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Abstract. An important advantage of virtual reality technology is that
real 3D objects including humans can be edited in the virtual world.
In this paper, we present a technique for 3D clothes modeling based on
a photo cloned human body. Photo cloning is an eÆcient 3D human
body modeling method using a generic body model and photographs.
A part segmentation technique for 3D color objects is applied for the
clothes modeling, which uses multi-dimensional mixture Gaussians �t-
ting. Firstly, we construct a 6D point set representing both the geomet-
ric and color information. Next, the mixture Gaussians are �tted to the
point set by using the EM algorithm in order to determine the clus-
ters. This approximation gives probabilities for each point. Finally the
probabilities determine the segmented part models corresponding to the
clothes models. An advantage of this method is that the clustering is un-
supervised learning without any prior knowledge as well as integrating
geometric and color data in multi-dimensional space.

1 Introduction

An advantage of digitizing information is that record, storage, playback, modi�-
cation, and editing can be performed without lowering the quality. Virtual, aug-
mented, and mixture reality techniques have recently been popularized, which
is based on various technologies as well as computer vision and graphics. For
example, past actors and actresses have been reproduced by computer anima-
tion[3]. However the cost for accurate human body modeling is still expensive,
because it requires special equipment to measure the shape and color, and thus
designers have to take long time for the modeling.

Object representation using texture mapping has become a common tech-
nique for visualizing complicated color shapes. Reasons for the recent popularity
of image-based rendering techniques [15] include the recently increased availabil-
ity of special hardware architecture for the texture mapping, and its application
to both computer vision and graphics. A 3D human body reconstruction method
using a generic body model and 2D images has been proposed[10]. This approach
is simple and eÆcient, although it requires a special background when the pic-
tures are taken. Photo cloning is an eÆcient image-based rendering technique



that generates individualized 3D human body models from photographs of peo-
ple, without the need of any special equipment. Therefore we can easily immerse
the virtual world by using photo cloning. The editing operation is the key area of
virtual reality technology. A 3D clothes modeling technique based on the photo
cloned human body enables the editing operation in the virtual world. For ex-
ample, extracted clothes models can be replaced in the virtual world, and can
be applied for various �elds as well as e-commerce.

Our clothes modeling method is considered as a part segmentation problem
in pattern recognition. Part segmentation techniques for range images have been
proposed for modeling 3D parts. Proposed range image segmentation techniques
can be categorized into shape- or boundary-based methods. In the boundary-
based methods, segmentation has generally been performed by surface analysis
based on principal curvatures, where the surface is basically assumed to be con-
tinuous. However, the principal curvatures calculated by derivatives on the sur-
face are highly sensitive to noises, which is diÆcult of avoid since range images
include measuring and digitizing errors. Thus, a physically-based robust bound-
ary detection technique[21] has recently been proposed. On the other hand,
shape-based methods segment the range images by �tting surfaces or volumet-
ric primitives. Bi-quadric surface[8], supuerquadrics[8, 14] and deformation of
them[17{19], and deformable surfaces[5, 4], which can be considered as 3D ex-
tension of snakes[11] were used as the primitives. Although the primitives can be
deformed and combined, there are still limitations on shape representation. Fur-
thermore, these primitive �tting methods depend on optimization techniques
in which some tolerances or thresholds and appropriate initial conditions are
required. Hence prior knowledge for the target objects is necessary.

Part segmentation can be basically considered as a clustering problem in
statistics. In general, mixture density estimation based on function �tting is a
popular way to determine clusters. Here, the central limit theorem explains the
reasonable choice of Gaussian as the approximate function. The EM algorithm to
estimate multi-dimensional Gaussian parameters has been applied texture image
segmentation[1], motion tracking from video sequences[20], and so forth. The
advantage of object description using the multi-dimensional Gaussians is that
such di�erent types of information as position, color, texture, can be integrated
in the multi-dimensional space statistically.

In this paper, we present a 3D clothes modeling technique using a photo
cloned human body. Here, we focus on the part segmentation technique for 3D
color objects using multi-dimensional mixture Gaussians. This method does not
require any primitives to describe the target objects except input geometric
model. Moreover tolerances and thresholds for the �tting algorithm are not nec-
essary. It can, therefore, be considered as learning unsupervised without prior
knowledge. This paper is organized as follows: The photo cloning technique is
described in section 2, then we explain mixture Gaussian �tting and its compu-
tation in section 3. Experimental results are presented in section 4, and char-
acteristics of this segmentation technique and its limitations are also discussed.



Finally we conclude this 3D clothes modeling method based on the part segmen-
tation in section 5.

2 Photo Cloning

Human body modeling plays important roles in various �elds, for example, indus-
trial and medical applications as well as computer graphics. Currently image-
based rendering techniques have been popularized, because texture mapping
gives visually real models. We have been developing a photo cloning system[13],
which uses front, side, and back view photographs and generates individual 3D
human body model based on a generic model. The basic concept of the photo
cloning is that the lost 3D information on the photographs can be recovered by
the correspondence between the photographs and the generic body model. Here
we brie
y describe our photo cloning technique for the human body modeling.
Processes of the photo cloning are written as follows.

{ Fit a generic skeleton to the front, side, and back view photographs.
{ Generate an initial skin model using the correspondence between the skeleton
and feature points de�ned on the photographs.

{ Skin model modi�cation based on the silhouette extracted from the pho-
tographs.

Fig. 1 (a) shows the generic body that consists of the skeleton and the skin
surface, where contours surrounding the skeleton de�ne the surface model. This
body model is compatible with MPEG-4. The skeleton is compatible with the h-
anim 1.1 speci�cation[9], and 94 skeletal joints are used to describe the skeleton.
We choose some important joints as key joints shown in �g. 1 (b). These joints
give a hierarchy of skeletal parts, and de�ne the origins of each local coordinate
system in order to describe the skin parts. The basic skin model is de�ned by
the contours, and the skin surface is deformed accordingly when the skeleton
moves. Finally this skin model can be easily converted to polygonal mesh.

First, we de�ne feature points which gives the rough silhouette on the pho-
tographs to �t the skeletal model as shown in �g. 2. Positions of these feature
points are determined by interactive GUI. Here relation between the key joints
and the feature points has been given, so that x-y-z coordinates of the key joints
can be estimated from the feature points located in the front, side, and back
view pictures. Furthermore, positions of remaining joints de�ned in the h-anim
1.1 skeleton are calculated by using these key joints, and then the skin contours
are modi�ed by this skeletal deformation. Consequently the �tted skeleton and
contours can be generated.

Next, we describe how to make an initial skin model. Each part is represented
by a polygonal mesh which has some control points. These control points are
placed at certain required positions to represent the shape characteristics. Hence
the skin model can be deformed by moving these control points. Furthermore,
several control points are located at the boundaries between two parts, so that
surface continuity is preserved when the posture of the generic body is changed.
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(a) The surface model, skeleton, and skin parts. (b) The key joints.

Fig. 1. The generic body model and the key joints.

(a) Feature points (b) Fitted skeleton

Fig. 2. Feature points and �tted skeleton on front, side, and back view photographs.

The accuracy of the initial skin model is insuÆcient, so we modify it by using
the body silhouette extracted from the pictures. Here we detect the silhouette
of the human body on the pictures and then �t the skin model to the silhouette.
To get the silhouette, we have adopted the following algorithm.

{ Apply Canny edge detector[2] for the pictures and �t line segments into edge
pixels to form edge segments.

{ Evaluate a connection of a pair of edge segments.
An evaluation function for the connection Ec is de�ned by parameters such
as angles between two segments, edge magnitudes given by Canny edge de-
tector, and the feature points located on the pictures.

{ Silhouette extraction.
This can be considered as a path searching problem. An evaluation function
Ep is de�ned to assess the goodness of a path. Here the following procedures
are used.

1. Choose an edge segment.
2. Find a proper edge segment to connect and move to this edge segment.
3. Repeat step 2. until the edge segment reaches the feature point, because

the path terminals are given by the feature points.
4. Assess the goodness of a path by calculating Ep

5. Repeat step 1 to 4 for each edge segment and �nally the best path is
determined by �nding the maximum of Ep.



An exact silhouette is detected by the proposed method. Finally the contours
de�ning the skin surface are modi�ed by using this silhouette. It can be con�rmed
that a visually real 3D human body model can be constructed by our method
without using special equipment. Fig. 3 shows the extracted silhouette and the
modi�ed photo cloned human body.

(a) Silhouette (b) Photo cloned body

Fig. 3. Extracted silhouette and photo cloned human body.

3 Mixture Gaussian �tting

3.1 Color coordinates and 6D vector normalization

Texture mapping gives projection from pictures to 3D geometric models, so that
each pixel has geometric data as well as color data. Therefore a pixel can be rep-
resented by a 6D vector that consists of 3D geometric and 3D color components.
Although a pixel is described by RGB components, it shows redundancy. Thus
conversions from RGB space to YUV space have been used to reduce the redun-
dancy[20]. Here, we use the orthogonal space de�ned by the principal axes, which
are given by solving the eigenvalue problem of the covariance matrix of RGB
components. Rotation of the basis vectors in the color space gives a geometric
interpretation of this transformation.

A 6D vector is written by (x; y; z; �; �; �), where (x; y; z) and (�; �; �) com-
ponents represent geometric and color information respectively. We determine
the � axis by the largest eigenvalue that maximizes the variance. The � and �
axes are determined in the order of the eigenvalues. Furthermore, we normalize
geometric and color space on the condition that the maximum lengths of the
bounding boxes of (x; y; z) and (�; �; �) are equal to 1. Fig. 4 shows a 6D point
set obtained by the photo cloning technique, where the x, y, z axes correspond
to width, height, depth, respectively. This point set is dense in x-y-z space, and
so �g. 4(a) looks like geometric model. Fig. 4(b) replaces the z axis in �g. 4(a)
to the � axis which corresponds to brightness. Fig. 4(c) plots color space where
the vertical axis corresponds to the �. Here the number of 6D points is 119,026.



(a) x-y-z (b) x-y-� (c) �-�-�

Fig. 4. Projected pixels from 6D scape into 3D space.

3.2 EM algorithm

First, we denote i-th sample data inN -D space by a vector xi = [xi1 xi2 � � � xiN ],
(i = 1; 2; � � � ; n). Let the probability of xi be p(xi). We consider how to approx-
imate the spatial distribution of xi by using N -D mixture Gaussians, where the
number of Gaussians is m. Next we introduce joint probability p(xi; cj) which
is a product of the probability p(xi) and the probability p(cj), where cj denotes
the j-th class (j = 1; 2; � � � ;m). Therefore, the following relation

p(xi) =
mX
j=1

p(xi; cj) (1)

is satis�ed in discrete classes. This equation can be rewritten by using Bayes'
rule

p(xi) =

mX
j=1

p(xijcj)p(cj); (2)

where p(xijcj) means the conditional probability of xi, given cj . We express
p(xijcj) in eq.(2) by N -D Gaussian

p(xijcj) =

s
jC�1j j

(2�)N
exp

�
�
1

2
(xi � �j)C

�1

j (xi � �j)
T

�
; (3)

where �j and Cj denotes the mean vector and covariance matrix of the j-th class
cj . Moreover the coeÆcient of the exponential function is required for normal-
ization of the N -D Gaussian. Furthermore, we describe each variable in eqs.(2)
and (3). The mean vector of the j-th class �j can be expressed by

�j =
nX
i=1

xip(xijcj) =
nX
i=1

xi
p(cj jxi)

p(cj)
p(xi): (4)

This can be rewritten by

�j =
1

np(cj)

nX
i=1

xip(cj jxi): (5)



Similarly, the covariance matrix of the j-th class can be expressed by

Cj =

nX
i=1

(xi � �j)
T (xi � �j)p(xijcj) =

1

np(cj)

nX
i=1

(xi � �j)
T (xi � �j)p(cj jxi)

(6)
The expansion weights of cj is also written by

p(cj) =

nX
i=1

p(xi; cj) =
1

n

nX
i=1

p(cj jxi): (7)

By de�nition of p(cj jxi),

p(cj jxi) =
p(xi; cj)

p(xi)
=

p(xijcj)p(cj)
mX
j=0

p(cj)

(8)

has been given.

An important point of the EM algorithm for mixture Gaussian �tting is that
p(xjcj), �j , Cj , p(cj), and p(cj jxi) are related to each other and a loop is formed.
By setting initial values of �j , Cj , p(cj) and then iterating the loop, feasible mix-
ture Gaussians can be obtained. Therefore, we can �nd the probability p(cj jxi)
at which a given N -D vector xi belongs to class cj , and �nally max

j
p(cj jxi)

determines the proper cluster to which xi should belong.

3.3 Numerical calculation

The EM algorithm for multi-dimensional mixture Gaussian �tting requires that
several techniques in the numerical calculation. Procedures for the numerical
calculation that we have used is described as follows.

1. Set initial values.

We initialize the mean vectors �j by random numbers, and set a constant to
each element of the covariance matrix Cj . Moreover, we assign 1=m as the
initial values of the expansion weights p(cj).

2. Calculate p(xijcj) by using the Gaussian written in eq.(3).

Here, C�1j and its determinant in eq.(3) can be given by a solution of the
eigenvalue problem

Cjs = �s; (9)

where � and s denote the eigenvalue and the eigenvector. If we determine �
and s on the condition that s gives normalized orthogonal bases, i.e. sk �sl =
Ækl,

CjS = S� (10)



is given. Here

� =

2
6664
�1 0

�2
. . .

0 �m

3
7775 ; S =

�
s1 s2 � � � sm

�
: (11)

By using eq. (10), the inverse matrix of Cj can be expressed by

C�1j = S��1ST : (12)

Of course the diagonal elements of ��1 are 1=�k. Furthermore, jC�1j j in the
coeÆcient of the exponential function can be replaced by the trace

jC�1j j =

NY
k=1

1=�k: (13)

Therefore we can �nd p(xijcj).

3. Calculate p(xi) by using eq.(2).

p(cj) and p(xijcj) have already been given in step 1 and 2.

4. Assign p(xijcj) and p(cj) into eq.(8) and get p(cj jxi).

5. Rewrite each mean vector �j and covariance matrix Cj by using eqs. (5) and
(6), and then return to step 2. and repeat these procedures.

We have used dspev in LAPACK[12] to solve eigenvalue problem, since the
covariance matrix Cj is a positive symmetry matrix. When a small value is
assigned into the initial covariances, jC�1j j in eq.(3) calculated by eq.(13) may
over
ows. Thus large covariances are feasible for the initial values.

3.4 Geometric model for segmented object

Although the pixel distribution in x-y-z space represented by 6D vectors are
used for clustering, we need to construct a geometric model of segmented ob-
jects �nally. Geometric objects to be segmented have been represented by trian-
gular faces, and each face contains the corresponding pixels. Furthermore, the
probability p(cj jxi) for each pixel has been calculated, so we simply de�ne the
probability of cj given triangular face yk by using the average

p(cj jyk) =
1

K

X
xi2yk

p(cj jxi); (14)

where K is the number of pixels contained in the triangular face yk.



4 Experimental results

Fig. 5 shows the result of a 6D mixture Gaussian �tting where four Gaussians
are used. Standard deviation of 6D Gaussians are drawn by color ellipses in
�g. 5(a)-(d), where longitude and latitude lines of 6D ellipsoids de�ned by the
standard deviation are projected into 3D space. Here, the initial mean vectors
are given by random variables as shown in �g. 5 (a) and (b). All initial standard
deviations are 0.1. Converged Gaussians are illustrated in �g. 5 (c) and (d),
where the number of iterations is 128. Although initial Gaussians do not �t the
input data, experiments show the proper convergence can be reached by the EM
algorithm. Yellow and red ellipsoids in x-y-z space illustrated �g. 5 (c) show that
the blue shirt part and the black trouser form each cluster. On the other hand,
�g. 5 (d) shows that blue, black, and mainly skin color clusters are formed, where
these clusters are illustrated by red, yellow, and green ellipsoids respectively.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. A 6D mixture Gaussian �tting by using the EM algorithm where four Gaussian
are used. Initial conditions for the EM algorithm in x-y-z and color space are illustrated
in (a) and (b), and the converged result is illustrated in (c) and (d). Colored pixels in
(e)-(g) show the clustered result where coordinates systems are x-y-z, x-y-�, and �-�-�.

Fig. 5 (e)-(g) show the clustered pixels in x-y-z, z-y-�, and �-�-� spaces.
Each pixel has p(cj jxi), which is the probability of cj given xi, so that the
maxj p(cj jxi) determines a class to which the pixel xi should belong. Since the
pixels corresponding to the black trouser form the dense cluster in the color space
and distribute in the lower part on the y axis, this part is detected exactly. The
blue shirt is extracted approximately, however it is not exact at the boundary
part. Skin color face and hands are also detected, and this cluster distributes
large areas in both the spatial and color space. Thus the accuracy is insuÆcient.

Fig. 6 shows the convergence process of the EM algorithm, where the color
ellipsoids illustrate 6D Gaussinans. Fig. 6(a) and (b) are plots of x-y-z and �-
�-� spaces respectively. Here the iteration steps are 1, 4, 8, and 32, and the
initial condition and the convergence have been shown in �g. 5(a)-(d). Although
Gaussians are distributed randomly at the beginning, the �rst EM step brings
them close to the mean vector of the entire data. The standard deviations are



(a) x-y-z space (b) �-�-� space

Fig. 6. Convergence process of the EM algorithm, where the numbers of iterations are
1, 4, 8, and 32 respectively.
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Fig. 7. Probability distributions on the human body model, where the probability
interval [0; 1] corresponds to the color sequence shown in (e).
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Fig. 8. Extracted parts given by the highest probability of each triangular face.



also similar. Thus, the red, yellow, and green ellipsoids are covered by cyan
ellipsoids in �g. 6(a). These Gaussians then start to make clusters in further
iterations of the EM, and �nally reach convergence. In this case, the result of
the 32th iteration shown in �g. 6 gives the convergence approximately.

Probability distributions p(cj jyk) de�ned on the photo cloned human body
surfaces are shown in �g. 7, where the probability are shown by the color bar in
�g. 7 (e). Fig. 7(a),(b),(d) show that the probabilities at the black trouser, blue
shirt, head and hand parts are close to 1. On the other hand, the probabilities
at side parts appearing in �g. 7(c) are not very high. Therefore, the reliabilty of
the formed cluster c3 is relatively low.

Fig. 8 shows the segmented 3D color parts represented by the triangular
faces with textures. The whole human body is segmented to the black trouser,
blue shirt, pale blue part and mainly skin color part. These geometric parts are
determined by the highest probability of the triangular faces. Side parts shown
in �g. 8(c) should be discriminated as the trouser and shirt, though these parts
are independent. This is caused by inaccuracy of the input data, so that it will
be diÆcult to correct them without the prior knowledge for the target object.

5 Conclusions

We have proposed 3D clothes modeling technique based on a photo cloned hu-
man body. The human body model can easily be generated by using the photo
cloning technique without any special equipment. In this paper, we focused on a
part segmentation technique for 3D color object based on multi-dimensional mix-
ture Gaussians using the EM algorithm. An advantage of the proposed method
is that geometric and color data can be integrated in multi-dimensional space,
insuÆcient geometric information to be compensated by color data, which allows
the face and hand of the test object are recognized as a single part, even though
they are isolated spatially. Furthermore, the clustering can be performed by un-
spervised learning without any tolerances or thresholds used for the Gaussian
�tting. The convergence process of the EM algorithm is also observed. We could
construct the segmented geometric models represented by triangular faces. Con-
sequently 3D clothes models are extracted from the photo cloned human body.
However, there are several problems to be solved as well as the accuracy, for
example how many Gaussians are required for feasible segmentation and its
evaluation still remains. these are problems to be solved.
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