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Abstract

This paper studies the problem of Raptor-code design for binary-input AWGN (BIAWGN) channels

using the mean-LLR-EXIT chart approach presented in [1]. We report that there exist situations where

such a design approach may fail or fail to produce capacity-achieving codes, for certain ranges of channel

SNR. Suggestions and discussions are provided pertaining the design of Raptor codes for BIAWGN

channels using the mean-LLR-EXIT chart.

I. I NTRODUCTION

The great success of fountain codes [2], [3] — including LT codes and Raptor codes — over

erasure channels has inspired reviving interest in the use of incremental redundancy schemes

[4] and the idea of “rateless coding” [5], [6] for communication under channel uncertainty [7].

In particular, beyond their applications in erasure channels, Raptor codes have recently been

applied in various noisy channel models including binary symmetric channels, AWGN channels

and fading channels [1], [6], [8], as well as in multi-user channels such as wireless relay channels

[9]. A milestone in the analysis of Raptor codes over noisy channels is the work of [1], where

properties of capacity-achieving Raptor codes are derived and additionally a framework of code

construction is presented. This paper follows up on the results of [1] and studies the design

issues of Raptor codes using the method in [1].

As Raptor codes are extensions of LT codes to including an LDPC precode and their decoding

is on the factor-graph representation of the global code by Belief Propagation (BP), a key of

designing a Raptor code is to determine the distribution of the output-symbol degrees in the

factor graph. A fundamental result of [1] is that over noisy channels (like BIAWGN channels)

there exists no universally capacity-achieving output degree distribution. This implies that for

BIAWGN channels the output degree distribution of a Raptor code needs to be designed based on
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the channel SNR. The authors of [1] then further suggest a design methodology for determining

the output degree distribution based on the extrinsic information transfer (EXIT) chart [10],

similar to those for LDPC codes [11], [12]. It is however worth noting that unlike its counterparts

in LDPC codes (e.g., [12]), the EXIT chart of [1] uses the expected value of the log-likelihood-

ratio (LLR) in the messages (under certain Gaussianality assumption) and tracks its trajectory

over BP iterations. For this reason, we refer to the EXIT chart of [1] as the mean-LLR-EXIT

chart or simply EXIT chart in short. Under this framework, the authors of [1] show that the

design of a Raptor code — in fact more precisely, of its output-symbol degree distribution —

is a linear programming problem, whereby efficient algorithms exist.

This paper follows up on the EXIT chart approach of [1] for constructing Raptor codes. In

particular, we are interested in effectiveness of this approach for various values of channel SNRs,

in terms of whether it is capable of producing capacity-achieving codes. The main results of this

paper is summarized as follows.

We prove that for any given parameter setting in the linear program, there exist two bounds

of channel SNR —SNR∗
low and SNR∗

high (depending on the parameter setting of the linear

program) — such that when the channel SNR is lower thanSNR∗
low, the linear program fails to

give a solution, and when the channel SNR is higher thanSNR∗
high, the constructed Raptor codes

necessarily fail to achieve the channel capacity. For channel SNR between these two bounds, we

show by simulations that for relatively low channel SNR, the EXIT-chart based linear program

is capable of producing capacity-achieving Raptor codes, but as SNR increases, the constructed

Raptor codes perform at a visible gap away from the capacity. We also present suggestions for

constructing Raptor codes based on the EXIT-chart approach.

The remainder of this paper is organized as follows. To be self-contained, in Section II, we

first introduce Raptor codes with its decoding algorithm. Then in Section III, we review the main

results of [1], upon which this paper primarily follows up. In Section IV, we present the two

SNR bounds and their implications on the design of Raptor codes. In Section V, we report a

simulation study of codes designed for channel with SNR between the two bounds, and present

a detailed discussion on our observations. The paper is briefly concluded in Section VI.
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II. RAPTOR CODES

A binary Raptor code is a concatenation of an LDPC precodeC with an LT code. In the

LDPC precode, ak-bit information vector is first mapped to ak′-bit codeword ofC, where the

codeword bits are usually referred to as theinput symbols. Then via the LT code, a randomly

selected fraction of input symbols are used to generate a new bit via theXOR operation and as this

process repeats, a potentially infinite stream of bits — usually referred to as theoutput symbols

— are generated and transmitted. The process terminates when the receiver is able to decode the

k-bit information vector and signals anACKvia a feedback channel. Fig. 1 shows an example

of Raptor code represented by a factor graph, in which eachc′i, i ∈ {1, 2, . . . , k′}, represents an

input symbol, and eachcj, j ∈ {1, 2, . . . , n}, represents an output symbol. A compact form of

the factor graph is shown in Fig. 1(b), where the output symbolcj has been identified with its

connected parity check. Throughout this paper, Raptor code factor graphs will be represented

using this form.

A Raptor code is parameterized by(k, C, Ω(x)), where Ω(x) is the output-symbol degree

distribution. SpecificallyΩ(x) :=
∞∑

d=1

Ωdx
d, whereΩd is the fraction of output symbols with

degreed. A related notion of output degree distribution isω(x) :=
∞∑

d=1

ωdx
d−1, whereωd is the

fraction of edges in the factor graph of the Raptor code connecting to a degree-d output symbol.

It is then easy to show thatω(x) = Ω′(x)/Ω′(1), or ωd = dΩd/
∑

d dΩd.

On the factor-graph representation of Raptor codes, the sum-product algorithm can be eas-

ily developed for memoryless channels. Over binary input memoryless channels, letyn :=

(y1, y2, . . . , yn) be the channel output vector up to timen, where for everyj ∈ {1, 2, . . . , n}, yj

is the channel output for symbolcj. The channel LLR message ofcj is defined as

m0,j := log
P (cj = 0|yj)

P (cj = 1|yj)
, (1)

where throughout this paper, logarithm takes basee.

The sum-product algorithm operates in an iterative way where messages are passed bidirec-

tionally along each edge between the neighboring input symbols and output symbols. One may

follow the schedule of message passing on the global factor graph involving both the LT part

and the LDPC part. For the ease of analysis, we consider a schedule that first passes messages

in the LT part of the graph and upon convergence passes messages in the LDPC part of the

graph. For message passing in the LT part of the graph, in each iteration, messages are first
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Fig. 1. (a) The standard factor graph of a Raptor code truncated at block lengthn (white squares represent the parity checks

of LDPC code, white circles represent LDPC codeword bits, black squares represent the parity checks of LT code, and black

circles represent Raptor codeword bits). (b) The compact form of the factor graph in (a).

passed from output symbols to input symbols, and then from input symbols to output symbols.

At iteration l, we denote the message passed from output symbolcj to input symbolc′i by m
(l)
j→i,

and the message passed from input symbolc′i to output symbolcj by m
(l)
i→j. In each iteration,

each symbol passes messages to its neighbors along its edges. For convenience, we denote the

set of neighbors of a particular nodev by N (v). Then the message passed from output symbol
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cj to input symbolc′i at each iterationl is

m
(l)
j→i = 2atanh

tanh
(m0,j

2

) ∏
c′
i′∈N (cj)\{c′i}

tanh

(
m

(l−1)
i′→j

2

) . (2)

The message passed from input symbolc′i to output symbolcj is

m
(l)
i→j =

∑
cj′∈N (c′i)\{cj}

m
(l)
j′→i. (3)

After a pre-determined criterion is satisfied (such as convergence or that a maximum number of

iterations are reached), the summary message at each input symbolc′i can be computed as

mi =
∑

cj∈N (c′i)

m
(l)
j→i. (4)

We note that these update equations ((2)-(4)) are simply the log-domain implementation of

the standard BP or sum-product algorithm. For a complete treatment on how these equations are

derived, the reader is referred to [13].

III. E XISTING RESULTS

Following [1], for a binary-input memoryless symmetric channel (BIMSC)C, we denote by

Cap(C) the capacity of channelC and byB(C) the expectationE(tanh(Z/2)), where random

variableZ is the channel LLRm0,j defined in (1). We note that whenm0,j, or, Z, is treated as a

random variable, it is independent ofj, since the channel statistics we consider are time-invariant.

An important parameterΠ(C) is then defined as

Π(C) :=
Cap(C)

B(C)
. (5)

A sequence of Raptor codes(k, C, Ω(k)(x)) indexed by increasingk is said to be capacity-

achieving over a given BIMSCC, if BP decoding applied tok/Cap(C) + o(k) output symbols

gives rise to decoding error probability approaching zero ask approaches infinity. In [1], it is

shown that a necessary condition for a Raptor-code sequence to be capacity-achieving over a

BIMSC C is thatΩ1 andΩ2 are respectively lower-bounded and converge as follows.

Ω
(k)
1 > 0 and lim

k→∞
Ω

(k)
1 = 0, (6)

and

Ω
(k)
2 >

Π(C)

2
and lim

k→∞
Ω

(k)
2 =

Π(C)

2
, (7)
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provided thatB(C) 6= 0 andCap(C) 6= 0. Following [1], the lower bound and limitΠ(C)/2 of

Ω2 in (7) is denoted byΩ2(C). Since except for binary erasure channels,Ω2(C) depends on the

channel parameters for most BIMSCs — including binary-input AWGN (BIAWGN) channels,

an immediate consequence of this result is that there exists no single output-symbol degree

distributionΩ(x) of Raptor codes that is universally capacity-achieving for any of these channel

families.

Upon this development, the authors of [1] then present a framework of constructing Raptor

codes for agiven BIAWGN channel, which we refer to as themean-LLR-EXIT chart(or

simply EXIT chart) approach. Similar to density evolution (DE) [11] and to the one-dimensional

approximation of DE [12], there are two key assumptions involved in this method of construction.

1) Cycle-free assumptionThe factor-graph representation of the Raptor code islocally cycle-

free, so that all incoming BP messages arriving at a given node in the graph can be treated

as being statistically independent.

2) Semi-Gaussian assumptionThe probability density of a message passed from an input

symbol to an output symbol along a randomly chosen edge in the graph is a mixture

of symmetricGaussian distributions. We note that a probability density function (pdf)

f(x) is said to be symmetric iff(x) = exf(−x) [11], and that a uni-variate symmetric

Gaussian distribution is parameterized by its mean only, as under the symmetric condition,

the variance of the Gaussian is twice its mean [12].

The first assumption is well-justified when the graph is large and sparsely connected. For the

second assumption, since the BP message sent from an input symbol is the sum of the incoming

messages arriving at the symbol, and when each input symbol has relatively high degree, the

message sent from the symbol is approximately Gaussian, under the Central Limit Theorem.

The Gaussian Mixture model in the second assumption is then a consequence of the irregularity

of the input-symbol degrees, namely that input symbols have different degree.

Now we denote byµ(l) the mean of messagem(l)
i→j along a randomly chosen edge in BP

iteration l, and byα the average degree of the input symbols in the LT component code. Under

the above assumptions and that the all-zero codeword is transmitted, it is possible to show for

BIAWGN channels thatµ(l+1) andµ(l) are related by

µ(l+1) = α
∑

d

ωdfd(µ
(l)), (8)
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with function fd defined as follows.

fd(µ) := 2E

(
atanh

(
tanh

(
Z

2

) d−1∏
q=1

tanh

(
Xq

2

)))
, (9)

whereXq (q = 1, . . . , d−1) is the symmetric Gaussian random variable with meanµ describing

the messagem(l)
i→j, and whereX1, · · · , Xd−1, Z are mutually independent. We note that it is easy

to verify thatZ has symmetric Gaussian pdf with mean2SNR, where SNR is the signal-to-noise

ratio of the BIAWGN channel1. Here we note that throughout this paper,SNR is in linear scale

unless otherwise specified in unit of dB.

For eachd, we refer tofd(µ) as an “elementary” EXIT chart, which can be interpreted as the

expected value of a message passed from a degree-d output symbol.

It is then straight-forward to show that a given value ofα induces a design rate (of the LT

code)Rdesign = 1/(α
∑

ωd/d), and thatµ(l+1) > µ(l) implies that the bit error probability (BER)

of the input symbols (upon a hard decision on the messages) at iterationl +1 is lower than that

in iteration l.

Thus the authors of [1] formulate the problem of designing a Raptor code (or the LT component

code) as findingΩ(x) — or equivalentlyω(x) — that maximizes the design rateRdesign subject

to the constraint that BER must decrease as BP iterates. Specifically, in the design framework

of [1], one first fixes a choice of average input-symbol degreeα, maximal output-symbol degree

D, and targeted maximal message meanµ0, and then solve the linear program

minimizing α
D∑

d=1

ωd/d

subject to ∀i = 1, . . . , N : α
D∑

d=1

ωdfd(µi) > µi

D∑
d=1

ωd = 1

∀d = 1, · · · , D : ωd ≥ 0,

(10)

1Without loss of generality, the BIAWGN channel is modelled asY = X + N , whereX is the input to the channel, taking

values from{1,−1} under a one-to-one correspondence with codeword symbol alphabet{0, 1}, Y is the output from the

channel, andN is the real Gaussian noise with varianceσ2 independently drawn for each channel use. Thus the channelSNR

is defined as1/σ2. Mapping back to AWGN channel models characterized in terms of noise power spectral density equal to

N0/2, this definition of SNR is equivalent to2Es/N0, whereEs is the input symbol energy.
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where{µi : i = 1, . . . , N} is a set of uniformly spaced values in range(0, µ0].

IV. B OUNDS OFCHANNEL SNR,SNR∗
low AND SNR∗

high

The linear-programming framework based on the EXIT chart provides a useful tool for the

design of Raptor codes for BIAWGN channels, and the authors of [1] presented good code

examples constructed using this approach. However, the use of this approach requires the code

designer to supply to the linear program a few parameters, namely,α, µ0, andD for any given

channel SNR, and to date there has been no serious effort in deriving optimal choice of these

parameters. Heuristically, valueD can be chosen as a relatively large number to include a

sufficient space ofΩ(x). It is also understood that the value ofµ0 should be chosen depending

on the targeted errors to be erased by the LDPC precode, although such a dependency yet

requires a careful characterization. The choice ofα to date also remains mostly heuristic [14]

(see also Appendix IV), with the reason being that the best choice ofα depends on solving for

the bestω(x) in the linear program.

This paper is motivated by studying the effectiveness of the linear program for various channel

SNRs. Specifically we investigate, what is the consequence, in terms of the solution of the linear

program, of a given choice of parameter setting across the range of all channels. In particular, we

are interested in whether a given parameter setting for the linear program is capable of producing

capacity-achieving codes for every channel.

Formally, we say that a given choice of(α, µ0, D, SNR) is feasibleif the linear program (10)

has a solution, namely, if the constraints in the linear program define a non-empty set ofω(x).

For any choice of(α, µ0, D), we define the following threshold values ofSNR.

SNR∗
low(α, µ0) := µ0/2α.

SNR∗
high(d; α, µ0) := inf {SNR : (α, µ0, D, SNR) feasible and ∀µ ∈ (0, µ0],

f2(µ)− fd(µ)

2SNR− fd(µ)
<

d− 2

2d− 2

}
, 2 < d ≤ D

and

SNR∗
high(α, µ0, D) := min

{
SNR∗

high(d; α, µ0) : 2 < d ≤ D
}

.

Our analysis relies on the following lemmas, the proof of which are provided in Appendices

I, II, and III.
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Lemma 1:Let X be a symmetric Gaussian random variable with meanµ, and h(x) be an

increasing function ofx with the property thath(−x) = −h(x), then the expectation of the

function E (h(X)) increases withµ.

Lemma 2:Suppose the multivariate functiony = g(x1, x2, . . . , xn) has the following proper-

ties,

1) ∀i ∈ (1, . . . , n), whenx1, . . . , xi−1, xi+1, . . . , xn are fixed,

g(x1, . . . ,−xi, . . . , xn) = −g(x1, . . . , xi, . . . , xn);

2) If x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0, theny ≥ 0;

3) If x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0, then∀i ∈ (1, . . . , n), whenx1, . . . , xi−1, xi+1, . . . , xn are

fixed, the functiony strictly increases withxi.

Let Y be a random variable defined asY = g(X1, X2, . . . , Xn), whereX1, X2, . . . , Xn are all

independent symmetric Gaussian random variables with meanµ1, µ2, . . . , µn respectively, then

the expectationE(Y ) increases withµi provided thatµ1, . . . , µi−1, µi+1, . . . , µn are all fixed.

Lemma 3:The elementary EXIT chartfd(µ) as defined in (9), satisfies the following proper-

ties.

1) fd(µ) > 0 for all µ > 0 andd > 0.

2) f1(µ) = 2SNR.

3) f2(µ) ≤ µ andf2(µ) ≤ 2SNR.

4) For anyd > 1 andSNR, fd(µ) increases withµ.

5) For anyµ andSNR, fd(µ) decreases withd.

6) For anyd andµ, fd(µ) increases withSNR.

Theorem 1:Any (α, µ0, D, SNR) is infeasible if and only ifSNR < SNR∗
low(α, µ0).

We note that an equivalent result to this theorem was first observed by Shokrollahi [14].

Proof: First recall the constraint of the linear program, namely that for anyµi, µi <

α
∑

d ωdfd(µi). But by Lemma 3,fd(µ) decreases withd, we have, for everyµi,∑
d

ωdfd(µi) <
∑

d

ωdf1(µi) = f1(µi) = 2SNR.

Thus we haveµi < 2αSNR. Taking µi to its maximumµ0 gives thatSNR > µ0/2α =

SNR∗
low(α, µ0), which is a necessary condition for(α, µ0, D, SNR) to be feasible. Thus,SNR <

SNR∗
low(α, µ0) is sufficient to ensure(α, µ0, D, SNR) infeasible.
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Now supposeSNR ≥ SNR∗
low(α, µ0), then we are to show(α, µ0, D, SNR) is feasible. Since

SNR∗
low(α, µ0) = µ0/2α, we have

2αSNR ≥ µ0.

It is easy to verify that degree distributionω(x) = 1 satisfies all the constraints of the linear

program, so there exists at least one feasible solution. Therefore,(α, µ0, D, SNR) is feasible.

Theorem 2:If SNR > SNR∗
high(α, µ0, D), then the solution of the linear program is such that

ω2 = 0.

Prior to proving the theorem, we note that given(α, µ0, D), the theorem holds irrespective of

the choice of the LDPC precode.

Proof: We will first prove that if SNR > SNR∗
high(d; α, µ0) for somed > 2, then the

solution of the linear program hasω2 = 0, which implies, if SNR > SNR∗
high(α, µ0, D), the

linear program has solutionω2 = 0. To prove this by contradiction, suppose that the solution of

the linear program isω(x) with ω2 > 0. We construct another̃ω(x) differing from ω(x) only in

degrees1, 2 andd by splitting the massω2 to degree1 and degreed. That is, letω̃i = ωi for all

i 6= 1, 2, d, i ≤ D. Let ω̃1 = ω1 + λω2, ω̃2 = 0, ω̃d = ωd + (1− λ)ω2 for someλ ∈ (0, 1) to be

determined. Under the conditionSNR > SNR∗
high(d; α, µ0), clearly

d− 2

2d− 2
>

f2(µ)− fd(µ)

2SNR− fd(µ)
.

Therefore there exists someλ such that

d− 2

2d− 2
> λ >

f2(µ)− fd(µ)

2SNR− fd(µ)
, for all µ ∈ (0, µ0].

Then by Lemma 3, we have

ω1

1
+

ω2

2
+

ωd

d
>

ω1 + λω2

1
+

ωd + (1− λ)ω2

d

and

ω1f1(µ) + ω2f2(µ) + ωdfd(µ) < (ω1 + λω2)f1(µ) + (ωd + (1− λ)ω2)fd(µ).

Equivalently, ∑
d

ωd

d
>
∑

d

ω̃d

d

and ∑
d

ωdfd(µ) <
∑

d

ω̃dfd(µ)
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for all µ ∈ (0, µ0]. That is, there existsλ such that the constructed̃ω(x) satisfies all constraints

of the linear program and results in a lower value of the objective function. Thusω(x) can not

be the solution of the linear program.

The essence of this theorem is simply suggesting that for any given(α, µ0, D), there is an upper

boundSNR∗
high(α, µ0, D) of SNR above which linear program (10) fails to construct capacity-

achieving Raptor codes — noting the necessary condition ofΩ2 for capacity-achieving Raptor

codes developed in [1] and re-stated in Section III. It remains to verify thatSNR∗
high(α, µ0, D)

has some practical significance and to assure the boundedness ofSNR∗
high(α, µ0, D). To that

end, define

γ(d) = sup
µ∈(0,µ0]

f2(µ)(2d− 2)− dfd(µ)

2(d− 2)
. (11)

We note thatγ(d) is in fact a function of SNR. Let

I(d) := {SNR : SNR > γ(d)}

and

I :=
⋃

2<d≤D

I(d).

This allows us to simplify the formulation ofSNR∗
high(α, µ0, D), as in the following lemma.

Lemma 4:SNR∗
high(α, µ0, D) = inf (I ∩ (µ0/2α, +∞)).

Proof: By definition,

SNR∗
high(d; α, µ0) = inf

{
SNR : SNR > µ0/2α, and ∀µ ∈ (0, µ0],

f2(µ)− fd(µ)

2SNR− fd(µ)
<

d− 2

2d− 2

}
= inf {SNR : SNR > µ0/2α, and SNR > γ(d)} .

Therefore,

SNR∗
high(α, µ0, D) = min

2<d≤D
SNR∗

high(d; α, µ0)

= min
2<d≤D

(inf {SNR : SNR > µ0/2α, and SNR > γ(d)})

= min
2<d≤D

(inf ((µ0/2α, +∞) ∩ I(d)))

= inf

( ⋃
2<d≤D

((µ0/2α, +∞) ∩ I(d))

)
= inf (I ∩ (µ0/2α, +∞)) .
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This lemma provides a simpler formulation of the boundSNR∗
high(α, µ0, D). Following this,

it is easy to see thatSNR∗
high(α, µ0, D) is bounded due to

γ(d) <
f2(µ)(2d− 2)

2(d− 2)
≤ µ(2d− 2)

2(d− 2)
.

Clearly, SNR∗
high(α, µ0, D) is non-increasing withα, sinceI is independent ofα. Furthermore,

for any givenµ0, if at someα = α̂, SNR∗
high(α̂, µ0, D) = inf(I), thenSNR∗

high(α, µ0, D) = inf(I)

for any α > α̂. This corresponds to cases of practical significance, which we outline next.

For α = 1, SNR∗
low(α, µ0) and SNR∗

high(α, µ0, D) are plotted as functions ofµ0 in Fig.

2, whereSNR∗
high(α, µ0, D) is computed numerically. (We note that in our computation of

SNR∗
high(α, µ0, D), we observe thatSNR∗

high(α, µ0, D) is independent ofD and in addition

SNR∗
high(α, µ0, D) ≈ SNR∗

high(d = 3; α, µ0)). The following remarks are in order.

1) We note thatα = 1 is the minimal value thatα is allowed to take since every input symbol

must contribute to generating at least one of the output symbols. As a consequence, the

SNR∗
low(α, µ0) curve plotted forα = 1 will be uniformly higher than theSNR∗

low(α, µ0)

curves plotted for any other value ofα.

2) From Fig. 2, it is clear that at everyµ0 in the plotted rangeSNR∗
high(α = 1, µ0, D) >

SNR∗
low(α = 1, µ0). By Lemma 4,

SNR∗
high(α = 1, µ0, D) = inf (I ∩ (SNR∗

low (α = 1, µ0) , +∞))

= inf(I).

Using the argument following the lemma, for everyα > 1, SNR∗
high(α, µ0, D) = inf(I) at

everyµ0 in the plotted range. That is, the plotted curveSNR∗
high(α = 1, µ0, D) is in fact

SNR∗
high(α, µ0, D) for all α > 1.

3) The figure then suggests that for a reasonable choice ofµ0, say between20 and 30, the

EXIT-chart approach will fail to produce capacity-achieving codes for channel SNR higher

than 12-13 dB, based onSNR∗
high(α, µ0, D).

Some insights may be obtained from these results.

First, the ability of the EXIT chart based approaches in constructing capacity-achieving Raptor

codes for BIAWGN channels is fundamentally limited. This limitation is enhanced when one

recognizes that the boundSNR∗
high(α, µ0, D) only provides asufficientcondition for failing to

achieve capacity. Specifically, the bound corresponds to a condition thatdrastically violates
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the capacity-achieving requirement ofΩ2 — by setting it to zero. We expect that considerably

earlier before channel SNR increases to pass the boundSNR∗
high(α, µ0, D), the solution of the

linear program has already departed from the capacity-achieving requirement ofΩ2, even without

considering the possibility of violating the requirement ofΩ1. However, we would also like to

note that such a limitation may not have significant practical relevance, since for high-SNR

channels, one would rarely consider binary signaling after all.

Second, when constructing Raptor codes for high SNR BIAWGN channels, it is necessary to

design the LDPC precode and the LT code jointly. Previous results appear to have overlooked

this aspect by choosing an LDPC code mostly arbitrarily as long as the rate loss is not significant.

Theorem 2 suggests that such a casual consideration is inadequate for high-SNR channels.

Specifically, the rate and structure of the LDPC precode approximately determine the residual

error left by the LT code for which the LDPC code is responsible. This residual error induces a

choice ofµ0 in the design of LT codes using the EXIT chart. The choice ofµ0 — approximately

increasing with rate of LDPC code (assuming LDPC code is optimally designed) — in turn sets

an upper bound of SNR — also increasing withµ0 — below which capacity-achieving codes can

be designed. Thus for a given relatively-high channel SNR, it is necessary to carefully blueprint

the rate and structure of the LDPC code together with the design of the LT code, possibly using

µ0 as their interface.

Finally, combining Theorem 1, it is necessary to choose the parameters(α, µ0, D) carefully

in designing Raptor codes for a given channel, provided that a fixed choice of LDPC code has

been specified. This necessity deserves an attention particularly because it is not yet clear up to

what SNR level a given choice of(α, µ0, D) fails to produce capacity-achieving codes.

At this end, we have fully characterized the behavior of the mean-LLR-EXIT chart based linear

program forSNR < SNR∗
low(α, µ0) andSNR > SNR∗

high(α, µ0, D). It remains for investigation

how the linear program behaves forSNR between the two thresholds. In next section, we present

some preliminary results along this direction via a simulation study.

V. THE CASE OFSNR∗
low < SNR < SNR∗

high

To partially eliminate the effect due to the sub-optimality of the choice ofα supplied to

the linear program, we make a modest modification as to howα is determined. In our modified

approach, we consider the optimization problem (10) also includingα as a variable, and perform
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Fig. 2. BoundsSNR∗
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low(α, µ0) as functions ofµ0 for α = 1.

optimization jointly overα andω(x). The comparison between the modified approach and the

original approach is shown in Appendix IV, and one can see that the modified approach results

in better codes. We then restrict our simulations to using only the modified approach.

Code design and simulations were carried out for different choices of parameters and LDPC

precodes. For each value of channel SNR,µ0 is chosen to be30 and 60 respectively, andD

is chosen to be200. Additionally, in simulations, for each code designed with differentµ0, we

selected precode to be a rate-0.95 left-4-regular right-Poisson code as presented in [8], and a

randomly constructed rate-0.7 left-4-regular right-Poisson code respectively. The number of input

symbolsk′ is set to be10000 and the number of information bits is set to be9500 and 7000
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corresponding to different LDPC precodes. We also verified that the channel SNR at which the

code is designed is within the range of[SNR∗
low, SNR∗

high].

Each constructed Raptor code is simulated, under BPSK modulation, over the AWGN channel

for which the code is designed. The performances of these codes are evaluated in terms of their

realized rates. We note here that the realized rate of a Raptor code over a given channel is

defined ask/E[n] over all transmitted codewords, wheren is the earliest time at which the

codeword can be correctly decoded.

Fig. 3 plots respectively the realized rates achieved by Raptor codes designed with differentµ0

and LDPC precode (Note that each point in the plots corresponds to a code designed specifically

for that SNR). Also plotted in the figure is the capacity of the BIAWGN channels. First one

may identify from the figure that codes designed withµ0 to be 30 perform uniformly better

than those withµ0 at 60. This may be reasoned by noting that largerµ0 corresponds to more

inequality constraints on the feasible configurations of the linear program and hence a reduced

space of feasible configurations. This leads to a higher optimal value of the linear program, which

corresponds to a lower designed rate. In addition, for each chosenµ0, codes with the rate-0.7

precode perform rather poorly comparing with the capacity, particularly at the high-SNR end.

This is due to the severe rate loss in the low-rate precoding. We then from here on restrict our

discussion to codes with rate-0.95 precode.

At the lower-end of the simulated channel SNR, the constructed codes with rate-0.95 precode

perform fairly closely to the capacity. As SNR increases, the realized rates of these codes

gradually depart from the capacity curve, and the gap to capacity becomes more visible. We note

that this behaviour is also observed for codes with precode having higher rates (for example we

also simulated codes with rate-0.98 LDPC precode, and nearly identical results are seen – data

not shown). The behaviour of these codes diverging from the capacity curve may be explained

using their corresponding values ofΩ2, which are plotted in Fig. 4. In the figure, the lower-bound

Ω2(C) for capacity-achieving Raptor codes is also plotted. Clearly, at the lower end of simulated

range of SNR, the generated values ofΩ2 stay above or close to the lower-boundΩ2(C). As

channel SNR increases to exceed certain value, the generatedΩ2 quickly drops below the lower-

bound, violating the capacity-achieving conditions. It is worth noting that for channel with5dB

SNR, the resultingΩ2 is already0. This confirms our earlier statement that the violation of

capacity-achieving condition may happen much earlier beforeSNR reaches theSNR∗
high bound,
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Fig. 3. Realized rates of Raptor codes constructed using different parameters.

which is about13 dB.

One may wish to explore the reasons for which the EXIT chart based approach fails to produce

the desiredΩ2 at these SNR values. Undoubtedly, what is responsible may include imperfect

choice of the rate and structure of the LDPC precode as well as the sub-optimal choice ofµ0.

There is another factor which we believe also contributes significantly to the failure of the EXIT

chart based approaches. — Recall in Section III, we noted that the validity of mean-LLR-EXIT

chart approach relies on the semi-Gaussian assumption, which only holds approximately true

when the input symbols mostly have relatively high degrees. In the higher-SNR regime, it is

necessary that on average the input symbols have low degrees, or equivalently that the capacity-
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achievingα is relatively small. This is because the capacity-achieving Raptor codes are decodable

at a shorter code length, resulting in fewer edges in the factor graph and hence smallerα for the

same number of input symbols. This fact makes the semi-Gaussian assumption invalid which in

turn limits the accuracy of the EXIT-chart formulation. For example, in the codes constructed

for µ0 = 30, the determinedα is 5.2 for SNR = 5dB, and is24.4 for SNR = −2dB. This

should, to a good extent, indicate the validity of the semi-Gaussian assumption for the EXIT-

chart approaches and explain why the capacity-achieving condition ofΩ2 is violated in the first

case, but satisfied in the second case. Additionally we notice that whenα is determined to be

rather small, the resulting designed rateRdesign (after factoring out the rate loss due to the LDPC
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precode) may exceed the capacity. This observation from another perspective suggests that in

these cases, the EXIT-chart formulation of the code design problem is no longer valid.

VI. CONCLUSION

This paper reports a study of the EXIT-chart-based linear-programming approach to the

construction of Raptor codes for binary-input AWGN channels [1]. Giving suggestions on Raptor

code design, we establish a result that there are two SNR bounds,SNR∗
low andSNR∗

high, for any

given parameter setting of the linear program. We show that if the channel SNR is outside the

interval[SNR∗
low, SNRhigh], the linear program either fails to produce solutions or produces Raptor

codes failing to achieve the capacity. Via simulations, we also show that when the channel SNR is

at the lower end of this interval, the constructed codes perform closely to the capacity, whereas

as SNR increases to close to the higher end, the constructed codes suffer from performance

degradation.

Raptor codes are appealing communication schemes under channel uncertainty. We hope that

this work inspire more research in the design of Raptor codes, or more generally, rateless codes,

for high SNR channels.
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APPENDIX I

PROOF OFLEMMA 1

We express the expectation of the functionh(X) as

E (h(X)) =

+∞∫
−∞

h(x)fX(x)dx,

wherefX(x) is the pdf of the random variableX.
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By the symmetric condition ofX, fX(−x) = e−xfX(x) holds. Thus,

E(h(X)) =

0∫
−∞

h(x)fX(x)dx +

+∞∫
0

h(x)fX(x)dx

= −
+∞∫
0

h(x)fX(−x)dx +

+∞∫
0

h(x)fX(x)dx

=

+∞∫
0

h(x)(fX(x)− e−xfX(x))dx

=

+∞∫
0

h(x)(1− e−x)fX(x)dx.

Sinceh(x) is an increasing function ofx, and the term1 − e−x also increases withx, we

construct a new function for convenience

H(x) =

 h(x)(1− e−x) if x > 0;

0 if x ≤ 0.

ObviouslyH(x) strictly increases whenx > 0.

By such definition ofH(x), E(h(X)) can be rewritten as

E(h(X)) = E(H(X)).

For an arbitrary positiveδ, define

X ′ = (X − µ)
√

(µ + δ)/µ + µ + δ.

Then X ′ and X are jointly Gaussian and in particular one can verify thatX ′ is symmetric

Gaussian with meanµ + δ. SinceX ′ > X with probability 1 and becauseH(x) is increasing

with x, E(H(X ′)) > E(H(X)). We note that as this inequality depends only on the marginal

distributions ofX andX ′, independent of their joint distribution, we have proved thatE(H(X))

increases with mean ofX, hence the lemma.

APPENDIX II

PROOF OFLEMMA 2

It is sufficient to prove the lemma only fori = 1. First we consider the conditional expectation

E(Y |X2 = x2, . . . , Xn = xn) whenx2, . . . , xn all take positive values. Clearly

E(Y |X2 = x2, . . . , Xn = xn) = E(g(X1, x2, . . . , xn)).
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For this choice ofx2, . . . , xn, denoteg∗(x1) = g(x1, x2, . . . , xn). Theng∗ increases withx1, and

g∗(−x1) = −g∗(x1). By Lemma 1,E(g∗(X1)) increases withµ1, i.e., E(Y |X2 = x2, . . . , Xn =

xn) increases withµ1, if x2, . . . , xn are all positive.

Now

E(Y ) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
E(Y |X2 = x2, . . . , Xn = xn)fX2,...,Xn(x2, . . . , xn)dx2 . . . dxn.

Due to the properties of the functiong and the independence among allXi’s, and by splitting

the integration interval for each variable, it can be obtained that

E(Y ) =

+∞∫
0

· · ·
+∞∫
0

E(Y |X2 = x2, . . . , Xn = xn)

×(fX2(x2)− fX2(−x2)) · · · (fXn(xn)− fXn(−xn))dx2 . . . dxn.

Note that forxi > 0, the termfXi
(xi)−fXi

(−xi) is always greater than0 (sinceXi is a Gaussian

with positive mean).

The only term that involvesµ1 is the conditional expectation

E(Y |X2 = x2, . . . , Xn = xn),

which increases withµ1. Therefore, with all the other parametersµ2, . . . , µn fixed, E(Y ) also

increases withµ1.

APPENDIX III

PROOF OFLEMMA 3

Let functiony = g(z, x1, . . . , xd−1) be defined as

y := 2atanh

(
tanh

(z

2

) d−1∏
q=1

tanh
(xq

2

))
.

One can verify that all properties assumed forg in Lemma 2 hold. Clearly for allµ > 0 and

d > 0, fd(µ) > 0 due tofd(µ) being defined as the expected value of a message and the channel

being AWGN. Whend = 1, it is easy to verify thatf1(µ) = E(Z), and thusf1(µ) = 2SNR.

For anyd > 1 and fixed SNR, the distribution ofZ is fixed. SinceE(Y ) is a function of

µ1, µ2, . . . , µd−1, we denote it byE(Y ; µ1, µ2, . . . , µd−1). For anyµ′ < µ′′, by Lemma 2, we

August 15, 2008 DRAFT



21

have

E(Y ; µ1 = µ′, µ2 = µ′, . . . , µd−1 = µ′) < E(Y ; µ1 = µ′′, µ2 = µ′, . . . , µd−1 = µ′)

< E(Y ; µ1 = µ′′, µ2 = µ′′, . . . , µd−1 = µ′)

< E(Y ; µ1 = µ′′, µ2 = µ′′, . . . , µd−1 = µ′′),

i.e., fd(µ) increases withµ.

Similarly, for anyd andµ, the distribution ofXq, ∀q ∈ (1, 2, . . . , d− 1), is fixed. SinceE(Y )

is a function ofµZ , whereµZ is the mean ofZ, we denote it byE(Y ; µZ). ClearlyµZ = 2SNR.

For anySNR′ < SNR′′, by Lemma 2, we have

E(Y ; µ′Z) < E(Y ; µ′′Z),

i.e., fd(µ) increases with SNR.

Whend decreases tod− 1, we equivalently change the random variableXd with meanµ to

satisfy tanh(Xd/2) = 1 with probability 1, which means an increasing ofµ to infinity and that

by Lemma 2,fd(µ) increases. This proves thatfd(µ) decreases withd.

Then we havef2(µ) < f1(µ), which results inf2(µ) < 2SNR. ConsideringZ and X1 are

symmetric in the expression

f2(µ) = 2E

(
atanh

(
tanh

(
Z

2

)
tanh

(
X1

2

)))
,

sincef2(µ) is upper bounded byE(Z), we havef2(µ) upper bounded byµ, the mean ofX1.

APPENDIX IV

Previously suggested by Shokrollahi [14],α is chosen approximately corresponding to that

giving rise toSNR∗
low = SNR, namely,α ≈ µ0/2SNR. This strategy, which we refer to as the

heuristic-α approach, although capable of constructing good Raptor codes in some cases [1],

is clearly not optimal. Here we suggest embedding the determination ofα in the optimization

problem prescribed by (10). That is, instead of supplying a pre-selectedα to the linear program

of (10), the linear program is converted to an optimization problem with the same objective

function and constraints as in (10) but optimizing jointly over all pairs(α, ω(x)). One can verify

that this modified optimization problem is no longer a linear program and in fact it is not even

convex. Nevertheless, one can solve the problem by searching for the optimalα over a relatively
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Fig. 5. Realized rates of Raptor codes constructed respectively using heuristic-α and optimizing-α approaches.

large range of discretized values ofα (the sampling interval ofα is chosen to be0.00001 in our

approach), where for eachα the optimization problem reduces to the original linear program.

We refer to this strategy as theoptimizing-α approach.

We performed code design and simulations for both the heuristic-α and optimizing-α ap-

proaches for various values of channel SNR whereµ0 is chosen to be30 andD chosen to be

200. The LDPC precode selected is a rate-0.95 left-4-regular right-Poisson code. The number

of input symbolsk′ is set to10, 000 and the information block lengthk is set to9, 500. We

note that although the choice of LDPC code andµ0 are rather arbitrary, we believe that they are

reasonable for the selected channelSNR values.
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Fig. 6. Word error rate of the Raptor code as a function of1/R for the two approaches over channel with SNR=2.5 dB.

The realized rate of Raptor codes designed using the heuristic-α and optimizing-α approaches

is compared with each other in Fig. 5. It can be seen that the optimizing-α approach indeed

uniformly outperforms the heuristic-α approach across all channel SNRs. In fact, the advantage

of the optimizing-α approach over the heuristic-α approach is seen more pronounced when

inspecting their word error rates, as in Fig. 6 at any given truncated code length. Here the word

error rate (WER) at a given code rateR is defined as the probability of word error when the

code is truncated to lengthk/R. Each point in the WER curves is obtained by simulating the

transmission of 30,000 codewords.
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