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Scribe: Taha. S. Morbiwalla

Continuation of Poisson Process

5. Continued:
Let Z(t) be the random impulse train in the form of

z(t) =
∑

∞

k=1
δ(t − Tk) - underlying a Poisson process where Tk’s are time instance

at which random events occur. Let h(t) = u(t) be the impulse response of an LTI
system. The output of the system with input z(t) is the Poisson process n(t), i.e.,

n(t) = z(t) ∗ u(t)

Figure 1:

6. If the impulse response of the above LTI system is not u(t), but a general
function, the output process is called a short noise process.

Figure 2:
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For example, a photon particle when it hits a barrier.
Or in a 2D example, an earthquake.

Figure 3: A 2-D example

7. The MN (t), (mean of a Poisson process) of α = λt, for a fixed t is :
MN (t) = λt

where: N(t)=Number of events that have happened, and MN(t) is the average
number of events.

Figure 4:
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The Covariance RN(t1, t2)

Suppose t1 < t2, then
RN (t1, t2) = E[N(t1) ·N(t2)] −→ if we think of N(t2) as a product of other events
that occurred after N(t1).

RN (t1, t2) = E[N(t1) · (N(t1) + N(t2 − t1))]
= E[N(t1)

2] + E[N(t1)N(t2 − t1)]
(the assumption of independence allows us to distribute the function as below.)

= (λt1)
2 + V AR[N(t1)] + E[N(t1)]E[N(t2 − t1)]

= (λt1)
2 + λt1 + (λt1)(λ(t2 − t1))

= λt1 + λ2t1t2

In general RN (t1, t2) = λmin(t1 − t2) + λ2t1t2−→ the autocorrelation function.
CN (t1, t2) = RN (t1, t2) − E[N(t1)]E[N(t2)] = λmin(t1, t2)

This also justifies that the Poisson Process is not a W.S.S Process.

Power Spectral Density and Filtering of R.P.

Suppose process X(t) is W.S.S, we will use RX(t) to denote its autocorrelation
function. Specifically, t here, denotes t2 − t1, in the original notation RX(t1, t2) of
the autocorrelation function.
The power spectral density (PSD) SX(t) of X(t) is defined as
SX(f) = F{RX(t)} Where F { } is either continous / discrete time

Figure 5:

It follows from the properties of Fourier Transform that
∫
∞

−∞
SX(f)df = RX(0)

This can be proven as shown below:
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x(t) F−→ X(f)

by definition:
X(f) =

∫
∞

−∞
x(t)e−j2πft - thus

x(t) =
∫
∞

−∞
X(f)ej2πftdf

x(0) =
∫
∞

−∞
X(f)e0df

Thus proving the Power Spectral Density function:
Rx(0) =

∫
∞

−∞
SX(f)e0df

Rx(0) = E[X(t).X(t)] - For any t. By definition of the Autocorrelation function.

Rx(0) = V AR[X(t)] + (E[X(t)])2

RX(0) means no change in t.

If we interpret the Autocorrelation function as Power, the V AR[X(t)] can be
thought of as the DC Power, and (E[X(t)])2 as the AC power, then we can say
that RX(0) = to the entire power AC + DC.

Important Note: The SX(f) is always Non-Negative.
SX(t) can be interpreted as the distribution of Power.

Figure 6:

Example 1.
Let X(t) be a W.S.S process with SX(f) specified as follows (Fig 7.)

1. Find the total power of the process
2. Find the two sided power of the process within 10Hz and 30Hz

Sol:
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Figure 7:

1. Total Power =
∫
∞

−∞
SX(f)df =

∫
50

−50
1df = 100

2.Over the interval [10Hz and 30Hz]

=
∫

30

10
SX(f)df +

∫
−10

−30
SX(f)df

= 20 + 20 = 40W

Example 2.

Figure 8:

1. What is the total power in the Sx(f) specified below.
δ(t) = dc power.

The answer is similar to example 1, but also includes a constant of 2.
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Filtering of W.S.S Random Process

Setting:

Figure 9:

x(t) is W.S.S
h(t) is the impulse response

Define
Rh(t) = h(t) ∗ h(−t) i.e
Rh(t) =

∫
∞

−∞
h(τ − t)h(τ)dτ → Autocorrelation function

Figure 10:
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Rh(t) is also known as the deterministic autocorrelation function. e.g.
if the process is sinusoidal, and we shift it by 1 period - we get the convolution as
shown below:

Figure 11:

However, If we shift it by 1/2 a period, we get negative values.

Figure 12:

Define Sh(t) = F{Rh(t)} =| H(f) |2= H(f).H(f)

y(t) = x(t) ∗ h(t)

| Y (f) |2
︸ ︷︷ ︸

= | X(f) |2
︸ ︷︷ ︸

. | H(f) |2
︸ ︷︷ ︸

Ry(t) Rx(t) Rh(t)
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Key Results

1. My = H(0).Mx where H(0) =
∫
∞

−∞
h(t)dt = H(f) |f=0

This simply means that the Output Mean My is a scaled version of the In-
put mean Mx. Where the scaling factor is precisely given by the area under h(t).

Figure 13:

2. If x(t) is W.S.S, then y(t) is also W.S.S.
3. Ry(t) = Rx(t) ∗ Rh(t)
4. Sy(f) = Sx(f). Sh(f)

︸ ︷︷ ︸

Future Scaling Factor

Sx(f) = The power distribution of a R.P across different bands of Input.

A process is said to be ”White” if its PSD is flat, namely across all frequencies.

Figure 14:
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