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ABSTRACT

We introduce novel approaches of intuitive and easy-to-use realistic fire animation, starting from real-life fire by image-
based techniques and statistical analysis. The results can be utilized as a pre-rendered sequence of images in video games,
motion graphics, and cinematic visual effects. Instead of physics-based simulation, we employ an example-based principal
component analysis and introduce “EigenFires.” We visualize the main features of various fire samples to analyze their
tracks and synthesize a new fire by combining various fire samples, recorded with high frame rates, in order to edit given
sequences of fire animations. For this purpose, we present how to recognize similarity of the shapes of fire in order to
change the pattern from one style of fire to another distinct style of fire procedurally. Our techniques require very little
parameter tuning, compared with conventional physically based fire synthesis, video textures, and dynamic textures. A
similar level of visually pleasing compressed fire is also easily produced by using principal component analysis techniques.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fire, explosion, and smoke have been deployed in movies
and motion picture industry, videos games, and TV commer-
cials for more than two decades. Every year, a new approach
has been introduced to replace such phenomena with
computer-generated simulations. However, fluid is one of
the most difficult examples of digital simulations. Expenses
of processing and rendering fluid simulations, and difficulty
of producing realistic simulation by nonexpert animators are
possible reasons. Here, our approach provides a practical
alternative, in which the results are reflecting the realism as
generated from real videos of fire, but it still allows animators
to control the fire. Our results can also be extended to 3D.
Our research, as a video-based procedural technique, is more
realistic looking in comparison with existing procedural
approaches and is easier to control and faster in comparison
with physical-based approaches.

Our fire dataset is composed of small-scale fire,
recorded with a professional high-definition (HD) video
camera at frame rates of 60 fps. After transforming our
training fire dataset into “EigenFires,” which is a way to
represent distinguishable and meaningful features of vari-
ous fire samples, we visualize a pattern of fire temporal
Copyright © 2013 John Wiley & Sons, Ltd.
movement in 3D principal component analysis (PCA)
subspace. In addition, we also perform similarity analysis
in PCA subspace to generate new procedural motions that
do not necessarily exist in the input videos. Anyone is
capable of building a new database of EigenFires with their
own camera and videos, or loading one from our
preprocessed library.

For this purpose, we introduce newmethods of transitions
and loops. Unlike video texture [1] that intends to fool the
eyes for turbulent phenomena with a small number of similar
frames in a single video sample, we put our effort on gener-
ating more frames stochastically as our motion transitions
(e.g., 26 frames) from various fire samples. A mixture of
various fire samples can also be synthesized using the
main EigenFires, in more intuitive and interactive ways
in comparison with dynamic textures [2,3].
2. RELATED WORK

2.1. Video-based Approaches

In video texture [1], a video is analyzed using L2 distances,
and on the basis of identification of good transition points,
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a new one is synthesized. It is performed by inserting
and connecting transition stochastically through a small
number of frames, morphing, and blending. In a different
strategy, we perform analysis and morphing techniques
all in PCA subspace, and our aim is creating a new fire
animation by stochastically inserting larger similar frames
from various fire samples of high frame rates as our motion
transitions. It means each generated motion transition is a
short new procedural animation of fire by itself, without
repeating the regular parts of a video.

Graph cuts algorithm [4] is an approach that can
enhance transitions of video texture for turbulent scenes
using two 3D spatio-temporal texture patches from optimal
steams, instead of regular blending. However, their aim is
to synthesize additional textures suitable for transitions,
whereas our main objective is selecting similar frames
from a rich fire database of various styles. Flow-based
video synthesis [5] is also a way of synthesizing long
videos of natural phenomena, by tacking and merging
texture patches along desired lines.

Dynamic textures are presented by Doretto et al. [2] as a
noise-driven linear dynamic system to synthesize a new
series of frames from the original video. This idea is
extended in Doretto and Soatto [3] by interactively modifying
the temporal statistics of a video-based model of a dynamic
texture to change the speed or intensity of the driving noise.
Subsequently, Yuan et al. [6] propose a closed-loop linear
dynamic system with hidden state vectors to synthesize an
image. A work from Masiero and Chiuso [7] also deals with
texture synthesis using nonlinear dynamical models and
compares it with previous linear methods.

In our research, we present another way of synthesizing
fire using EigenFires that can enhance the capabilities of
dynamic textures and can be used for transitions. By
considering a training set as grayscale images of various
fire sequences, we can also avoid color artifacts that
usually appear in synthesized images of dynamic textures
because of using fewer dimensions of colorful datasets.

For fire recognition literature, an image-based technique
is presented by Li et al. [8] for burning states recognition
of poor-quality flame images from rotary kiln. Although
they examine the status of low-quality flame images, the
data are very limited, and visualization and analysis are
not performed as we carry out. Another fire recognition
algorithm is proposed by Hongliag et al. [9] using multi-
features fusion algorithm.

2.2. Particle-based Approaches

Particle-based methods have been very popular and used in
References [10–13] to simulate flames, which would give
the user easy control over parameters such as external forces.
Chiba et al. [14] employed a basic 2D particle system using a
vortex field. Spherical billboard rendering [15], texture splats
[16], and particle-based volume rendering [17] are examples
of fire that are modeled or rendered by particle systems.
However, a particle-based system may not always result in
a visually appealing fire, unless it is combined with other
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physical and combustion methods [18,19]. In contrast, our
research delivers high-quality results almost the same as
captured videos, in exchange of losing some flexibility in
comparison with particle-based methods.
2.3. Physically based Approaches

Despite the fact that physically based approaches [20–22]
require significant amount of time to be processed, they
mostly produce high-quality visualization of fire if the
correct parameters are set. Nguyen et al. [23] use a semi-
Lagrangian stable fluids approach to model both fire and
smoke. A stochastic Lagrangian approach and a chemical
composition evolution model are used by Adabala and
Hughes [24]. A combination of fluid and combustion
models was discussed by Min and Metaxas [25], and
Pegoraro and Parker [26] employed a detailed simulation
of the radiative emission and refractive transfer to achieve
realistic renderings of fire. Simulation of gaseous
phenomena in turbulent wind fields was depicted in [27]
using a clustering algorithm, and the gas was modeled
as a fuzzy blobby.

In our approach, defining external forces to control the
fire is notably different. The idea is to record various
real-life fire videos for a few minutes with many motions
(e.g., wind effect). Later, the animator may mark and label
corresponding ranges and connect them. The drawback is
that animators might not be able to produce a desired
motion if the recorded fire animations are very limited.
However, a strong advantage of our nonphysical-based
approach is that it supports basic users with no knowledge
of dynamic fluids.
2.4. Procedural Approaches

Current procedural approaches tend more to imitate the
characteristics of real flames by utilizing procedural noises
and offsetting methods to incorporate turbulence into the
fluid. Fuller et al. [28] take advantage of an improved
Perlin noise and M-Noise on GPU, and then combine it
with an interesting curve-based volumetric free-form
deformation to create fire procedurally in real time.
Although it produces a good looking fire, the animations
are not close to natural fire, as it is a system solely based
on random noises.

Lamorlette and Foster [29] propose a technique that
flame profile is created from a set of points as spine of
the flame, based on the observed statistical properties of
real fire. The complexity of working with such a system
is the main drawback here.

A model of fire is represented in [30] that can spread
over the meshes using a skeleton technique that forms
the flame. This approach is also utilizing noise func-
tions or user-defined parameters for air velocity field
to animate the skeletons of the flames, which actually
reduces the realism.
. Anim. Virtual Worlds 2013; 24:225–235 © 2013 John Wiley & Sons, Ltd.
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3. CAPTURING AND
PREPROCESSING

For this research, we picked a variety of materials as our
fuel and ignited them in an isolated space, in absolute
darkness in front of a black background, and recorded
videos in HD format at 60 fps. Real-life fire capturing
has been limited in terms of shape and size variety
because of the safety regulation. Our database is com-
posed of three fire samples. We name those samples
respectively as fires A (a torch with lighter fuel,
500 frames), B (a pack of three solid fuel cubes, 1000
frames), and C (a single burning cube, 697 frames). Figure 1
shows one frame of the selected three real-life flames, 2197
images in total.
4. EIGENFIRES

Whereas the position of the cameras is fixed, we have
three videos of fire with different heights and widths,
created by different fuels. Therefore, we reposition and
align them at the center of the fuel. After removing the
background, principal components, which are represented
as EigenFires, are calculated for 2197 frames of our three
fire samples based on algorithms described in [31,32].
The images are cropped to 410� 670 resolutions to avoid
unnecessary calculations for the black background.
Considering N as a dimension of eigenvectors, each
image is dealt with as a single data point in N = 274 700
dimensional space.

4.1. Contribution of EigenFires Using
Weights

By projecting our fire images into its EigenFire, a vector
of weights is constructed. Each weight represents the
Figure 1. Our raw recorded video samples. (A) A torch
soaked in lighter fuel, (B) a pack of three solid fuel cubes,

and (C) a burning cube.

Comp. Anim. Virtual Worlds 2013; 24:225–235 © 2013 John Wiley & Sons, Ltd
DOI: 10.1002/cav
contribution of its EigenFire to form a fire. By assigning
a negative or positive value for weights, we may recon-
struct a new fire that can be a combination of three fire
samples. The definition of weight (w) and projection is
subtracting an image I with the average of images and then
multiplying it with its EigenFire:

w ¼ EigenFireT I � IAverage
� �

The weights are numbers in a range of [�15000, +15000]
for our samples. This range changes on the basis of the train-
ing set of images. Some of the EigenFires are showed
in Figure 2.

For a better understanding, assume a blank image as I.
The influence of a negative value for a specific weight is
similar to filling image I with a mask using dark pixels of
corresponding EigenFire visible in Figure 2. Similarly, a
positive value fills image I using lighter pixels of that
EigenFire. The gray regions remain almost unchanged,
such as the background.

To elucidate the pattern between data points in PCA
subspace, the data points of the first three principal
components are visualized in 3D subspace in Figure 3.
This figure shows that the data points related to each
video of fires A, fire B, and fire C are distributed apart
from each other. The center of the coordinates system is
a vector of weights with zero values that produces an
average image. The main characteristics of these fire
examples produce a spiral motion, which corresponds to
our observation in real life where a fire shrinks and
expands repeatedly. This 3D subspace visualization is a
very good tool to observe the temporal movement of a
fire, and this pattern analysis will help natural fire
synthesis. The previous work such as video and dynamic
texture [2,1] do not have capacity in this direction.
5. FIRE MODELING WITH
EIGENFIRES

In this section, we describe various applications of new
fire modeling using existing fire examples. Assume an
artist chooses two ranges of frames from any of three fire
samples; for instance, he/she chooses T1 = [800–880]
(from fire B) and T2 = [2000–2050] (from fire C) and
plans to connect these separated animations of fire
together (T1 + T2). Because the last frame of T1 belongs
to fire B and the first frame of T2 belongs to fire C, then
a simple attachment of two frames faces a sudden jump
in transition from T1 to T2. How can we construct new
frames to fill this gap? There are also other possible
scenarios. What if the artist is interested in creating a
loop of animation for T1? Or sequence of animations for
“T1 + T2 + T2 + T1.” The following two sections describe
our methods for T1 + T2 scenario.
227.



Figure 2. Principal components of numbers 1 to 9, 150, 1000, and 2196 are viewed as EigenFires.
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5.1. Motion Transition with Low-pass Filter

This technique can be considered as rapid and easy to
implement solution for blending/morphing in video
textures, which is practical for chaotic phenomena. In this
approach, the procedure to transit from one fire to another
fire is averaging the weights corresponding to a few
frames around the end of T1 and the beginning of T2.
At first, it is required to build a new vector that is
composed of vectors of weights for the images of T1
and T2, respectively. 1D low-pass filter with a kernel of
K = [1/3, 1/3, 1/3] can be applied on this vector to obtain
228 Comp
the average of weights for each dimension. Now, we may
reconstruct new images with this new vector of weights.
Because the length of kernel was 3, the last two images
of T1 and the first two images of T2 can be picked and
inserted as our transition between T1 and T2. Because
the first several EigenFires represent low-frequency infor-
mation of fire, we only utilized the first 50 EigenFires in
the process of averaging, which are only 0.02% of the
total number of principal components. Thus, artifacts are
avoided that usually appear as sharp layers of target
images. The result is a morphing between our target
images for two distinct shapes of flames.
. Anim. Virtual Worlds 2013; 24:225–235 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



Figure 3. All images projected in 3D principal component analy-
sis (PCA) subspace, illustrated as a series of weights for the first
three EigenFires (red, green, and blue axes, respectively). Points
are labeled with their relative fire name. The connected lines
show the relation of consecutive frames of fire that allows us

to track the changes over time in 3D PCA subspace.
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Other kernels such as K = [1/5, 1/5, 3/5] may also be
chosen for the end part of T1 and then flipping it for the
beginning of T2 to create a different deformation by giving
more weights to our target images. Figure 4 shows three
reconstructed frames to fill the gap between T1 and T2.
To include fine details, we may copy a few weights
randomly from our target images to this average vector,
similar to the behavior of dynamic textures. User’s control
on weights, as a way of synthesizing fire, can also deform
and improve the outputs of this technique.
Figure 5. Three different frames from our fire videos that are
recognized similar to each other by finding the shortest
Euclidean distances in principal component analysis space. By
calculating thresholds for our fire videos, we can avoid slow
motions or fast forwards in animations and still generate larger

motion transitions.
5.2. Motion Transition with Recognition

In this section, we suggest a few methods based on identi-
fication of similarities to model fire. The approach is filling
the gap between our T1 and T2 by choosing almost similar
images to finalize our transition. Let the last frame of T1 be
Figure 4. Low-pass filter approach. (left) Last frame of T1 and (right) fi
50 EigenFires that appear as morphing. A synthesize

Comp. Anim. Virtual Worlds 2013; 24:225–235 © 2013 John Wiley & Sons, Ltd
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image a and the first frame of T2 be image b. Thus, aj and
bj describe the jth similar images to initial images a and b.
The purpose is acquiring one frame in each step that is not
exactly the same but can be selected as our next frame.
Because finding very similar shapes produces unrealistic
animations and might be displayed as slow motion, defin-
ing a minimum threshold θmin is necessary (Figure 5). In
our transition methods, we only set a single θmin for each
transition based on the fire samples that are going to be
combined and how much changes we permit to occur.

We propose two techniques of recognition, “Direct
Bridging” and “End Growing Connection.” In both cases,
the animator chooses a specific number of steps, N, in
order to find at most N numbers of similar images to be
inserted between T1 and T2.
5.2.1. Direct Bridging Method
In Direct Bridging Method, firstly images of our fire

videos are transformed into EigenFire space if they are not
already included in the database. Next, on the basis of the
value of steps, the multidimensional line between two corre-
sponding points of images a and b in EigenFire space is
divided equally by N. In other words, we insert N virtual
new data points by dividing values of weights for E
rst frame of T2 (middle images) two reconstructed images using
d color and bloom effect is applied to all images.
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dimensions. Reconstructing images with these new data
points, which are N new vectors of weights, produce
unpleasant layers of flames. Therefore, the solution is finding
the closest existing data point to each ofN points in each step
by minimizing the Euclidean distance between them.

The advantages of this method are the high speed of
identifications and the flexibility to define the exact
number of steps for transitions. The disadvantage here is
the possibility of recognizing images that are closest in
distance for one step but are not close enough to the
identified frame of previous step. This might reduce
smoothness of motions without human verification if a
large N is chosen for steps. The second row of Figure 6
Figure 6. (Top) The concept of our recognition techniques,
visualized in 2D. We connect a and b through finding a few close
data points in EigenFire space to obtain a smooth transition.
(middle) In Direct Bridging method for N=2 steps, we first insert
two temporary data points (in blue) between a and b, and then
look for the nearest points to each of them. (bottom) End
Growing Connection Method for maximum N=20 steps, the
blue dotted line is our path using the algorithm of Table I, and

it stops in three steps by finding a shared image.

Figure 7. An example of Direct Bridging method to connect T1 and T
(right) image b, and (middle) three images that are found similar by

extracting colors from original videos, an
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shows the concept of this method. A decent example of
this technique is presented in Figure 7 that allows anima-
tors to quickly build loops for animations by finding a
certain number of similar images.

5.2.2. End Growing Connection Method
In End Growing Connection method, the animator

chooses a large N as the maximum possible number of
steps and then looks for a pattern that gradually connects
image a to b through finding similar images in between,
which are stored as aj and bj. The algorithm stops after
reaching a point nearest to both aj and bj. In other words,
we are building a path that can connect maximum N data
points in E dimensions. Remember that each data point is
representing one image in PCA subspace. Reconstructing
images of this path should generate a short animation to
connect T1 and T2 animations. In our approach, we try to
detect maximum N/2 similar images for a and N/2 for b
until we meet one of the following possibilities:

(1) A shared image, similar to both a and b, is found:
aj =bk.

(2) No shared image is detected, but the distance
between aj and bj is small and less than θmin.

(3) All identified images are bigger than θmin after
N steps.

In the first two cases, the proper path or pattern
is constructed, and the algorithm stops successfully. In
the last case, we should choose a larger step or employ
the previous Direct Bridging method or morphing with
low-lass filter.

Table I summarizes a simple algorithm to find a path
that is constructed of short distances less than the differ-
ence between a and b, and above our threshold. In each
step, we aim for a new image even nearer to the other side,
in which the other side is a or b. The path is also optimized
by removing some images from aj and bk lists at the end, if
we encounter dramatic changes of distances. The third row
of Figure 6 illustrates the concept of this method.

This algorithm yields very smooth transitions, partic-
ularly for one style of fire. The drawbacks are the
unknown numbers of steps and failure for very distinct
2 animations to simulate a loop of our animations. (left) Image a,
θmin = 50 in N=3 steps. Reconstructed images are colorized by
d finally, a bloom effect is applied.

. Anim. Virtual Worlds 2013; 24:225–235 © 2013 John Wiley & Sons, Ltd.
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Table I. An algorithm for End Growing Connection method to find an optimized short path suitable for procedural fire animation.
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flames with a small dataset. Simulation of an external
force (wind) is illustrated in Figure 8 using the End
Growing Connection method. Figure 9 shows the inter-
esting results of generating a new fire animation that is
not recorded by cameras. Note that we only set a single
θmin for each transition to keep the amount of changes
stable for the entire steps.

In both of the recognition methods, an image is also
rejected if it is already identified in previous steps or if it
is one of the last few frames of the video before a and after
b. This way, we avoid deadlocks or moving backward
Figure 8. An example of End Growing Connection method to sim
restricted to fire C only. The end of T1 is a flame with a straight sha

For θmin = 1500, the algorith

Comp. Anim. Virtual Worlds 2013; 24:225–235 © 2013 John Wiley & Sons, Ltd
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along the same pattern, and we are still following a proce-
dural approach that does not repeat parts of the video by
means of higher frame rates, as we find larger number of
images for transitions, different from video textures.

5.3. Fire Synthesis with EigenFires and
Weights

Considering the fact that motion transition with low-pass
filter might not always lead to the expected result, manual
weight adjustment can produce additional details that an
ulate an external force (wind). Recognition of similar flames is
pe (left), and the beginning of T2 is a flame with a slope (right).
m stops after 19 steps.

231.



Figure 9. An example of End Growing Connection method to simulate starting a fire. T1 is only a single frame from fire A, which is also
our image a (left), and T2 is a regular animation of flame from fire C, and b is the first frame of T2 (right). This example demonstrates
that with some creativity, animators can produce new animations, which are not yet recorded. For θmin = 400, the algorithm stops after

14 steps.
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animator is looking for. After projecting a specific image
into a PCA subspace, the weights of certain EigenFires
can be modified easily via user interface, and new fire is
displayed in real time. Because our first 50 EigenFires
carry major features of flames, it is not even very tricky
to start from scratch. We first assign zero values to weights
of all dimensions and then allocate new values by taking a
look at the generated EigenFires of database. Figure 10
illustrates an example with a manipulation of only eight
EigenFires (0.003% of the full dimensions!).

Assigning small weights to any EigenFire larger than
50 generates some fine details, having similar effect to
applying procedural noises. The drawback of manual
weight adjustment is the difficulty of creating realistic
animations. As a result, we suggest combining this method
with previously discussed motion transitions to follow the
patterns of real flames, similar to dynamic textures but
modifying the fire more intuitively using the main features
of visualized EigenFires.
6. RESULTS

We ran our experiments on a system with Intel Core
i7-2600 k 3.4-GHz CPU and 8GB of memory. We
developed our application with C++ language and cross-
platform Qt framework for user interface. OpenGL 3.3 is
also employed for 3D visualizations, and our 64-bit imple-
mentation allows users to process very large video files.
Figure 10. (A) The average image; different weights deforms this
for global shape. (C) Assigning more weights to EigenFires of 50, 8

synthetic co
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For 2197 fire images of 410� 670 pixels, it takes around
1 hour to calculate all the stages of generating EigenFires
including loading data, preprocessing, and PCA calculations.
More precisely, PCA calculation takes about 45minutes, and
projecting all training images into PCA subspace takes
around 20minutes. However, these calculations need to be
performed only once to prepare the initial database. The
PCA calculation depends on data size greatly. For example,
the PCA steps take only 12minutes for a dataset of 1000
images. Except initial PCA calculations and database
preparation, all other techniques are spontaneous, meaning
they run at real-time interactive rate.

The optimized number of E = 1100 EigenFires (50%)
can be considered for both high-quality reconstructions
and proper detections. A smaller number, around E= 700
EigenFires, is also sufficient if the purpose is only
reconstruction rather than recognition, because the images
only lose some noises inside the boundaries of the flames.
Figure 11 illustrates this procedure. Note that we may set
two parameters as E: one for accuracy of recognition and
another one for quality of reconstruction. Table II shows
a summary of the performance, excluding reconstruction
times because what we usually need is a list of frames as
our transitions. In the last three figures of this paper, our
recognition steps are performed with 1100 EigenFires. As
it is obvious from the table, we might recognize one or a
few more similar images by using fewer numbers of
EigenFires, due to the slight change in accuracy.

There are a few limitations in our system. Although End
Growing Connection method performs better than our other
shape. (B) Weights assigned to EigenFires of 2, 3, 5, 6, and 7
0, and 500 for distortions and some details. (D) The result with
loring.

. Anim. Virtual Worlds 2013; 24:225–235 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



Figure 11. Reconstruction of fire samples with different numbers of EigenFires, as written below each column.

Table II. Performance statistics.

Technique Fire EigenFires
Total time

(milliseconds) Steps
Time per step
(milliseconds)

DirectBridging(Figure 7) A, B, C 2196 101 3 34
1100 65 3 22

End Growing
Connection (Figure 8)

C 2196 169 18 9
1100 104 19 5

End Growing
Connection (Figure 9)

A, B, C 2196 416 13 32
1100 294 14 21
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motion transitions for various fire samples, it might fail to
find the best shared image if the chosen dataset is small or
includes limited motions. The initial calculation time of
PCA might also be high for very large lengths of HD videos.
However, it can be significantly reduced by resizing the
training images and then referring to the corresponding
frames of the original HD video for the final animation.

The color of fire can also be extracted from original
images using reconstructed images as our masks, or it
can be generated synthetically by creating an image in
HLS color space (color components of hue, lightness and
saturation) with the luminance of our gray images and
the hue and saturation of another colorful image (e.g., solid
orange). To produce a basic glow effect, the trick is dupli-
cating our tinted fire image, applying several passes of
Gaussian smoothing with a large radius, and finally blend-
ing that blurred image with our colorized image.
Figure 12. Integration of our outputs into Autodesk 3D Studio
Max using camera-facing billboards.
7. DISCUSSION FOR 3D EXTENSION

Image-based techniques can be employed to reconstruct
3D fire by utilizing our current 2D fire modeling results.
Hasinoff and Kutulakos [33][34] present flame sheets and
233Comp. Anim. Virtual Worlds 2013; 24:225–235 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav
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density sheet decomposition for reconstruction of semi-
transparent scenes and flames, using interpolating views,
applicable to our final results. A sparse view tomographic
approach may also be applied for reconstructing a
volumetric model from multiple images by placing more
cameras around the fire [35]. Therefore, one view or a
maximum of two views can be used for the recognition
step to generate new frames between two handpicked
motions. Krüger and Westermann [17] perform physics-
based 2D simulation for two slices and extrude it to 3D,
using particles and textures. The difference is that our 2D
simulation is a procedural approach of two camera views.
Figure 12 shows our results in 3D using classical camera-
facing billboards.
8. CONCLUSIONS AND FUTURE
WORK

We explored fire behavior using PCA and introduced new
transition approaches of modeling fire from a combination
of fire samples by looking for similar shapes of flames and
expanding the pattern of fire. This proposed method
provides an intuitive fire modeling system where a naive
user can easily design fire animation with a story in mind
without knowing any physical parameters.

Our methods can be considered as an extension of the
capabilities of both video and dynamic textures focusing
on fire animation. However, our PCA approach, different
from existing methods, is capable of visualizing 3D
subspace points to understand how different fires behave,
and the tracking of points in PCA space provides great
potential for further fire analysis and modeling. Figure 3
shows different spiral patterns for each fire A, B, and C,
which reveals the great potential to build synthetic but very
natural fire movement. By decreasing the PCA dimension
and synthetic coloring, we can compress the fire database
up to 78% of the entire size by choosing only the most
important EigenFires.

Future work aims to increase the database to cover the
variety of fires, including large-scale fire, and to improve
the user interface to be more intuitive in a touch-based
environment. Accordingly, more accurate results can be
obtained from high-speed cameras in full HD that provide
frame rates of around 300 fps.
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