/2cr, +00)).
Proof: By definition,

- -2
SNRpien (d; i, p1g) = inf {SNR : SNR > p1o/2cr, and Vu € (0, o), folp) — fa(p) d }

2SNR — fa(n) ~ 2d -2
= inf {SNR : SNR > 19/2c, and SNR > ~(d)} .

Therefore,
SNRig (00, D) = min SNRi,(d; v, o)
= QgiSnD (inf {SNR : SNR > po/2a, and SNR > v(d)})
= min (inf (/20 +00) N 1(d)))
= inf ( U ((po/2cx, +00) N I(d)))
2<d<D

= inf (I N (po/2cr, +00)) .

August 15, 2008 DRAFT



12

This lemma provides a simpler formulation of the bowldR;,,,(c, 110, D). Following this,

it is easy to see th&iNRj,,;, (v, 110, D) is bounded due to

f(p)(2d =2) _ p(2d —2)
20d—2) — 2d—2)°

Clearly, SNRy,;, (@, p10, D) is non-increasing withy, since! is independent ofv. Furthermore,

v(d) <

for any givenyy, if at somea = &, SNRy, (&, po, D) = inf(1), thenSNRy,, (@, pio, D) = inf([)
for any a > &. This corresponds to cases of practical significance, which we outline next.

For a = 1, SNRj,, (o, o) and SNRy,,(, o, D) are plotted as functions of, in Fig.

2, where SNRy,, (@, o, D) is computed numerically. (We note that in our computation of
SNRjign (@, o, D), we observe thaBNRy,.,(a, io, D) is independent ofD and in addition
SNRyign (v, o, D) = SNR},,, (d = 3; v, j19)). The following remarks are in order.

1) We note thatv = 1 is the minimal value that is allowed to take since every input symbol
must contribute to generating at least one of the output symbols. As a consequence, the
SNR; (@, o) curve plotted fora = 1 will be uniformly higher than the&sNR;, . («a, o)
curves plotted for any other value of

2) From Fig. 2, it is clear that at eveny, in the plotted range&SNRy,, (o = 1, po, D) >
SNR; (@ =1, o). By Lemma 4,

SNRiygn (0= L, ji0, D) = inf (111 (SNRY, (0 = 1, i), +00))
= inf(7).

Using the argument following the lemma, for every> 1, SNRy, . (v, p10, D) = inf(I) at
every iy in the plotted range. That is, the plotted CUSER;,, (o = 1, 119, D) is in fact
SNRign (@, po, D) for all oo > 1.
3) The figure then suggests that for a reasonable choige),o$ay betweer20 and 30, the
EXIT-chart approach will fail to produce capacity-achieving codes for channel SNR higher
than 12-13 dB, based d8NRy,,, (@, o, D).
Some insights may be obtained from these results.
First, the ability of the EXIT chart based approaches in constructing capacity-achieving Raptor
codes for BIAWGN channels is fundamentally limited. This limitation is enhanced when one
recognizes that the bour®NR;, (v, 0, D) only provides asufficientcondition for failing to

achieve capacity. Specifically, the bound corresponds to a conditiondthatically violates
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the capacity-achieving requirement Qf — by setting it to zero. We expect that considerably
earlier before channel SNR increases to pass the b8NRY,,,;, (c, 110, D), the solution of the
linear program has already departed from the capacity-achieving requirenfentesfen without
considering the possibility of violating the requirement(af. However, we would also like to
note that such a limitation may not have significant practical relevance, since for high-SNR
channels, one would rarely consider binary signaling after all.

Second, when constructing Raptor codes for high SNR BIAWGN channels, it is necessary to
design the LDPC precode and the LT code jointly. Previous results appear to have overlooked
this aspect by choosing an LDPC code mostly arbitrarily as long as the rate loss is not significant.
Theorem 2 suggests that such a casual consideration is inadequate for high-SNR channels.
Specifically, the rate and structure of the LDPC precode approximately determine the residual
error left by the LT code for which the LDPC code is responsible. This residual error induces a
choice ofy in the design of LT codes using the EXIT chart. The choicgof— approximately
increasing with rate of LDPC code (assuming LDPC code is optimally designed) — in turn sets
an upper bound of SNR — also increasing with— below which capacity-achieving codes can
be designed. Thus for a given relatively-high channel SNR, it is necessary to carefully blueprint
the rate and structure of the LDPC code together with the design of the LT code, possibly using
1o as their interface.

Finally, combining Theorem 1, it is necessary to choose the parametgug, D) carefully
in designing Raptor codes for a given channel, provided that a fixed choice of LDPC code has
been specified. This necessity deserves an attention particularly because it is not yet clear up to
what SNR level a given choice @k, 1, D) fails to produce capacity-achieving codes.

At this end, we have fully characterized the behavior of the mean-LLR-EXIT chart based linear
program forSNR < SNRj, («, p9) and SNR > SNRy;, (@, po, D). It remains for investigation
how the linear program behaves faXR between the two thresholds. In next section, we present

some preliminary results along this direction via a simulation study.

V. THE CASE OFSNR|,, < SNR < SNRy;,

To partially eliminate the effect due to the sub-optimality of the choicexadupplied to
the linear program, we make a modest modification as to fagvdetermined. In our modified

approach, we consider the optimization problem (10) also includiag a variable, and perform
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Fig. 2. BoundsSNRj;gp (i, o, D) and SNR{,,, (v, po) as functions ofuo for oo = 1.

optimization jointly overa andw(z). The comparison between the modified approach and the
original approach is shown in Appendix IV, and one can see that the modified approach results
in better codes. We then restrict our simulations to using only the modified approach.

Code design and simulations were carried out for different choices of parameters and LDPC
precodes. For each value of channel SNR,is chosen to be&0 and 60 respectively, andD
is chosen to be00. Additionally, in simulations, for each code designed with differgntwe
selected precode to be a rat@5 left-4-regular right-Poisson code as presented in [8], and a
randomly constructed rate7 left-4-regular right-Poisson code respectively. The number of input

symbolsk’ is set to bel0000 and the number of information bits is set to &0 and 7000
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corresponding to different LDPC precodes. We also verified that the channel SNR at which the
code is designed is within the range [SNR],,, SNRy;,]-

Each constructed Raptor code is simulated, under BPSK modulation, over the AWGN channel
for which the code is designed. The performances of these codes are evaluated in terms of their
realized rates We note here that the realized rate of a Raptor code over a given channel is
defined ask/E[n| over all transmitted codewords, whereis the earliest time at which the
codeword can be correctly decoded.

Fig. 3 plots respectively the realized rates achieved by Raptor codes designed with different
and LDPC precode (Note that each point in the plots corresponds to a code designed specifically
for that SNR). Also plotted in the figure is the capacity of the BIAWGN channels. First one
may identify from the figure that codes designed wiihto be 30 perform uniformly better
than those withy, at 60. This may be reasoned by noting that larggrcorresponds to more
inequality constraints on the feasible configurations of the linear program and hence a reduced
space of feasible configurations. This leads to a higher optimal value of the linear program, which
corresponds to a lower designed rate. In addition, for each chagertodes with the raté-7
precode perform rather poorly comparing with the capacity, particularly at the high-SNR end.
This is due to the severe rate loss in the low-rate precoding. We then from here on restrict our
discussion to codes with rate-0.95 precode.

At the lower-end of the simulated channel SNR, the constructed codes with rate-0.95 precode
perform fairly closely to the capacity. As SNR increases, the realized rates of these codes
gradually depart from the capacity curve, and the gap to capacity becomes more visible. We note
that this behaviour is also observed for codes with precode having higher rates (for example we
also simulated codes with rate-0.98 LDPC precode, and nearly identical results are seen — data
not shown). The behaviour of these codes diverging from the capacity curve may be explained
using their corresponding values©{, which are plotted in Fig. 4. In the figure, the lower-bound
,(C) for capacity-achieving Raptor codes is also plotted. Clearly, at the lower end of simulated
range of SNR, the generated values{tf stay above or close to the lower-boutd(C). As
channel SNR increases to exceed certain value, the genératpaickly drops below the lower-
bound, violating the capacity-achieving conditions. It is worth noting that for channel5aBh
SNR, the resulting), is already0. This confirms our earlier statement that the violation of

capacity-achieving condition may happen much earlier be$otg reaches th&NRy,,,, bound,
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Fig. 3. Realized rates of Raptor codes constructed using different parameters.

which is aboutl3 dB.

One may wish to explore the reasons for which the EXIT chart based approach fails to produce
the desired2, at these SNR values. Undoubtedly, what is responsible may include imperfect
choice of the rate and structure of the LDPC precode as well as the sub-optimal chegige of
There is another factor which we believe also contributes significantly to the failure of the EXIT
chart based approaches. — Recall in Section Ill, we noted that the validity of mean-LLR-EXIT
chart approach relies on the semi-Gaussian assumption, which only holds approximately true
when the input symbols mostly have relatively high degrees. In the higher-SNR regime, it is

necessary that on average the input symbols have low degrees, or equivalently that the capacity-
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Fig. 4. Determined?, with different o at various values of channel SNR.

achievinga is relatively small. This is because the capacity-achieving Raptor codes are decodable
at a shorter code length, resulting in fewer edges in the factor graph and hence anfiatléne

same number of input symbols. This fact makes the semi-Gaussian assumption invalid which in
turn limits the accuracy of the EXIT-chart formulation. For example, in the codes constructed
for uo = 30, the determinedy is 5.2 for SNR = 5dB, and is24.4 for SNR = —2dB. This
should, to a good extent, indicate the validity of the semi-Gaussian assumption for the EXIT-
chart approaches and explain why the capacity-achieving conditiéh3 & violated in the first

case, but satisfied in the second case. Additionally we notice that wherdetermined to be

rather small, the resulting designed r&lg.,, (after factoring out the rate loss due to the LDPC
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precode) may exceed the capacity. This observation from another perspective suggests that in

these cases, the EXIT-chart formulation of the code design problem is no longer valid.

VI. CONCLUSION

This paper reports a study of the EXIT-chart-based linear-programming approach to the
construction of Raptor codes for binary-input AWGN channels [1]. Giving suggestions on Raptor
code design, we establish a result that there are two SNR bobiNd,,, andSNRj,,,,, for any
given parameter setting of the linear program. We show that if the channel SNR is outside the
interval[SNR; ., SNRyien |, the linear program either fails to produce solutions or produces Raptor
codes failing to achieve the capacity. Via simulations, we also show that when the channel SNR is
at the lower end of this interval, the constructed codes perform closely to the capacity, whereas
as SNR increases to close to the higher end, the constructed codes suffer from performance
degradation.

Raptor codes are appealing communication schemes under channel uncertainty. We hope that
this work inspire more research in the design of Raptor codes, or more generally, rateless codes,
for high SNR channels.
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APPENDIX |
PROOF OFLEMMA 1

We express the expectation of the functiopX) as

+oo

B (h(X)) = / ha) fx (2)da,

—00

where fx(x) is the pdf of the random variabl& .
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By the symmetric condition o, fx(—x) = e *fx(z) holds. Thus,
0 +o0

BO(X) = [ he)fx(ode+ [ o)fe(e)ds

—00 0

—+o00 —+00

_ _/h(x)fx(—x)dx—ir/h(x)fx(ﬁ)dx

0 0
—+o00

N / h(x)(fx (@) — e~ fx(x))do

0
—+00

- / h(z)(1 — ) fx () da.
0
Since h(x) is an increasing function of, and the terml — ¢~* also increases with:, we

construct a new function for convenience
h(z)(1—e®) if x> 0;
Hy— | M=)
0 if x<O0.
Obviously H (x) strictly increases whem > 0.

By such definition ofH (z), E(h(X)) can be rewritten as
E(n(X)) = E(H(X)).
For an arbitrary positive, define

X=X -+ u+p+o

Then X’ and X are jointly Gaussian and in particular one can verify thdtis symmetric
Gaussian with meap + 6. Since X’ > X with probability 1 and becausé{(x) is increasing
with z, E(H(X")) > E(H(X)). We note that as this inequality depends only on the marginal
distributions of X and X', independent of their joint distribution, we have proved thak (X))

increases with mean oY, hence the lemma.
APPENDIXII

PROOF OFLEMMA 2

It is sufficient to prove the lemma only fer= 1. First we consider the conditional expectation

E(Y|Xy =z,...,X, =x,) Wwhenz,, ..., z, all take positive values. Clearly

EY|Xy=29,..., X, =x,) = E(g(Xy, 29, ..., 2,)).
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For this choice oft,, . .., x,, denoteg*(z1) = g(x1,x2, ..., z,). Theng* increases with;, and
g (—x1) = —g*(z1). By Lemma 1,E(¢*(X,)) increases withu,, i.e., E(Y| Xy = xq,..., X, =
x,) increases withuy, if z,,...,z, are all positive.

Now
+oo +oo
E(Y) = / / E(Y|X2 :$2,...,Xn :In)fXg 77777 Xﬂ(l‘g,...,l’n>dl'2...d$n.

Due to the properties of the functianand the independence among &lJ's, and by splitting

the integration interval for each variable, it can be obtained that

+o0 +oo
E(Y) = /---/E(Y\XQZxQ,...,anxn)
0 0

X(fx,(x2) = fx,(=2)) - (fx, (Tn) = fx,(=75))d2s . . . d.

Note that forx; > 0, the termfx, (z;) — fx,(—x;) is always greater thah(sinceX; is a Gaussian
with positive mean).

The only term that involveg; is the conditional expectation
E(Y|X2 = T9,... ,Xn = In),

which increases withu;. Therefore, with all the other parameters, . . ., u, fixed, E(Y) also

increases withu;.

APPENDIXIII

PROOF OFLEMMA 3

Let functiony = g(z,x1,...,x41) be defined as

d—1
y := 2atanh (tanh (%) Htanh (%)) .
qg=1

One can verify that all properties assumed fom Lemma 2 hold. Clearly for all; > 0 and
d >0, fs(1r) > 0 due tof,(u) being defined as the expected value of a message and the channel
being AWGN. Whernd = 1, it is easy to verify thatf,(u) = E(Z), and thusf;(x) = 2SNR.
For anyd > 1 and fixed SNR, the distribution of is fixed. SinceE(Y) is a function of
Wiy fh2y - - -y ha—1, We denote it byE(Y'; pq, po, .. ., a—1). FOr anyu’ < p”, by Lemma 2, we
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have

EYsm=p =4 g =p) < EYVsm=p" po=ps. . g1 =p')
< BYsm=p" po=p", .. a1 = pt')
< EYsm=p" po=p", .. gy = "),

i.e., fa(u) increases withu.

Similarly, for anyd andy, the distribution ofX,, Vq € (1,2,...,d—1), is fixed. Sincek(Y)
is a function ofuz, wherey is the mean ofZ, we denote it byE(Y’; 1z). Clearly u; = 2SNR.
For anySNR' < SNR”, by Lemma 2, we have

E(Y; 1) < E(Y;u7y),

i.e., f4(1) increases with SNR.

Whend decreases td — 1, we equivalently change the random varialdg with meany to
satisfy tanh(X,/2) = 1 with probability 1, which means an increasing pfto infinity and that
by Lemma 2,f,(x) increases. This proves th#i(,) decreases with.

Then we havefy(u) < fi(i), which results infy(1) < 2SNR. ConsideringZ and X, are

symmetric in the expression

=25 (vt o (£) s (2))),

since fo(u) is upper bounded b¥.(Z), we havef,(n) upper bounded by, the mean ofXj.

APPENDIX IV

Previously suggested by Shokrollahi [14],is chosen approximately corresponding to that
giving rise toSNR; = = SNR, namely,a =~ 1y/2SNR. This strategy, which we refer to as the
heuristicex approach, although capable of constructing good Raptor codes in some cases [1],
is clearly not optimal. Here we suggest embedding the determinatieninfthe optimization
problem prescribed by (10). That is, instead of supplying a pre-selectedhe linear program
of (10), the linear program is converted to an optimization problem with the same objective
function and constraints as in (10) but optimizing jointly over all pairsv(x)). One can verify
that this modified optimization problem is no longer a linear program and in fact it is not even

convex. Nevertheless, one can solve the problem by searching for the optiowal a relatively
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Fig. 5. Realized rates of Raptor codes constructed respectively using hewrgatid-optimizingae: approaches.

large range of discretized values @f(the sampling interval of is chosen to b@®.00001 in our
approach), where for each the optimization problem reduces to the original linear program.
We refer to this strategy as tlmtimizinge: approach.

We performed code design and simulations for both the heurisaeid optimizinge: ap-
proaches for various values of channel SNR whayas chosen to b&0 and D chosen to be
200. The LDPC precode selected is a rate5 left-4-regular right-Poisson code. The number
of input symbolsk’ is set to10,000 and the information block lengtk is set to9,500. We
note that although the choice of LDPC code andare rather arbitrary, we believe that they are

reasonable for the selected chang8BIR values.
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Fig. 6. Word error rate of the Raptor code as a functiorl Ak for the two approaches over channel with SNR=2.5 dB.

The realized rate of Raptor codes designed using the heusigtitd optimizinga: approaches
is compared with each other in Fig. 5. It can be seen that the optimiziagproach indeed
uniformly outperforms the heuristie-approach across all channel SNRs. In fact, the advantage
of the optimizinger approach over the heuristic-approach is seen more pronounced when
inspecting their word error rates, as in Fig. 6 at any given truncated code length. Here the word
error rate (WER) at a given code rateis defined as the probability of word error when the
code is truncated to length/R. Each point in the WER curves is obtained by simulating the

transmission of 30,000 codewords.
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