Rapid 3D tube reconstruction from nearby views
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Abstract We reconstruct a 3D tube (catheter or artery) from nearby X-ray views. Con-
struct 2D skeleton curves from the image edge profiles by wave propagation, thin and smooth
them, then reconstruct a 3D curve by epipolar correspondence, resolving side-point singularities
by differential-geometric models. The resulting curve is highly accurate on data from a simu-
lated catheter, whose ‘true’ 3D curve is known. Finding it from edges takes less than a second,
sufficient for ‘on the spot’ reconstruction, and uses only the moving views normally created by
the angiographer, rather than constrained and costly arrangements such as biplanar cameras.

1 Introduction

In angiography the full 180° range of views that would allow a CT reconstruction is
problematic for reasons of time; the bolus of contrast agent that shows the arterial net
moves and changes too much to sustain the inverse Radon hypothesis that the input images
are projections of the same 3D opacity density. Human vision reconstructs 3D structures
well, using a more readily available view that rolls briefly over a small range of angles.

Most 3D reconstruction schemes from 2D projections constrain the projection angles;
we use the angle information from arbitrary nearby projections. Each time the radiologist
rolls the point of view with the X-ray live, produces a narrow range of closely-spaced views,
which our scheme can use. (Images are stamped with camera positions as a standard
feature of the new C-Arm technology. Alternatively, include a reference X-opaque object
from which the camera position can be deduced as in, e.g., [Chang92].)

Absent lines, perspective and shading, 3D reconstruction must use views from multiple
(relative) camera positions. Nguyen and Sklansky|[Nguyen94| reconstructed arteries using
a single-viewpoint sequence of images of the moving heart, constructing a successive-
frame correspondence using a similarity measure based on angular changes along a fourth
or fifth order polynomial-fit curve. More commonly, the camera moves or is doubled.
Biplane angiography provides two views (usually orthogonal), and can be used to compute
the 3D structure. However, its correspondence problem is hard (even for interacting
humans, who solve it well for the small-eye-angle differences we are wired for), and has
resisted automatic solution. Many systems solve it manually by identifying corresponding
landmarks[Kitamura88] or by user input[Parker87]. Some require that the projections
of an elliptical cross subsection fall on the same row in each projected image[Fessler91],
constraining the movement of the camera. Wahle et al.[Wahle95] require the user to select
striking points.

We simplify correspondence by using nearby views. Known correspondences can be
triangulated more precisely with orthogonal views, but the small angle approach gains
more from the similarity of neighboring ones, and from the possibility of longer-sequence
refinement using a single-view camera with negligible time gap. A fully automated epipolar
line correspondence allows the camera arbitrary movement.

This can be applied for many kinds of object, but here we address the case where one
expects to see a simple tubular structure (notably a catheter). We reconstruct its 3D
skeleton, with diameter estimates, from 2D profiles of views 2° apart, a typical spacing
with the C-Arm. From edges extracted from two images, we use the distance waves
to construct 2D tube-image center curves where tubularity is plausible, getting radius
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Figure 1: A catheter image (left), with distance curves after four wave advances (middle)
and two lines of the resulting 7(z) values (right). These have value 1 on edge points and
increase away from them up to distance 4, beyond which they are 0. The upper slice has
two sharp crest points, with value 3, and the lower has one flat crest point with value 2.

data as a by-product. After connecting these into splines, we use epipolar reconstruction
techniques to construct a 3D curve. Several rapid steps with lowpass and median filters
remove singularities and smooth the curves.

The reconstruction scheme was developed on synthetic catheter images from the daVinci
simulation project[daVinci96].

2 Spline-based smooth skeleton detection of a tube

2.1 Previous work

Much research has been done in tube edge detection, mainly of arteries, with excellent
results[Brien94, Kutka96, Sun95, Sunka95]|. Sun et al.[Sun95] obtained impressive results
for a catheter image within the heart by line improvement. O’Brien et al.[Brien94] seg-
mented vessels well by outward search from an initial point on the vessel structure, seeking
a ‘slightly darker’ elongated region occupying less than a certain fraction of a moving square
window, with ‘slow’ changes in pixel densities and (away from bifurcations and crossings)
in width. The best choice of filtering and segmentation depends strongly on the data.
Our aim here is efficient reconstruction, once we have a clear enough image to apply (for
instance) the Sobel operator to get a good set of edge points.

2.2 Skeletonizing thin tubes

A thin-tube image has two very close edge curves, as sets of edge pixels, after edge detec-
tion. Rather than reconstruct these as, say, splines, we replace them by a single centre
curve: a more useful identifier for the tube’s location, and more robust against pixel level
error. We build a distance-from-edge function by propagation between neigbouring pixels.

Large structures are best treated, as in [Mikheev94|, by a mask that marks points as
‘front” or ‘passed since last step’ (using a discrete circle and disc), but for tubes a few
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pixels wide we create a simple 3x3 mask w; = | ++1 41 1 | at each time step ¢, and
0 41 0

use it to propagate the wave. We initialize the wave’s ‘time of arrival’ 7(z) to 1 for edge
points, 0 elsewhere. To carry the wave N steps, initialize ¢ = 1, and repeat N times
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Figure 2: A pixel z is a crest point if it oc-
curs as a black square in one of these pat-
terns, with 7 equal to the 7 at any black
neighbour, greater than or equal to 7 at
every dark grey pixel, and strictly greater

than at every light grey one. Ignore 7 at
white points, and relations between 7 at
non-black points. (a) Two kinds of flat
ridge (crest points). We select the middle
point of two black points as a point in the
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Figure 3: Edge points (grey) and crest
points (white), against 7 values shown by
black for low 7, white for high. Scheme 2
selects the tip of the image at upper left
and a curve in the lump at right, though
they are not part of the desired skeleton.
The graph shows 7 values along the ridge
above it, with the rapid drop-off typical of
such lump cores, by which they can be de-
tected and removed. With scheme 1, this

kind of local self-collision rarely occurs.

skeleton. (b) Two kinds of sharp ridge.

construct w;
list the points with 7 =¢ + 1. For each point [i] [j] of these
for all [x] [y] with |z —¢|<1land |y —j| <1
rlx+ 1]ly + 3] — pseudomin(rfx + 1y + 31, we[4][3])
increment ¢

where the pseudomin() function takes the smallest strictly positive value of a pair.

This algorithm assigns ‘remoteness from edge’ values 7 at every point reached, with
ridge crests along the skeleton of the thin-tube image. The crest 7 values are lower where
the tube is thinner, so we must detect them by ‘crestness’ rather than by a fixed value.
Uncrested wavefront points with 7 = N are detectable by having neighbours with 7 = 0;
crest points as in Fig. 2.

We discard any point if at least one of its eight neighbours has 7 = 0, since this is an
uncollided wavefront point, and any point with value 1, since it is an edge point. Next
we check whether points are ridge-like (Fig.1) in the z or y direction. There are two
possible schemes (Fig. 2). Scheme 1 selects fewer points than scheme 2, but is much safer
for local self collision (Fig.3). As skeleton points we choose any sharp ridge point, and the
midpoint of points flat in one or both directions. We retain these points’ 7 values, which
are distances from the nearest edge points, and hence tube radii; a useful byproduct of
skeleton construction.

Next, choose a minimal separation Gap. Iteratively from a seed point, select crest
points with least pixel distance > Gap from previous selections, to thin the skeleton,
separating points and reducing their number. With Gap = 1, we can reduce the number
of points by almost half.
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Figure 4: The seed point Figure 5: Left: point list (black) after reconnecting and
(biggest black dot) in list applying a length 7 low pass filter, against the edge data
building is not usually an (grey) to show its fit as a middle curve. With 237 points
end point of the piece in these steps took < 0.004sec. on a Sun SparcStation20.
the image. The median and Right: edge spline (black) found more slowly by a snake
smallest dots are the third method from the same points, against the edge.

and fifth points.

The resulting set must then be organized as a chain. We use a ‘cut’ criterion of points

being more than aGap apart, where « is typically around 4, and a ‘reconnect’ criterion of
being within 8Gap, with a similar value for §.
1.

2.

Choose a seed point.

Make a linked list {p;}i=1..; by iteratively choosing the nearest point, saving the
squared distance d? between p; and p;,1.

. Cut into sublists wherever d? > a® Gap®. (By the thinning process, the distance to

the visually natural next point is typically just above Gap.)
Discard very short linked lists of points (< 4, say), which typically arise from noise.

Examine sublist ends. Cut and discard if 7 rises sharply from the end, since this is
not a tube-centre curve but a local self-collision of the wave, arising from a curvature
maximum on the curve of edge points (Fig.3). On a narrow, smooth object like a
catheter, discarding such side branches restricts attention to the collisions of waves
from opposite sides, and hence to a plausible center curve.

Reconnect nearest sublist ends less than 82 Gap? apart; usually this rejoins a break
at the seed point. Other joins occur where the initial list building exhausted one
component and jumped to the nearest point on another (Fig.4).

2.3 Smoothing to reduce pixel level error

We assume a 2D profile to be smooth. Edge detection by pixel methods followed by

linking into contours suffers from upward error propagation, with results not smooth at

pixel level. Much work has used snake methods[Kass88] to get smooth edges, for instance

using energy minimization methods to converge to a high edge-intensity path with low
elastic bending energy[Lawton94]. This long computation with a lot of derivatives, and

expensive integration over wide areas beyond the edges, is impractical for rapid results.

Snake methods catch a low-spatial-frequency image which expresses overall shape,

rather than high frequencies which show detail and pixel level error. Our crest point



Figure 6: The planes C of the camera Figure 7: Three cases for different move-

screen, and P of the triangle V;V2q, meet ments of view position V. The left one
in the epipolar line [, in a V-fixed reference shows V parallel to the screen, the middle
frame. The line of movement of V' in di- and right ones show motion towards it and
rection V = dV/dt meets C in a point K, away. The three lines on each screen are
independent of P and gq. epipolar for the three cases.

set corresponds very well to the skeleton at pixel level, so a low pass filter suffices to
smooth it fast to a low-frequency image. For example, the diagonal of a 400x 300 image
thins with Gap = 1 to about 400 points, a small set for filtering. The best choices of
filter length and interpolation for smoothing is strongly related to Gap. For large Gap
we connect with higher order splines, such as cubics: with Gap = 1, it suffices to use
line segments (a spline of degree 1). Fig.5 compares the result with an edge found using
snakes.

Collecting skeleton points as in Section 2.2 also yields data for the tube radii. We
smooth both skeleton points and radii, which (for a catheter) should also be smooth.

3 Smooth depth finding

When a camera moves, the image changes more for nearby features than far parts. From
this we can compute distances. Human stereo depth perception, best with two views about
6° apart, is a special case, but any pair of viewpoints with non-zero separation suffice.

Several authors[Giblin87, Poston91] have approached theoretically the finding of 3D
data from profile data. We follow here the notation of [Poston91] that treated singularities
in surface reconstruction from profiles; similar issues arise in reconstructing curves.

A 3D curve S, or the outline of a viewed 3D surface (Fig. 6), projects to a 2D curve on
a 2D camera screen. To triangulate for depth, we must identify corresponding points. We
use epipolar line correspondence, with unrestricted camera motion; say, from V; to V5.

We have a finite, reasonably uniformly distributed set ¥; of points on the first image
curve. For each q € ¥; we find a corresponding point ¢’ on the second curve, from whose
direction we can triangulate in the plane P containing the line V;V; and the unit vector qy
from V; to q. (Since ¢’ is typically not one of the listed nodes ¥ of the second curve, we
must interpolate using the spline structure.) The corresponding point ¢’ is the intersection
of this plane and the second projected curve. The lines V3¢ and Vi ¢’, being coplanar, meet
in a point on S. The projection of 3D curve to 2D camera is not spherical projection but
camera-screen plane projection. We must express the above epipolar correspondence in
these terms for implementation.

We need special treatment near side points[Poston91] s € § where § is tangent to
the plane through Vi, V5 and s, where the correspondence becomes geometrically and
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Figure 8: Epipolar lines in the plane C of Figure 9: For a point like ¢ on ¥, the
Fig. 6 for five pairs of corresponding points. corresponding point on ¥, is the nearest
intersection of ¢gK with ¥,. For points like
r or s, this selection rule fails.

numerically unstable. A naive implementation can give absolutely wrong points. With
image processing methods we remove singularities and smooth the reconstructed S.

Within the plane P, if q; and q are the unit vectors toward points g and ¢’ coplanar
with V; and V,, for Vi and V, near enough we can estimate the distance from V; to the
intersection of the lines through them by[Poston91]

(a1 x @2) + (92 X (V2 = V1))

A= — ;
a1 x qz||

(1)

3.1 Correspondence

We use three planes: the camera screens in the first and second view positions, and the
plane P through Vi, V; and ¢q. A point g in the intersection of the first camera screen and
the plane P corresponds to a point ¢’ in the intersection of the second and P.

To simplify the calculation we project the first screen to the second, or vice versa, and
get an epipolar line [ for each point ¢, and ¢’ as the (nearest) intersection point of | with
the other curve. Fig.7 shows three cases, corresponding to three different movement of
view position. The first shows parallel epipolar lines, the second is epipolar lines with an
intersection point on the right (movement toward the camera plane) and the last with it
on the left (movement away). Fig. 8 shows the epipolar lines of the plane C for five pairs
of corresponding points, all meeting in K.

In many cases there is more than one point, or none, in the second curve’s intersection
with [ (Fig.9). Tentatively we select the point which is nearer to ¢ after projecting the
second screen on the first screen, but this can require correction (Fig.9) at side points as
intersection points come together.

Fig. 10 shows a good ‘nearest point’ correspondence close to sy = s; between the curve
parameters of ¥; and },, away from the singularity. In the limit as V; and V, approach
each other, the enlargement in Fig. 10 would show the dark points with smoothly changing
shape, not the slight jump seen here.

3.2 Singularity removal and smoothing

At this stage we have two major kinds of large error. One is from completely wrong data,
usually found near end points; the other is from singularities, that produce large local
variation in estimated depth A. Controlling these avoids singularities on the reconstructed



Figure 10: At left is an uncorrected A curve, singular in two places and unsmooth every-

where. At right are possible matches between parameter s; for ¥; and s; for ¥5. The
thick line shows the subset of correspondences needed, and the thin line is for inappropriate
ones. We magnify the intersection of the thick and thin curves, at a singularity.

object. We use a median filter for A, forcing points with distinct A to be more like their
neighbors and eliminating spikes that are isolated in the area of the filter mask.

The appropriate filter size depends on the size of interval affected by singularities.
Here, for instance, we use an odd number M about % of the number of points in the curve.
For a curve segment with ends, we repeat about M/2 points near end points.

We use a smoothing filter as in Section 2.3, this time to smooth the depth estimate A.
At this stage we use an odd filter size about % the number of points in a curve segment.
We then smooth with use one more lowpass filter, half the size of the previous one. We
repeat some boundary points, for the same reasons as with median filters.

4 Experiment with a synthetic catheter

We chose the curved end of a synthetic catheter because it produces a mathematically
interesting singularity for most directions of camera movement around it. From two pic-
tures whose difference is 2° horizontally (Fig. 11), we found edges with the Sobel operator
provided by Matlab. Then we used our distance-wave collision calculation to find their
skeletons. We did not thin at this stage, since we needed as many points as possible for
better reconstruction. (We could connect thinned points using higher degree splines: this
experiment used 1-dimensional splines, which connect points with straight segments.) We
had 458 points for the first picture and 462 points for the second. In building the skeletons,
we cut if the distance was bigger than 3 and re-connected when ends were nearer than 10,
after discarding pieces with length less than 3. Each image in Fig. 11 gave four pieces after
cutting the first spline, three after discarding a short fragment, and one after final con-
nection. We used a lowpass filter of length 11 to smooth the skeleton. Skeleton detection
using colliding distance waves curves took 0.2935 sec. for the first image and 0.3032 sec. for
the second, on a SparcStation20. With the 458 points for the first image and 462 points
for the second, we found the depth A for each point on the first curve, and repeated 57
boundary points to avoid boundary problems with the median filter (length 115) and the
lowpass filter (length 57). To make A smoother, we used one more lowpass filter of length
29. Finding the correspondence and distance took 0.1340 sec.. With the image and edges
found (a task we do do not address in this paper, since it depends strongly on the image
and we can suggest no improvement on available packages), the total reconstruction took
about 0.7307 sec. on a SparcStation20.

Of our radius estimates, 92.35% were between 2.5 and 3 pixel widths, which is close



Figure 11: Two parallel snapshots of a synthetic catheter Figure 12: 3D figure recon-
from 2° apart, used as input data for 3D reconstruction. structed from the images in

Fig.11.

to constancy: appropriate for the parallel views used. (Perspective would require radius
adjustment using the computed depth A.) The catheter in our data had constant radius,
so only the consistency of the radius results is interesting; but the result indicates the
potential for detecting arterial stenosis (narrowing) by computed reduction in radius.

Throughout these processes, we reconstructed 3D data points for the catheter from
the two snapshots in Fig. 11. To show 3D validity, we give several 3D views. Grey points
in Fig.13 show the reconstruction, white shows the ‘true’ centre curve. Different view
angles give different views of the catheter. The white ‘true’ curves are used only for this
comparison, not in the reconstruction.

5 Conclusions and further research

From two good edge images 2° apart of a narrow tube, we can quickly reconstruct a
good 3D curve by wave collision centre-curve finding, appropriate filtering, and epipolar
correspondence, usable for arbitrary nearby views. The time cost of filtering, since we
apply it only to 1D sets, is minor.

One possible use of this technique is to reconstruct 3D catheter positions as the radi-
ologist rolls the viewpoint. The current less-than-a-second running time of the program
when used on catheter edge data may be termed ‘on the spot’ reconstruction, offering
the radiologist a 3D catheter view shaded, or stereo, or with other depth cues as conve-
nient. (‘Real time’ reconstruction would appear to keep pace with the rolling view.) This
information-enhanced view could include also such data as centimeter marks, making it
easy to judge (for instance) how long a stent is needed in 3D reality to span a foreshortened
separation between two points in an image.

In ongoing work, this provides the basis for the reconstruction of a network of arteries
from patient data. It is easily extensible to complexes of tubes such as arteries, with
branches and (in projection) crossings. These require multiple views simply because of
occlusion, but a range of 20° or 30° will be ample; we will not need the 180° needed
for CT reconstruction, with the resulting radiation load and collection time (longer than
contrast agent density stays near-constant, without steady continuing injections and their
attendant dangers). Where tubes meet in a 2D image, we can distinguish crossing from
branching by nearby depth estimates. With this correct topology for the 2D curves, we
can complete the 3D reconstruction. By its natural radius estimation, the method is
highly suitable for capturing stenosis. Profile information classified as ‘non-tube’ by the



Figure 13: A reconstructed catheter (grey), from several views (in steps of 15°), from the
two images in Fig. 11. We overlay it on the corresponding images of the catheter (white),
which are not used as input for reconstruction. It takes about 0.2935sec. to detect the
skeleton for the first edge image, about 0.3032 sec. for the second. Reconstruction takes
about 0.1340 sec. So starting from image and (Sobel) edges (which we do not calculate
inside our work since there are optimized commercial packages), the total reconstruction
takes about 0.7307 sec. on a SparcStation20.

absence of wave collisions will provide at least partial information about the 3D geometry
of aneurysms and other pathologies, where a tube description of arterial geometry becomes
inadequate. In these cases we will use the edge curves directly, to reconstruct ribbons on
the 3D surface.

The advantages of this approach to 3D reconstruction are that we require no constraints
on camera movement, that by using very nearby views we can image even a moving object
like a heart or a bolus of contrast agent, and that the similarity of nearby views makes
epipolar correspondence effective even for complex images.
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