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Abstract—Vortex methods increasingly receive attention from the computer graphics community for simple and direct modeling of

complex flow phenomena such as turbulence. The coupling between free-form solids, represented by arbitrary surface meshes, and

fluids simulated with vortex methods, leads to visually rich simulations. In this paper, we introduce a novel approach for simulating the

interaction between solids and inviscid fluids for high-quality simulations using Lagrangian vortex particles. The key aspect of our

method is simulating the creation of vorticity at a solid’s surface. While previous vortex simulators only focus on modeling the solid as a

boundary for the fluid, our approach allows the accurate simulation of two processes of visual interest. The first is the introduction of

surface vorticity in the main flow as turbulence (vortex shedding). The second is the motion of the solid induced by fluid forces. We also

introduce to computer graphics the concept of source panels to model nonturbulent flow around objects. To the best of our knowledge,

this is the first work on two-way coupling of 3D solids and fluids using Lagrangian vortex methods in computer graphics.

Index Terms—Fluid simulation, vortex methods, solid fluid coupling

Ç

1 INTRODUCTION

TURBULENCE gives flow phenomena its visual interest but
simulating complex turbulent flows is one of the

greatest challenges in fluid simulation. Turbulence is
common and it can be observed in rising smoke and in
water flowing past a rock. Turbulent flow is characterized
by its randomness and its rotational nature. A natural way
to model such flows is to explicitly represent and simulate
their vorticity, or tendency to spin. Lagrangian vortex
methods have three key advantages over traditional grid
methods: they enable the representation of unbounded
flows at arbitrary scales, and with no numerical dissipation.
Simulating this kind of flow in traditional grid-based
solvers is extremely challenging due to the limitations
imposed by grid size and resolution.

Vortex methods in computer graphics have been
traditionally applied to increase the detail in Eulerian grid
simulations [1], [2]. More recently, Lagrangian vortex
methods have also been employed for high-quality smoke
simulations [3], [4], [5]. We follow this development
direction due to the advantages of Lagrangian vortex
methods over grid methods to represent unbounded,
highly detailed flows.

Current Lagrangian vortex simulators in computer
graphics focus on flow evolution and treat solid objects
only as boundaries for the flow. However, vortex methods

are used to accurately calculate forces in mechanical
engineering applications such as airfoils [6]. In engineering,
both solid shape and flow are known in advance in the
design process. In contrast, our aim is to compute forces on
solid objects of arbitrary shape under arbitrary flows.

We propose a novel vortex method to simulate the full

interplay of rigid solids and inviscid fluids with two-way
coupling. Our method is motivated by boundary layer theory
[7], which establishes that a thin layer of fluid adheres to a

solid surface due to viscosity. Fluids with very low viscosity
are modeled as inviscid everywhere, except at a solid

boundary where the viscous effects cannot be ignored. This
approach to represent an inviscid flow originates from the

D’Alembert’s paradox, which describes the fact that,
contrary to physical observation, the net force acting on a
solid immersed in an irrotational and inviscid flow is zero.

For instance, a sphere in an inviscid constant uniform flow
would experience zero drag which is clearly incorrect.

Our method is based on three main components. The

first is an inviscid potential-flow simulation, which is
described in Sections 3 and 4. Here, solid objects are

modeled as obstacles for the flow. Vortex stretching, which
is the process where flow vorticity changes due to flow
evolution, is simulated using our novel stable method. The

second component is a boundary layer model that is
described in Section 5. The boundary layer is modeled as

vorticity that is generated at the solid surface and injected
into the main flow. The third and final component of our

method is a fluid force model acting on solids described in
Section 6. We compute fluid forces based on the pressure
changes induced by the release of vorticity into the main

flow from the solid surface [8].
Our novel contributions are the following:

. We develop a method for coupling solids and fluids
using Lagrangian vortex methods based on the
generation of vorticity at the solid surface.
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. We introduce to computer graphics a novel inviscid
flow model around arbitrary solid objects. This
model is based on vortex particle methods, singular
source distributions at solid surfaces and a physi-
cally based boundary layer model.

. We devise a novel stable method for solving vortex
stretching in Lagrangian particle simulations.

We demonstrate the high quality of our results through
simulation of commonly seen phenomena and comparison
with state-of-the-art simulations from the literature.

2 RELATED WORK

Fluid simulation in computer graphics has greatly matured
since the late 1990s, with a strong focus on Eulerian grid-
based methods [9], [10]. Lagrangian particle methods are
introduced as an alternative to grid simulations, predomi-
nantly Smoothed Particle Hydrodynamics (SPH) [11], [12].
Vortex methods, although introduced in computer graphics
early on [13], have not been applied in high-quality 3D
simulations until relatively recently [3], [4].

Vorticity has been applied in grid methods to recover
and enhance details lost due to grid resolution. In the
vorticity confinement technique [1], dissipated vorticity is
reintroduced into the simulation grid as an additional force
term for the Navier-Stokes equations. Hybrid vortex
particle and grid simulations have been employed to
recover subgrid flow details [14], and to generate high-
resolution grids [15]. Vortex methods using precomputed
boundary layer data have also been used to introduce
turbulence into flow due to solid obstacles in a grid-based
method [2]. Random vorticity is employed to generate
turbulence in areas of high-turbulent kinetic energy in grid
methods [16].

Smoke simulation using vortex particles considers solid
objects only as obstacles so far. Solid boundaries can be
modeled as a vortex sheet that are enforced by solving a
boundary integral equation and simulating vortex shedding
[3]. However, this technique, in general, is not suitable for
objects of general shape [6]. We introduce to computer
graphics a method based on sources, which is more robust
in the presence of complex solid geometries. Vortex
filaments, i.e., curves that concentrate vorticity, have also
been employed in smoke simulations. Enforcing free-slip
boundary conditions with vortex rings has been achieved
by mirroring vortices inside the object with opposite spin
[4], or by solving a boundary integral equation for zero
velocity flux through the surface [5].

More recently, a hybrid method for representing vortical
flows using domain decomposition methods has been
proposed [17]. Grids are defined around rigid and deform-
able solid objects, and free surfaces to enforce boundary
conditions by solving a Poisson equation on the voxelized
solid boundaries. Grids are coupled with a Lagrangian
vortex particle simulation that produces fine flow details.
Particles’ vorticity and grid velocities are coupled by
solving constraints on grid boundaries. In contrast, we do
not employ a grid to model fluid-solid interaction. We
simulate solid-fluid interaction directly from vortex parti-
cles and the polygonal definition of a rigid solid object.

None of the above vortex methods solve two-way solid

fluid coupling but treat the solid only as a boundary for the

fluid motion. Lagrangian vortex methods have also been

employed to model hot buoyant smoke by incorporating a

baroclinic term in the flow equations [18], [19].
Besides obtaining visually realistic representations of

flows, vortex methods have been addressed from the

scientific visualization perspective. For example, vortical

flow visualization methods based on sampling fluid proper-

ties along pathlines have been developed for engineering

analysis [20].
Most work in two-way solid fluid coupling in computer

graphics has been done on Eulerian grids, where solid

objects are voxelized [9], thereby facilitating boundary

condition enforcement and spatial derivative computations.

More accurate coupling has been achieved by solving a

coupled system for fluid and solid motion with a variational

approach [21]. This is extended by explicit computation of

momentum exchange between solids and fluids [22]. Solid

fluid coupling in SPH has been achieved by creating virtual

particles at solid objects surfaces, reducing solid-fluid

interaction to particle-particle interaction [23]. Boundary

particles have also been employed to compute friction and

drag by calculating relative contributions accounting for

irregular particle distributions [24].
Forces exerted by fluids on solid objects and solid-fluid

coupling have been studied in mechanical engineering and

aerodynamics. This can be done by calculating pressure

changes due to the creation of vorticity at a solid surface [8].

This method has been applied to 2D simulations, both

Lagrangian [25] and Eulerian [26]. This technique has also

been formalized and extended to 3D fluid simulations [27],

and utilized in coupling solids and fluids in the design of

parachutes [28] and propellers [29]. An alternative for

coupling between solids and fluids is to simulate both as a

single continuum in a hybrid vortex-grid simulation [30].

Here, solid boundaries are defined by a level set, and rigid

body motion is enforced by adding a penalty term to the

flow equations in the space occupied by a solid object. This

approach has several disadvantages compared to ours as it

relies on an underlying grid, therefore limiting the simula-

tion space. Also, solid motion is found through solving and

advancing the boundary level set. This is not necessary in

our method as we compute solid motion directly on the

polygonal mesh.
Forces on solid objects can also be computed from the

variation of the moments of vorticity in the fluid [31]. This

method’s properties have been studied for the case of

several vortex rings interacting with a solid object [32]. The

moments of vorticity are global flow quantities and do not

provide information on the local influence on different solid

objects. Such information can be obtained by defining a

control volume around the solid and computing vorticity

flux through the control surface [33]. Defining an adequate

control volume for different interacting solids may not be a

trivial task and we compute the vorticity flux at the solid

surface because it characterizes the local force exerted by

the fluid on each solid object.
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3 INVISCID POTENTIAL-FLOW MODEL

We focus on the simulation of an unbounded, incompres-

sible, inviscid homogeneous flow interacting with several

rigid solid objects in three dimensions.

3.1 Vortex Equations and Representation

Vortex methods model the flow through its vorticity !!,

which represents the flow’s tendency to spin, defined as the

curl of the velocity field:

!! ¼ r� u: ð1Þ

Vorticity evolution in our scenario is characterized by a

vorticity transport equation that can be obtained from the

Euler equations. Under irrotational external forces (such

as gravity), the vorticity transport equation is formulated

as follows:

@!!

@t
¼ �ðu � rÞ!!þ ð!! � rÞu: ð2Þ

Here, u is the fluid velocity and r is the vector of spatial

partial derivatives. The first term on the right-hand side of

(2) is a vorticity advection term, which dictates that vorticity

is transported with the flow. The second term is known as

vortex stretching and it models the vorticity change in both

spin direction and magnitude.
Fluid incompressibility is modeled by the continuity

equation that characterizes mass conservation and is

formulated as follows:

r � u ¼ 0: ð3Þ

We assume that vorticity is concentrated on discrete

particles [3], or simply vortices. Each vortex is identified

by its position zi, and its vorticity !!i, which is a vector

defining a spin direction and magnitude.
In the following section, we discuss how to calculate the

flow velocity given its vorticity, which is required to solve

(2) and advance the simulation.

3.2 Velocity Field Computation

3.2.1 Biot-Savart Formula

The velocity field induced by a vorticity field !! on a fluid

region is defined by the Biot-Savart Law, which is a solution

of a Poisson problem determined by (1) and (3). This is

formulated as follows:

uðxÞ ¼ 1

4�

Z
Fluid

!!ðzÞ � x� z

x� zk k3
dz:

Assuming the vorticity is concentrated only on discrete

vortices, the above integral is equivalent to the sum of the

contributions of each vortex j as follows:

uðxÞ ¼ 1

4�

X
j

!!j �
x� zj

x� zj
�� ��3

: ð4Þ

Notice that the summation terms in this equation are

singular. We employ a nonsingular velocity formulation

that enables enhanced simulation control as described in the

following section.

3.2.2 Velocity Evaluation

We depart from the analytical model described above, and
we employ a different approximation of the vorticity-
induced velocity field. This approximation is not a solution
of (1) and (3), however, as demonstrated in our examples, it
leads to visually plausible flow simulations.

Instead of evaluating the Biot-Savart formula for calcu-
lating velocity, we employ a nonsingular function with
finite influence radius, similarly to the approach in
Angelidis et al. [4] for simulating vortex filaments. In their
approach, such a kernel is used to simplify integration
along 3D curves [34]. We calculate the velocity field through
a formula of the form:

ujðxÞ ¼ ð!!j � ðx� zjÞÞw
�
kx� zjk

�
: ð5Þ

The velocity field must be divergence-free; otherwise, the
condition of mass conservation does not hold. The follow-
ing result characterizes functions that can be used as kernels
that satisfy this property and we present its proof in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2013.95.

Proposition 1. For any continuous and differentiable radial basis
function w : IR� IR and vectors !!, x, and z 2 IR3, the
following holds: r � ½ð!!� ðx� zÞÞwð x� zk kÞ� ¼ 0.

We employ the following radial basis function w, with
radius � > 0:

wðrÞ ¼
�
1� r2

�2

�3
if jrj < �

0 otherwise:

�
ð6Þ

Then, the velocity field in (5) is divergence-free and so is the
sum of velocity induced by several vortices, i.e.,

r � uðxÞ ¼ r �
X
j

ð!!j � ðx� zjÞÞwðkx� zjkÞ ¼ 0: ð7Þ

Using the kernel in (6) reduces the cost of computing
velocity from Oðn2Þ to OðnkÞ, where k is the amount of
vortices within the radius � of each particle. We evaluate (5)
through a nearest neighbor search using a KD-tree structure.

We compare simulation results of a smoke column using
two kernels in Fig. 1. We use our velocity definition and an
approximation to the Biot-Savart formula known as the
Rosenhead-Moore kernel [35], [18]. Since our kernel defini-
tion is different from that in the reference solution, our
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Fig. 1. Slow rising smoke with an emission radius of 1.0, simulated using
the Rosenhead-Moore kernel (left), and our kernel with radius � ¼ 2:5
(right). No significant visual quality degradation is observed.



visual results are also different. Specific flow features can be
reproduced by modifying the kernel radius. Evaluating the
velocity field using finite kernels also enables further
controlling the simulation results; a designer can limit the
vortices’ influence region on a complex scene.

With the velocity field we advance vortices in the flow,
and compute vortex stretching, i.e., the change in vorticity
spin and direction. In the following section, we present our
approach to compute this term.

3.2.3 Vortex Stretching

To solve the vortex stretching term, a solution of the
following equation has to be found:

@!!

@t
¼ ð!! � rÞu � ru � !!:

Here, the gradient of velocityru is a tensor of rank two that
is the transpose of the Jacobian matrix of the velocity u. The
vortex stretching term models the change of the vorticity
vectors. Evaluation of this term may lead to instability due
to an exponential increase in the vorticity magnitude [14].

We note that the gradient of velocity can be represented
as follows:

ru ¼ 1

2

�
ruþ ðruÞT

�
þ 1

2

�
ru� ðruÞT

�
:

It can be shown that ðru� ðruÞT Þ � b ¼ !!� b for an
arbitrary vector b 2 IR3. Therefore, the vortex stretching
term reduces to:

ru � !! ¼ 1

2
ðruþ ðruÞT Þ � !!:

The matrix ðruþ ðruÞT Þ corresponds to the strain
tensor which is symmetric and it has the following
eigendecomposition:

ðruþ ðruÞT Þ ¼ QDQT ;

where Q is an orthogonal matrix and D is a diagonal
matrix. The strain tensor can be further expressed as RSRT ,
where R is a rotation matrix and S a scaling matrix. Then,
solving vortex stretching reduces to computing a rotation
and scaling for !!. Since vorticity magnitude may increase
exponentially, we focus only on the rotational component of
ru. The direct evaluation of ru using singular particles
may produce a nonsymmetric matrix, i.e., containing
shearing as well. Instead, we employ a novel advection-
driven method to approximate the rotation associated with
the stretching term.

We approximate the rotation of the spin axis for each
vortex by defining a local orthonormal frame of reference

and calculating the rotation of this reference frame in a
single, fictional advection step. Let Ej be the local
orthonornal reference frame for vortex j. Then, we generate
a set of marker particles located at a fixed distance d from
the vortex position zj along each axis in Ej. We define pj;k ¼
zj þ d ej;k and qj;k ¼ zj � d ej;k as shown in Fig. 2, where
ej;k 2 Ej.

Then, we advect marker particles at positions p and q.
From these advected positions, we obtain an advected
reference frame given by the vectors:

bj;k ¼ pj;kðtþ�tÞ � qj;kðtþ�tÞ;

for k 2 f1; 2; 3g. We assemble the advected axis bj;k in a new
basis Bj from which we obtain a rotation matrix Rj using a

polar decomposition. Rj is an orthogonalized basis for the
vortex’s advected frame of reference. Then, we update
vorticity for each vortex particle j as follows:

@!!j
@t
¼ Rj!!j:

This is a stable vorticity update, and we show a
turbulent smoke column example simulation using this
method in in Fig. 3.

3.2.4 Vorticity Dissipation

Since the above vortex stretching method only introduces a
change in the vorticity orientation and not in the magni-
tude, a turbulent energy cascade is not correctly repre-
sented. A fluid that preserves its energy at all scales would
also be visually incorrect. We, therefore, employ a simple
vorticity dissipation method that produces a visually
realistic result.

We compute the contained kinetic energy [2] of a vortex i

with influence radius � as follows:

Ei ¼
Z
Vi

�

2
kuiðxÞk2dVi;

where ui and Vi are the vortex velocity and its region of
influence, respectively. For our specific kernel, it can be
shown that Ei ¼ k !!k k2�5, where k ¼ �� � 0:0107.
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Fig. 2. Left: Sample markers and reference frame for vortex stretching.
Right: Sample points after advection.

Fig. 3. Turbulent smoke column simulation with vortex stretching.
Fast rotating smoke is obtained by generating vortices at different
scales of strength and radius. Rotation is reduced by vorticity
dissipation as the smoke rises, giving a more uniform appearance
toward the top of the column.



Then, to preserve each vortex’s energy, any change in the
vorticity magnitude induces a change in the vorticity radius
given by:

�new ¼ �old

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!!oldk k2

!!newk k2

5

s
:

We apply this formula to recalculate the radius of each
vortex as its vorticity magnitude changes.

3.3 Solution of the Vorticity Transport Equation

We evolve our simulation through time by solving (2) using
the velocity defined in (7). We split (2) into each of its terms
and solve them sequentially. We advect particles employ-
ing a second order Runge-Kutta time integration of velocity
and we solve vortex stretching using our method in the
previous section.

We can now summarize the advantages of vortex
methods: First, they allow the simulation of fine details
just by defining the vorticity of each particle according to
the required detail scale. Second, only a sparse amount of
data, in our case a set of particles, is required to produce
such simulations. Lagrangian vortex simulations have no
numerical dissipation, which on the other hand is a major
issue in modeling inviscid flows using Eulerian grids.
Finally, the pressure term disappears from the vorticity
transport equation. This eliminates the need for computing
a large matrix for pressure.

In the next sections, we detail the interaction between
solids and fluids through boundary conditions.

4 INVISCID SOLID BOUNDARY CONDITIONS

In our simulation, we assume a solid object is represented
by a non-self-intersecting polygonal surface. Simulating
inviscid flow around solid objects is achieved by enforcing a
no-penetration boundary condition [3] at the solid surface
which is formulated as u

Solid
� n̂ ¼ u

Fluid
� n̂.

In previous literature [3], a surface vorticity distribution
tangent to the boundary is employed. The correct vorticity
distribution to cancel flow through the surface is found by
solving a system of 3N equations, where N is the number of
surface elements. As opposed to their work, we introduce a
novel method to computer graphics where a source dis-
tribution on the surface cancels the normal component of
velocity. OnlyN equations need to be solved, with enhanced
robustness in the presence of complex obstacles [6].

4.1 No-Penetration Condition

4.1.1 Source Sheets

We cancel the normal component of the flow at the surface
by modeling the surface as a source sheet [6] and adding its
induced velocity field to the flow. A source sheet can be
seen as the limit of infinitely many sources (or sinks)
distributed on a surface S. The velocity induced by a source
sheet, at a point in space x, which does not lie on the sheet is
defined as

uðxÞ ¼
Z
S

�ðzÞ
4�

x� z

x� zk k3
dz: ð8Þ

Here, �ðzÞ is the scalar source strength. The velocity at a
point x

B
that lies on the sheet is determined by a limiting

process and it corresponds to �ðx
B
Þn̂=2.

Below we show how to use source distributions to
enforce no-penetration boundary conditions.

4.1.2 Boundary Integral Problem

Flow penetration through the surface occurs when
�u � n̂ ¼ ðu

Fluid
� u

Solid
Þ � n̂ 6¼ 0. This quantity is canceled by

the source sheet. The source sheet is determined by solving
the unknown strength � in the following boundary integral
equation at surface locations x

B
:

�ð�u � n̂Þðx
B
Þ ¼ �ðxB

Þ
2

þ
Z
S

�ðzÞ
4�

x
B
� z

x
B
� zk k3

dz � n̂ðx
B
Þ:

ð9Þ

The above equation corresponds to (8) evaluated at surface
points x

B
. Equation (9) is discretized and solved as

explained in the following section.

4.1.3 Discretization of Boundary Equations

We discretize (9) to solve the unknown scalar strength � on
the solid surface employing the panel method [36]. Each
polygon or panel of the solid boundary corresponds to a
constant strength source sheet that approximates the
solution of (9).

At each panel i we define a control point xi at the panel
center. Then, we both sample the fluid velocity, and
compute the influence of other panels at xi.

We employ the finite kernel described in Section 3.2.2 to
compute panel influence as follows:

u�j ðxÞ ¼
Z
j

ðx� zÞwð x� zk kÞdz: ð10Þ

Since strength � is constant for each panel j, the influence of
panel j on the control point of panel i is simply �ju

�
j ðxiÞ. We

rewrite (9) as follows:

��uðxiÞ � n̂i ¼
�i
2
þ
XNp

j¼1

�ju
�
j ðxiÞ � n̂i: ð11Þ

Here, Np is the number of panels. Equation (11) is a Np �Np

linear system of the form A�� ¼ b. We evaluate the integrals
for u�j using Gauss-Legendre quadratures. The matrix A is
not necessarily symmetric, nor positive-definite and the
kernel radii used to evaluate the matrix coefficients
determine the sparsity of A. For a rigid body, A is constant
and we calculate it and invert it in a precomputation step.

Influence radii � of each panel are determined from a
characteristic length LC of the solid object. In our simulations,
the characteristic length employed corresponds to the
radius of the smallest cylinder that contains the object and
we use 0:5LC � � � 1:5LC .

Once the source strength � is determined for each panel,
the solid object induced velocity is the sum of the velocities
induced by each panel, i.e.,

u�ðxÞ ¼
XNp

j¼1

�ju
�
j ðxÞ: ð12Þ
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We add u� to the simulation, satisfying the no-penetration
boundary condition, as shown in Fig. 4. By using our finite
kernel, the effects of source panels are not evaluated in
points that are too far from the solid object, where the
induced velocity is negligible.

A comparison of no-penetration enforcement using our
kernel and the Rosenhead-Moore kernel is shown in Fig. 5.
We observe that both results are visually different, although
both enforce no-penetration on the solid. The differences
appear due to an overestimation of the velocity field
induced by the employed kernel. By Proposition 1, different
kernels can be applied to obtain a variety of visual results.

4.2 The Case of Finite Kernel Vortices

The source panel method presents additional challenges
when using finite kernels for velocity. Consider a sym-
metric regular vortex jet toward a sphere as in Fig. 5. Small
kernel radii introduce artifacts since: 1) Not all the solid
object’s panels are influenced by a small radius vortices,
and 2) distances between vortices increase due to the
insertion of the solid, reducing the mutual influence of
particles. As vortices approach the solid object, general flow
features are distorted by artificially dominant local flow
structures. The exact error magnitude is difficult to estimate
as panels’ strengths are determined by a large linear system
and sources and vortex radii may differ.

Enforcing the no-penetration boundary condition is
equivalent to forcing the solid boundary to be a flow
streamline, i.e., a curve that is tangent to the flow velocity.
We achieve this by using vortex images: when a solid
boundary intersects the influence radius of a vortex, a
second vortex with same radius and opposite spin is
generated at the mirror position across the solid surface. We
add velocities of vortices and their mirrors to ensure the
flow is tangential to the surface.

Source panels are still necessary to account for the flow’s
irrotational features (e.g., a user-defined background flow),
whereas vortices and their mirrors model the rotational
component of the flow. Then, we employ a combination of
source panels and vortex mirroring in our examples.

5 BOUNDARY LAYER MODEL

The problem with the velocity field obtained using source
panels is that the net force calculated on the solid object is
zero. This can be resolved by calculating the surface
vorticity around the object and then directly computing

the pressure as it is commonly done in airfoil design.
However, this type of solution strategy depends on the
airfoil shape and specific flow conditions, which do not
hold for the turbulent flows and general solid shapes in
which we are interested.

Instead, we couple our potential-flow model with a
boundary layer simulation. We impose an additional
constraint on the tangential components of the flow velocity
at the solid boundary. This allows simulating a variety of
slip conditions where the no-slip boundary condition [37] is
achieved by canceling the tangential component of flow
velocity at the solid surface. This is in addition to the no-
penetration boundary condition that constrains the normal
component of the flow velocity at the solid surface. Fluid
particles in the boundary layer are subject to a torque
induced by the motion of other fluid particles farther from
the solid surface. This torque translates into vorticity that is
released into the flow as vortex shedding.

Then, we apply our boundary layer model in three steps:
First, we determine the surface vorticity using a vortex
sheet, whose induced velocity coincides with the slip
velocity. Second, we enforce a slip boundary condition by
emitting the surface vorticity into the main flow as new
vortex particles. Third, we advect the newly created vortex
particles to simulate boundary layer separation. We de-
scribe these steps in the following sections.

5.1 Surface Vorticity

Surface vorticity is found by modeling the solid boundary
as a vortex sheet. This is the limit of infinitely many vortices
lying on the surface. Surface vorticity �� is a vector quantity
parallel to the solid surface [38]. This quantity is determined
by a boundary integral equation whose structure is similar
to that of source panels. The main difference is that �� has to
be solved for both tangential components ŝ and t̂ of each
panel’s surface. We use the formulation by Park and Kim [3]
and we refer the reader to their work for details. The
boundary integral equation that solves unknown vorticity
in the direction ŝ is the following:

ð�u � ŝÞðx
B
Þ ¼ ð�� � n̂Þðx

B
Þ

2
� ŝðx

B
Þ

þ
Z
S

��ðzÞ
4�
� x

B
� z

x
B
� zk k3

dz � ŝðx
B
Þ:

ð13Þ

We discretize and solve (13) using our finite kernel as
described in the next section.
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Fig. 4. Velocity fields for boundary conditions around a sphere. Left:
External uniform flow. Center: Surface velocity field that cancels
penetration. Right: Result of adding the external flow and the surface
velocity satisfying the no-penetration boundary condition.

Fig. 5. Enforcing no-penetration boundary conditions on a unit radius
sphere. Left: Source panels using the Rosenhead-Moore kernel. Right:
Source panels using our kernel with radius � ¼ 1.



5.2 Discretization Using the Panel Method

We proceed with constant panels similar to Section 4.1.3 and
define a control point xi at the center of each panel i. Under
these assumptions, we can rewrite (13) evaluated at the
control points, using the velocity field u� in (10) as follows:

�uðxiÞ � ŝi ¼
��i � n̂i

2
� ŝi þ

X
j

�j � u�j ðxiÞ � ŝi:

We represent �� in terms of the tangential components ŝ and
t̂ of the surface, i.e., �� ¼ �sŝþ �tt̂. Then, the above equation
can be written as follows:

�uðxiÞ � ŝi ¼
�ti
2
þ
X
j

�sj
�
ŝi � ŝj

�
� u�j ðxiÞ

þ
X
j

�tj
�
ŝi � t̂j

�
� u�j ðxiÞ:

ð14Þ

The derivation of (14) is detailed in Appendix B, available in
the online supplemental material. We set the panel
influence radius to be the same used for source panels.
Equation (14) is a linear system of equations of the form:

B

�si
..
.

�ti
..
.

2
66664

3
77775 ¼

�uðxiÞ � ŝi
..
.

�uðxiÞ � t̂i
..
.

2
66664

3
77775: ð15Þ

The matrix B has dimensions 2Np � 2Np as the influence of
two components of vorticity per panel are considered. As in

the case of the matrix for solving the no-penetration
boundary conditions, in general the matrix B is not
symmetric, nor positive definite but it will be sparse as
long as the kernel radii in the velocity evaluation are small
enough. We note that this matrix is again constant for a
rigid solid object and we also calculate it and its inverse in a
precomputation step.

Once the surface vorticity is determined for each panel, it
is possible to model the development of the boundary layer
which is discussed in the next section.

5.3 Vortex Shedding

We can enforce diverse slip boundary conditions through
vortex shedding by emitting vortices in the flow. These can
be used to cancel the slip velocity or only a part of it [3]. The
velocity field induced by these vortices alters the velocity
field around the object such that the boundary layer
separates from the solid surface as shown in Fig. 6.

We apply a modified version of the method in [3]. We
generate a new vortex at a close random distance d from
each panel. The vorticity of each vortex is

!!newi ¼ c
Slip
��iAi�t; ð16Þ

where ��i and Ai correspond to panel i’s vorticity and area,
respectively. The slip coefficient c

Slip
controls the friction

between the solid and fluid. The free-slip boundary
condition, where c

Slip
¼ 0, occurs because the shed vortices

have zero vorticity. Whereas for the no-slip boundary
condition, where c

Slip
¼ 1, the shed vortices have full

strength. We set each vortex radius to the same radius
used for panel calculations.

In previous literature [3], vortices are diffused into the
main flow using a random walk. We do not use this strategy
as in a nearly inviscid flow, viscosity is dominant only
within the boundary layer. Outside this area, flow is
dominated by advection, where flow separation from the
solid boundary is the main phenomenon we focus on.
We can reproduce natural boundary layer evolution using
this very simple model as shown in Fig. 6, despite that our
velocity computation formulation is different from that
defined by the flow equations.

Comparison of different boundary layer separation
patterns for different values of c

Slip
are shown in Figs. 7

and 8. In addition to the physical representation of a flow
past a solid object using vortex shedding, this feature adds
great visual interest to the scenes as shown in Fig. 9.
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Fig. 6. Top: Kármán vortex street observed in flow past a cylinder
(indicated with an arrow) from a real-life experiment in [39], A.E. Perry,
M.S. Chong, T.T. Lim, “The vortex-shedding process behind two-
dimensional bluff bodies,” Journal of fluid Mechanics, Vol. 129, No. 2,
pages 77-90, 1982, reproduced with permission. Bottom: Kármán vortex
street from our 2D simulation on a unit radius sphere under a uniform
flow, with c

Slip
¼ 1 and kernel radius � ¼ 1:5.

Fig. 7. Flow patterns of a vertical vortex jet around a static 2D unit radius
sphere with kernel radius � ¼ 1. Left: c

Slip
¼ 0. Right: c ¼ 0:7.

Fig. 8. Three-dimensional flow patterns of a vertical vortex jet around a
static cylinder of unit radius. Kernel radius is � ¼ 1 and c

Slip
¼ 0:0 (left)

and c
Slip
¼ 1:0 (right).



6 FORCE MODEL

So far we have discussed the simulation of an inviscid flow

around a solid object, to which we add the viscous effects of

the boundary layer at the solid surface. This viscous

boundary model allows us to simulate two-way solid fluid

coupling because fluid forces acting on a solid are a

consequence of the generation and evolution of the

boundary layer [7]. More precisely, fluid forces acting on

solids have been related to the vorticity flux from the solid

surface into the main fluid [8], [27]. We base our approach

on the work of Wu and Wu [27] as outlined below.

6.1 Surface Forces

The force exerted by a nearly inviscid flow is determined

fundamentally by the surface pressure on the solid object.

In the inviscid limit, the force F and torque T on a solid

object with surface S are formulated, respectively, as

F ¼ �
Z
S
pn̂ds;

T ¼ �
Z
S
ðx� x

CM
Þ � pn̂ds:

Here, x
CM

is the solid object’s center of mass and p is

the fluid pressure. Unlike simulations based on solving the

Euler equations, the vorticity transport (2) does not include

a pressure term p, which is a key quantity for computing

forces on a solid. Pressure can instead be computed from

the surface vorticity that is emitted into the flow, which

corresponds to a vorticity flux from the surface. First, we

define this quantity and then we detail how to use it for

computing fluid forces on solid objects.

6.2 Vorticity Flux

We have discussed vortex shedding as the generation of

vorticity at the solid surface, and into the main flow. The

rate of vorticity introduction on the main flow corresponds

to a vorticity flux that emanates from the surface. This

quantity is related to pressure changes at the solid surface

and below we present it formally.
In the boundary layer, fluid motion is dominated by

viscosity. Then, the vorticity transport is characterized by

the following diffusion equation:

@!!

@t
¼ r � ð�r!!Þ:

Here, � is a viscosity coefficient. The emitted vorticity from

the solid object depends on the tensor JJ ¼ �r!!, particularly

on its normal component which is the vorticity flux �� [40]:

�� ¼ n̂ � JJ ¼ �n̂ � r!! ¼ � @!!
@n̂

:

The vorticity flux �� can be expressed in terms of other
properties. Three main contributions to �� are [27]: 1) the
solid object’s acceleration and body forces, 2) the surface
pressure, and 3) the viscous drag. In the inviscid limit [27],
�� can be rewritten as follows:

�� ¼ ��a þ ��p with :
��a ¼ n̂� ða� fÞ; ��p ¼ 1

� n̂�rp: ð17Þ

Here, a is the solid acceleration, f is the acceleration due to
external body forces such as gravity. Equation (17) is
obtained from the vorticity flux of a general viscous flow [27].

6.3 Forces from Vorticity Flux

Computing the surface pressure from (17) is not trivial.
Moreover, it is necessary to know the value of vorticity flux
�� at the solid surface.

A direct way to evaluate the pressure force at the solid
surface from the moments of ��p is derived from the
generalized Stokes’ Theorem, which in the inviscid limit
leads to [27]:

F ¼ �
Z
S
pn̂ds ¼ � 1

2

Z
S

x� ðn̂�rpÞds

¼ � 1

2

Z
S
�x� ��p ds:

ð18Þ

Similarly, torque on the solid due to surface pressure can be
expressed in terms of the second moment of ��p as follows:

T ¼ �
Z
S
ðx� x

CM
Þ � pn̂ds

¼ �
Z
S

�

2
kx� x

CM
k2��p

� �
ds:

ð19Þ

Missing still is the vorticity flux at the solid boundary. A
common approximation [41], [27], [42], for vorticity flux at
the no-slip solid boundary is

�� ¼ � ��

�t
: ð20Þ

Here, �� is the vorticity of the surface vortex sheet. This
approximation comes from the fact that, at each time step,
the amount of vorticity introduced in the flow needs to
cancel the slip velocity. This vorticity, in turn, is
determined by the vortex sheet. With the approximation
in (20), we rewrite the pressure contribution ��p to the
vorticity flux as follows:

��p ¼
��

�t
þ ��a; ��a ¼ n̂� ða� fÞ: ð21Þ

We replace ��p by the above expression in (18) obtaining the
following definition for fluid force acting on a solid object:

F ¼ � 1

2

Z
S
�x� ��p ds

¼ � 1

2

Z
S
�x� ��

�t
þ n̂� ða� fÞ

� �
ds:

ð22Þ

We calculate the force and torque using the panel
discretization. We evaluate the moments in (18) and (19)

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 9. Flow induced by a vortex jet past a static Stanford Bunny model
with characteristic length LC ¼ 0:75 with c

Slip
¼ 1 and kernel radius¼ 0.5.



using the control points xj of each panel described in
Section 4.1.3. Since we allow defining the amount of
vorticity shed into the main flow using the slip coefficient
c
Slip

(Section 5.3), we scale the value of the vorticity flux at
each boundary panel by c

Slip
. Then, we compute the fluid

force as follows:

F ¼ � 1

2

XNp

j¼1

�xj � c
Slip

��j
�t
þ n̂j � ða� fÞ

� �
Aj:

Here, Np corresponds to the number of panels of the solid
object and Aj corresponds to the area of panel j. Using the
same algebraic manipulations, we obtain the following
discrete expression for torque:

T ¼ � 1

2

XNp

j¼1

� xj � x
CM

�� ��2
c
Slip

��j
�t
þ n̂j � ða� fÞ

� �
Aj:

Here, x
CM

is the solid object’s center of mass. We compute
force and torque on a solid object with these formulas and
we employ these values to update its velocity and position.
Fig. 10 shows an example of a sphere interacting with two
vortex jets implemented with our method. Two different
jets induce a change in the sphere motion as consequence of

force calculations on the sphere. We summarize the
different processes at each time step in the next section.

7 SIMULATION LOOP

A scene is composed of solids, smoke particles, and
vortices. The fluid motion is determined by the vortices in
the simulation and a user-defined background flow. Given
the positions and velocities of the solids and particles, we
perform the following operations at each time step:

. Compute the flow velocity (Section 3.2.2).

. Enforce slip boundary condition: compute the vortex
sheet (Section 5.2) and vortex shedding (Section 5.3).

. Compute vortex stretching (Section 3.2.3).

. Enforce the no-penetration boundary condition
(Section 4.1.3) using an updated velocity field with
above shed vortices.

. Advect vortices and smoke particles using an
updated velocity field using vortex mirror images.

. Compute forces on the solid object (Section 6.3) and
update the solids positions.

8 RESULTS

We show simulation results for fluid solid interplay in 3D
with a sphere, a cylinder, and the Stanford bunny. To
increase performance in panel calculation and vortex
shedding, highly detailed surfaces can be simplified into
coarser geometries. By preserving visually important fea-
tures of the original mesh, flow patterns that are consistent
with these features can be employed directly in rendering. In
our simulations, we use 80 triangular panels for the sphere,
180 for the cylinder, and 500 for the bunny model.

The flow is induced by vortex particles and user-defined
background flows. We run our experiments on a Intel Core
i7-2600, 3.4-GHz CPU with 16-GB RAM and we render our
scenes using Exocortex Fury 2.0.

Fig. 11 shows different vortex shedding patterns pro-
duced by a sphere and a bunny model in free fall. By
employing a finite kernel radius, we limit the fluid region
affected by the vortices, and vortex influence may be
absent in some areas. This effect can be easily reduced by
increasing the particles’ radius.
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Fig. 10. Interaction between vortex jets and a unit radius sphere under the action of gravity. Here, c
Slip
¼ 0:5 and vortex kernel radii are � ¼ 3:5 for

jet vortices, and � ¼ 1:5 for shed vortices. (a): The sphere falls and a vertical jet is emitted. (b)-(c): The jet reaches the sphere and propels it upwards.
(d) A sideways, right to left jet is emitted. (e)-(f): the second jet reaches the sphere and propels it sideways. Enabled jets are indicated with arrows.

Fig. 11. Different patterns of vortex shedding produced on a sheet of
smoke by a bunny model and a unit radius sphere. Shed vortices radii
are set to � ¼ 1.



Fig. 12 shows results of interaction between a vortex jet
and the bunny model. Here, the complex solid object
rotates as it is lifted due to the force and torque exerted by
the flow.

Fig. 13 shows an example of more complex solid fluid
interaction for direct comparison with results by Klingner
et al. [43]. Here, the bunny model is propelled by two
sideways jets that induce the motion and rotation of
the model.

Our following example mimics the interaction of rocket
exhaust and a planar ground. The ground plane is large
enough to prevent the flow from going around the surface.
Our method produces a visually realistic simulation as
shown in Fig. 14. Increased details can be obtained by
adding vortices at different scales of strength and radius.

We compare our results with those of previously
published vortex particle methods. Fig. 15 shows turbu-
lence produced due to the interaction of a uniform flow and
a static solid wedge. This example has been used previously
to demonstrate anisotropic turbulence generated in areas of
high turbulent kinetic energy [16] (Fig. 7). The approach by
Pfaff et al. [16] requires simulating turbulent kinetic energy
evolution along the flow and inserting noise particles
corresponding to turbulence. In contrast, we do not need
an energy evolution simulation to generate turbulence in
the same regions. Moreover, Fig. 15 shows a clear perdiodic
pattern of turbulence consistent with a von Kármán vortex
street (see Fig. 6), unlike prior work by Pfaff et al. [16].
Additionally, we employ the same example to show more
complex interaction, by adding a sphere which is dragged
up the ramp, producing a consistent wake of turbulence.

Unlike Vortex-in-Cell (VIC) methods, we do not require
an underlying mesh to perform our simulation. Our
simulations are effectively unbounded as they are not

limited to a grid’s bounding box. Since our method does not
interpolate particle data into a grid, we compare our results
in terms of visual features.

Our method extends and improves results obtained
using Lagrangian vortex particles in computer graphics by
Park and Kim [3]. As opposed to their approach, we employ
a stable vortex stretching update that does not force us to
add viscosity, dampening the main flow motion to avoid
numerical instability. Fig. 16 shows the result of simulating
three independent smoke jets colliding, as originally
proposed by Park and Kim [3]. Unlike their results, our
simulation produces freely moving smoke which is not
dampened by adding a high amount of viscosity to avoid
instability due to vortex stretching.

Fig. 17 shows an example of different patterns in
vortex shedding around a sphere, changing the slip
coefficient, reproducing results previously published [3].
However, with our methods we can also realistically
simulate the sphere motion induced by the flow through
our force computation model, unlike any other previously
published work in vortex methods for computer graphics
[3], [4], [5].

Table 1 summarizes our performance results. Memory
use by our method is generally negligible (less than 5 MB on
average excluding marker particles). Most computational
cost is due to the velocity field evaluation; hence, perfor-
mance is strongly dependent on the amount of vortices in
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Fig. 12. Interaction between a vortex jet and a bunny model with
characteristic length LC ¼ 0:75, using c

Slip
¼ 0:5 and kernel radius � ¼

0:5 for shed vortices and � ¼ 3:5 for jet vortices.

Fig. 13. Same bunny model from Fig. 12 propelled by two vortex jets
from left to right and then right to left as in [43]. Here, we use c

Slip
¼ 0:3.

Fig. 14. Simulation of rocket exhaust, an example of a vortex jet
interacting with a large planar object. The exhaust radius is 1 and shed
vorticity from the surface has a radius � ¼ 0:5.

Fig. 15. Top: Simulation of uniform flow past a wedge as presented in
[16]. Here, we use c

Slip
¼ 0:5. A periodic pattern of shed vorticity forms

past the solid. The shed vorticity radius is � ¼ 1:0. Middle and bottom:
Same scene with a unit radius sphere with c

Slip
¼ 0:5 dragged by the

flow. The sphere falls due to gravity as it reaches the top of the ramp. A
consistent wake of vorticity is formed past the sphere.



the simulation. A naı̈ve solution would be to reduce the

kernel radii, however, as shown in Fig. 18 this would lead to

a gross visual degradation of results. As the radius

decreases, the magnitude of the influence vortices on each

others also decreases and, therefore, the velocity magnitude

as well. We note that as opposed to previous work on hybrid

simulations [16] where velocity evaluation is performed by

interpolation between particles and the grid, we evaluate the

field directly from particles.
Unlike other particle simulations such as SPH, vortex radii

need to be large, impacting performance. A robust solution to

increased performance would address the complexity of the

underlying N-body problem. Fast multipole methods (FMM)

are a large class of methods that produce controllable

approximations for solving N-body problems. Our techni-

ques can incorporate such a method, and here we outline the

main aspects of such extension. Currently our system does

not implement FMM, and the velocity calculations in our

results were performed without such approximations.
Our velocity evaluation method can achieve a OðnÞ

performance by employing a variant of the black box FMM

(bbFMM) [44]. Here, arbitrary, nonoscillatory kernels such

as the one we employ can be approximated through

interpolation using a truncated series of Chebyshev poly-

nomials, which are used for fast summations on an octree

structure. We describe a variation of the bbFMM [44] for

our scenario in Appendix C, available in the online

supplemental material. A similar approach has been

previously employed [3], producing a OðnlogðnÞÞ algorithm.

Several other strategies for increasing performance may
as well be employed. For instance, velocity computation
can be performed on the GPU instead of CPU [5] to allow
for a higher amount of parallel computations to be
performed. Also, an underlying grid may be implemented
to be used as a cache for flow properties computed directly
from vortex particles.

9 LIMITATIONS AND FUTURE WORK

Our current flow model with two-way solid fluid
coupling is applicable to inviscid flows interacting with
rigid objects whose volume is nonzero. This limits the
applicability of our method to more general scenarios of
simulating fluid interaction with deformable objects, thin
shells, and filaments.

In the case of deformable objects, our methods for
enforcing no-penetration can be applied directly by calculat-
ing the panel influence matrices when the solid deforms,
albeit at a higher computational cost. However, calculating
the solid’s deformation due to the flow requires computing
the fluid pressure at each of the solid’s surface elements.

In the case of thin shells, which are often represented as
an open surface, source panel methods are not an adequate
solution as the velocity that cancels the flow on one side of
the surface, adds up on the other side, which would lead to
simulation artifacts. Hence, the need for a different model
for enforcing no-penetration. In the case of filaments, if they
are defined by a series of connected control points, these
can be easily advected to follow the flow; however, an
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Fig. 18. Smoke simulation using different kernel radius � after 300
iterations. (a): � ¼ 2:5; (b): � ¼ 2:0; (c): � ¼ 1:5; (d): � ¼ 1:0. Smoke’s
emission radius is 1.0.

TABLE 1
Performance Results for 100 Frames of Simulation

We do not include marker particles used for rendering.

Fig. 16. Three smoke jets colliding in a scene mirroring an example from
Park and Kim [3].

Fig. 17. Flow around a unit radius sphere: (a) using (c
Slip
¼ 0); (b) using

c
Slip
¼ 1 and finally, (c) sphere dragged by the flow. Vortex kernel radii

are � ¼ 1 for shed vortices and � ¼ 3:5 for jet vortices.



adequate shedding method should be devised to model a
slip condition.

There are also a number of useful directions for further
research. One of them is the application of our methods to
viscous flows. Here, the assumption that surface vorticity
degenerates into a vortex sheet is no longer valid [40].
Surface vorticity must then be found by explicitly solving
a Poisson equation on the solid surface [45]. Also,
extending the interaction of vorticity to general surfaces
would enable the application of our methods to simulate
free-surface flows.

10 CONCLUSIONS

Our method introduces a novel approach to model the
interplay between solids and fluids using Lagrangian
vortex methods. We introduce a novel technique to stably
solve the vortex stretching term in the vorticity transport
equation, which produces improved results compared to
previously published simulations using Lagrangian vortex
particle methods.

We introduce a novel method to computer graphics for
enforcing no-penetration boundary conditions on rigid
solids by solving a boundary integral problem imposing
conditions only on the normal components of the flow. We
model the boundary layer evolution through shedding
vorticity at solid surfaces and advecting this vorticity in the
flow obtaining physically consistent results. Together this
enables the visually plausible simulation of turbulent flows.

We compute the pressure distribution on the solid
surface from the vorticity flux enabling us to calculate the
pressure force exerted by the fluid on the solid. This permits
two-way coupling of multiple solids with the fluid
enforcing the appropriate boundary conditions.
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