
3D Animation Creation using Space Canvases for Free-hand Drawing

Guangzheng Fei1,2

 Won-Sook Lee2 Zijun Xin3,4 Chris Joslin3
1School of Information Technology and Engineering, University of Ottawa

2Animation School, Communication University of China
3School of Information Technology, Carleton University

4Computers School, Communication University of China

Abstract

In this paper we present a novel 3D animation system using a set
of easily manipulable space canvases that support free-hand
drawing. Our aim is to support the traditional free-hand drawing
while improving the functionality by imitating the 3D animation
in terms of free-viewing and free animation. The system design
emphasis is on the feeling of “what you see is what you get”.

In our system a user is allowed to create planar and curved
canvases and place them in 3D space with six degrees of freedom.
Free-hand strokes are drawn on each canvas by using any of a
user’s favorite input device; a mouse, a digital pen, etc. Various
canvases organized in space form a scene and the animation key
frames of those canvases and strokes can be recorded
hierarchically to represent different levels of movement in the
scene. The camera’s movement is recorded when a user tunes the
viewing parameters and chooses to add a key frame in the time
line for the camera.

The system is both intuitive by utilizing the advantage of 2D
free-hand drawing and has the capability of 3D manipulation of
strokes, canvases and a camera without requiring the user to have
knowledge of 3D graphics and animation. We demonstrate the
usability and efficiency of our system by describing the creation
process of several short animation movies.

1 Introduction

Even though the 3D computer-generated animation has been very
popular recently, traditional free-hand drawing provides a more
intuitive manipulation as well as better artistic result. Therefore in
the area of 3D animation, it is still true that many artists and
designers retain a habit of working with free-hand when they need
to form their idea. For example free-hand work is used for the
storyboarding process in film production to give a better idea of
how the scene will look and feel with motion and timing.

Existing animation storyboarding systems have been quite
successful either in 2D free-hand drawing situations or in 3D
environment settings. This allows the Animators and Directors to
work out any screenplay, camera positioning, shot list and timing
issues that may exist with the current storyboard. Improvement of
the storyboard is achieved iteratively towards perfection by
creating a new animation each time after the Director reviews the
storyboard and provides feedback. Since animation is usually an
expensive process, editing the animation at the storyboarding
stage helps minimize "deleted scenes" in the film and thus
drastically decreases the budget.

Figure 1: A scene created in our system by an animation student

using free-hand drawing.

The 2D storyboarding technique [Cri07] (with or without the
assistance of a computer) is widely utilized in the animation
production process, which most animators are familiar with. The
cognitive processes of the artist [Las80; Lim03] can be expressed
clearly through free-hand drawing with pencil and paper, which is
the handiest way for an artist to present his/her idea and
communicate with others. Comparably current 3D techniques
equipped with 3D object and camera motions is still less popular
due to the fact it requires of a familiarity with 3D space and a
good patience in tuning the tedious settings and parameters.
Though some 3D storyboarding systems provide quite a large
library of existing 3D objects, they still lack of intuitiveness and
flexibility in representing the arbitrary real 3D world.

From the observation of 3D animation production, we question
ourselves why the free-hand animation has been less and less
popular and constantly replaced by 3D animation while many
artists still want to use the free-hand version which is also more
artistic and more expressive. We consider one of biggest reasons
is the convenience of 3D manipulation and free-view visualization
of 3D animation. Therefore we take an approach by starting from
2D drawing to the direction of 3D animation by helping the
traditional designers to keep their skills with an intuitive 3D
interface. We believe that the traditional art production method
must be retained and seek certain help from computers instead of
replacing them by pure 3D animation.

In this paper we present a system that uses a space canvas and its
associated strokes as the foundation for a representation of a scene.
Our system provides the user the capabilities to organize the
drawn primitives in 3D space and in temporal sequence, while
still retaining the essence of a brush and canvas-based sketching
manner in order to utilize a user’s strong 2D drawing skills. Some
view related issues of our representation of the scene are also
considered in our approach.

The rest of the paper is organized as follows. We begin with a
discussion on how our system relates to previous work. We then
give an overview of our system and describe the implementation
of the main features. We then go on to demonstrate the primary

uses of the system: creating scene and animation using our system.
We conclude with future directions in this research, based on the
experience of animation art students using the system.

2 Related Work

Started from the work to automatically transfer paper-based
engineering plans into 3D geometry in the 1960s [CPC04], the
research area in sketch based modeling has been greatly
progressed by many results in transferring the stroke input into a
3D model [IMT99; IH03; DML04; SWS05; KH06; WL07].
However, the goal of our research is not about how to transfer 2D
free-hand drawing into a 3D model, but more about how to
increase the flexibility and extend the capability of the free-hand
drawing system while still retaining the essence of pen and paper
based drawing. Thus, our review focuses on previous research
work that uses the strokes or paths directly without trying to
convert them to 3D models, while enhancing 2D design
productivity and flexibility by means of introducing 3D
capabilities.

Some of the research goes into the direction to extend the 2D
sketching to allow creation of 3D curves. Cohen et al. [CMZ99]
introduce a system where a 3D curve is defined by its first
drawing on its screen plane projection and then by its shadow on
the floor plane.

Tractus [SS05] supports a drawing canvas to do vertical
movement, which makes the device capable of maintaining direct
spatial mapping between the real and virtual spaces. The method
demonstrates how it permits the drawing of non-planar curvature
is remarkable. When drawing with a pen on the canvas surface
and moving the canvas vertically, complex 3D paths can be
constructed by the user, which is a difficult process with 2D
methods.

There is evident appeal by the designers to add the ability to
render a single sketch from multiple viewpoints, since the work of
the artist can be significantly reduced. In view of the above
requirement, some research work has been conducted in this
direction.

Tolba et al. [TDM99] use projective 2D strokes in an architectural
context. By projecting 2D points onto a sphere, 3D reprojection is
achieved under different viewing conditions. It is obvious that the
camera position of the scene is fixed at the center of the sphere.
Thus, the system is only suitable for creating panoramic sketches,
but not yet for the full 3D version with 6 DOF.

Bourguignon et al. [BCD01] use a method to project strokes to a
screen aligned plane for a representation of the scene without
reconstruction of a 3D model. In their system, to account for
view-dependency, the strokes are rendered as thick strokes that
may deform and disappear progressively as the camera moves
away from the original viewpoint.

A system called 3D6B editor [Kal05] was based on an idea to
project strokes onto a user-definable 3D grid. The data that
represents the created scene stored as 3D line segments (called
strokes). The rendering of the scene is done with a line-based
renderer in this system. With the functionality of moving the
canvas while drawing strokes, it is able to create non-planar 3D
strokes in their system. We found it very useful in creating
conceptual models. However, as the number of 3D lines grows
when representing a complex scene, it becomes very confusing
and hard to control for designers. The inconvenience of
manipulation of the canvases is another problem of this system
that limits its usability. In addition, since no region-based
occlusion is considered in this system, it is hardly applicable for a

system where spatial layout reviewing is a major requirement,
such as the 3D storyboarding system.

By examining the 3D6B editor [Kal05], Dorsey et al. [DXS*07]
realized its difficulty in organizing canvases and its lack of
post-creation transformation or alteration of strokes, which makes
the creation of a 3D sketch a tedious task. In order to overcome
the deficiencies, they presented a system called mental canvas that
uses strokes and planar “canvases” as basic primitives with the
basic mode of input being traditional 2D drawing. The system
allowed a designer to transfer strokes between canvases. They
also introduced methods for a user to control stroke visibility. In
addition, they provided a few built-in 3D assemblies of canvases
in common arrangements: axial cross-sections, parallel stacks,
and a circumferential ring.

The above systems have achieved some functionality for 3D
free-hand drawing by either drawing 3D curves or drawing 2D
curves on reorganizable canvases. However, the shortcomings are
also obvious. All of the above systems deal with simple lines that
can carry a few stroke properties thus making it less comfortable
for artists to be artistically creative. An artistic stroke contains
rich properties, such as variant width, texture and transparency. In
next section, we will describe our system that is designed for
animation prototyping, where view dependent and animation
aspects are also considered.

3 System Overview

Our aim is to provide an animation tool that is convenient for
artists who prefer free-hand drawing in order to create 2D like
artistic works. Our system extends the 2D artistic sketching to 3D,
while striving to preserve the degree of expression, imagination,
and simplicity of 2D drawing. In a short time our system allows a
user to draw on malleable canvases in 3D space. An object is
defined as a stroke / a group of strokes / a canvas / a group of
canvases. Our system also supports some animation functionality
which allows the objects and camera to move in 3D space.

While sharing some basic idea, our system defers from the above
mentioned systems, especially the 3D6B editor [Kal05] and
mental canvas [DXS*07], in the following aspects:

 Stroke representation: Strokes in our system are represented
as triangle strips rather than curved lines as with the other
systems. Our representation of strokes is more suitable for
carrying various artistic properties.

 Region occlusion: Since a stroke is defined as a triangle strip
in our system, users can easily create a region by overlapping
wide strokes with various transparencies. All of the above
mentioned systems, except the mental canvas, overlooked this
functionality and therefore may cause visual confusion when
viewing a complex scene. The mental canvas system used a
rasterized occlusion map for region occlusion that would suffer
from resolution problems when viewing the content on a
canvas from a close distance.

 Supported canvases: Both planar canvases and curved
canvases are supported in our system. The system also supports
user-definable polyhedral canvases to allow designers to
choose from for some common arrangements. Furthermore, a
user is allowed to create a group of canvases, to bind them
together to create a canvas assembly, and to export them for
future use.

 Animation: Both object and camera movements are supported
in our system. Users can manipulate the position and
orientation of each stroke or canvas, with a full suite of tools

very similar to traditional CAD programs. The position and
orientation of the camera are implicitly defined by the
interactive view changes; therefore the camera is usually not
explicitly displayed in our system.

 Other features. Several view related aspects, such as
billboarding, triangle simplification, and fogging effect are also
considered in our system.

3.1 Stoke Representation

Rather than represent strokes as curved lines, we choose to further
convert the curved lines into triangle strips with the lines
represented by their center axes, similar to that was defined in
[Her98], as shown in Figure 2, where the width of each stroke is a
user definable parameter.

Figure 2: Strokes represented as triangle strips with transparent

texture map.

Once the 2D point sequence is entered via a mouse or a graphic
input tablet, it is first projected onto the previously selected
canvas to generate a curve on that canvas. Two parallel curves on
both sides of the projected curve are then generated according to
the width parameter either specified previously by the user or
obtained according to the pressure value if the tablet pen is used.
Both curves are subdivided into line segments and the vertices of
the segments are then connected back and forth to create a
triangle strip, while texture coordinates for these vertices are
automatically generated during this period.

Although simply defined, designers are already able to create
artistic graphics using these strokes just by changing the provided
parameters: width, texture and transparency, as shown in Figure 3.

Figure 3: Various 2D drawings created using our strokes.

All the strokes can be transformed within canvases after creation.
For example, they can be translated or scaled along the two axes
of the canvas and the rotation is about the axis perpendicular to
the canvas with a given center.

Our system supports stroke grouping, copying and pasting. Once
grouped, all strokes are transformed together, and their relative
positions are preserved. As a comparison, in mental canvas
system [DXS*07], grouping functionality is only supported in
canvas level. Thus makes it less efficient to reuse strokes within
canvas.

Strokes are allowed to intersect each other so as to give enough
freedom for designers to draw arbitrary artistic works. Obviously,

when the strokes are drawn on a same planar canvas, all the
generated vertices lie in the same plane. This may cause serious
aliasing problem at intersectional regions, as we can see from the
left side of Figure 4. The system can automatically offset the top
stroke vertices at the intersectional region a little bit above to
eliminate this artifact. Surprisingly, in our user experiments, some
designers would like to keep this artifact as a special effect for
design. Thus, we provide this intersection offset mode as an
optional functionality.

Figure 4: Aliasing when strokes intersect and the solution.

3.2 Region Occlusion and Stroke Visibility

Since each stroke can have an associated transparency, it is free
for the designers to choose either to blend the current stroke with
the previously drawn strokes or to paint on top of them in an
overlay mode.

In either case, when the designer keeps drawing strokes in one
particular region, especially when a wide stroke has been chosen,
he/she may produce a region filled with strokes that can occlude
the behind strokes. As our stroke is represented as a triangle strip
it is comparatively easier to create a filled region than in the other
systems, by providing a large width for the stroke. In order to
improve system performance, we provide a functionality to
reduce the number of triangles in this region by first calculating
an outline of the region, removing the original triangles and then
re-triangulating the outline area. The region occlusion problem is
solved in the way that the designer is able to avoid visual
confusion when viewing a complex scene.

The view dependent opacity for strokes and one-sidedness for
canvas is also useful as suggested in mental canvas system
[DXS*07] to help deal with the stroke visibility issue.

3.3 Canvas Creation and Object Management

Canvas management is a basic functionality in our system to
extend the 2D sketching to 3D. In our system, both planar and
non-planar canvases are supported. Planar canvases are
represented by their positions and orientations, and optional
parameters are also provided such as texture, one-sidedness, and
billboard information. There are two types of non-planar canvases.
The first type is generated from a user-specified stroke. Once a
stroke curve is drawn on a canvas and a width of the non-planar
canvas is given by a subsequent mouse movement away (may or
may not be perpendicular to the canvas) from the canvas, the
stroke curve will be first subdivided into line segments with a
pre-defined constant interval. The width is divided in the same
way as the stroke curve has a better ratio between the edges of the
triangles to be generated, as shown in Figure 5. To avoid narrow
canvases, a width under a certain threshold is rejected; in our
system this value is set to be three times of the pre-defined
constant interval.

(a) Stroke drawn on canvas (b) Created curved canvas

Figure 5: Creation of a curved canvas.

The second type of non-planar canvas is the polyhedral canvas,
created by grouping a set of planar canvases or importing from
any simple-shaped polyhedral object.

As we can see from the above description, both non-planar
canvases are based on planar basis, thus the non-planar canvases
does not increase the complexity of canvas definition.

Similar to strokes, canvases can also be grouped and ungrouped.
Canvases, along with their associated strokes in a same group,
will be transformed together.

Once a canvas is created in the system, it can be transformed in a
similar way as any CAD programs. For example, the user can
transform canvases by moving along or rotate about their local
coordinate axes, optionally using a single-axis constraint along
any of the three coordinate axes. We provide interface widgets
also similar to a CAD program to help perform these
transformations.

In our system there are different levels of objects that require
manipulation, such as a stroke, a stroke group, a canvas, and a
canvas group. To avoid confusion when editing a complex scene,
we require a user to select an active object for editing one at a
time. He/she is allowed to switch between canvas selection and
stroke selection modes. By default, the selection is performed
upon groups. A fold/unfold operation is provided to toggle
selection mode between group and group members, by double
clicking the active object for instance. Ungrouped objects are
considered as one-member groups and could be selected at the
group selection mode. The feedback from the participating
designers on the efficiency of this object management method has
been extremely positive.

3.4 Stroke-canvas intersection

Once an active canvas is selected, a user can sketch on the 2D
screen, which evokes the system to calculate the projective
strokes on the active canvas. Since both the planar and the
non-planar canvases are finally defined by one or more planes, the
projection of a stroke to a canvas is always performed by
calculating the intersection between a plane/planes and a ray
shooting from each 2D point of the curve drawn on screen
following view direction.

Figure 6: Projecting a stroke onto a canvas.

As an implementation, we use (x, y, Zmin) and (x, y, Zmax) as the
parameters successively, where (x, y) are the 2D screen
coordinates of the point and Zmin = -1 and Zmax = 1 are the two
depth values, as shown in Figure 6. A ray connecting the two
points (x, y, Zmin) and (x, y, Zmax) is intersecting with the canvas
plane(s) to obtain a projective point on that canvas.

A planar canvas is considered to have infinite size, so that any
intersection of the ray and the plane can be accepted as a resulted
projection. A bounding-box for the selection purpose is
regenerated once the stroke has been projected out of the extent.

A non-planar canvas consists of some planar facets. The
intersection is performed first by checking the intersection
between the ray and each plane that the planar facet belongs to,
and then by checking whether the intersection point is inside the
facet. Only the intersection point that lies within a facet will be
accepted as a real intersection to be recorded as the projection of
the 2D point on the canvas. All facets of a canvas will be
traversed until a projection is found. To connect points across two
adjacent facets, the intermediate point on the edge between these
two facets is calculated to ensure the shortest path to connect
these three points. Two successive points that do not lie within
one facet or two adjacent facets due to an abrupt move in
sketching are rejected to avoid connection problems. Once a
projective curve is generated, it is converted into a triangle strip in
the way discussed in Section 3.1.

3.5 Animation Creation

An important functionality of our system is that we allow a user
to define motions for both objects and camera by recording their
transformations at key frames and by interpolating them using a
Hermite curve interpolation.

The system also allows a user to define the transformation of
objects in a hierarchical way for object groups and group
members. The transformations defined for groups are transferred
to group members to form concatenated transformations, so that
the groups can move together while the group members have their
relative movements to the groups. To keep simplicity and clarity,
we do not consider the multi-level hierarchy either for objects or
transformations in our 3D sketching system.

In order to keep the “what you see is what is get” feeling for a
designer/a user, we let a camera not visually appear as a malleable
object in the scene like in other 3D animation programs. The
transformation of the camera can be obtained implicitly when the
user changes the view interactively. When the camera moves
around a fixed planar canvas, the sliced appearance of the canvas
may be seen at certain angles which may destroy the 3D
impression of the whole scene. To address this problem, we allow
the user to apply the traditional billboard technique to any objects
that are nearly symmetrical and are to be viewed in various
angles.

4 Implementation

The system is implemented in Visual Studio .NET 2005. The
interface uses MFC and displays using OpenGL. The interface of
the system consists of four parts. The first part is the drawing area,
where the user can create a canvas, draw strokes and manipulate
them. The dialog area contains several buttons and some other
interface widgets where the buttons are used to toggle system
modes, while the other widgets are used to tune the drawing
parameters, such as stroke properties. The menu bar is used to
access less frequently used features. The last part is a timeline for
setting animation key frames.

There are five major operating modes in our system: canvas
creation mode, object selection mode, drawing mode, object
transformation mode, and camera mode.

All canvases are created in the canvas creation mode. A planar
canvas is created initially on the current view plane, which can be
manipulated afterwards. A curved canvas can be created from a
base curve drawn on any planar canvas. Polyhedral canvas can be
created either by grouping the existing planar canvases, or by
importing from a simple polyhedral shape.

In object selection mode, there are two sub-modes: canvas
selection mode and stroke selection mode, while both modes can
be further divided into group selection mode and group member
selection mode, which can be switched. Some object properties
can be specified once an object is selected, such as canvas
one-sidedness, using billboard or not.

In drawing mode, the user is allowed to draw strokes on an active
canvas, which is specified in the previous selection mode. Users
can change stroke properties any time in drawing mode.

In object transformation mode, there are also several sub-modes
according to object types (a canvas, a canvas group, a stroke, or a
stroke group) and operation types (such as translation, rotation,
scaling). All object transformations can be specified and stored at
key frames. Each object can have its own key frames.

In camera mode, supported camera transformations are similar to
those in other CAD programs. Camera key frames can be
specified in the way similar to object transformations.

5 Experimental Results

Our system runs on a Windows desktop workstation with a mouse
and an optional pressure sensitive input tablet. Our program can
be executed at interactive rates, i.e. a designer is able to see the
results with changing viewpoints interactively after he/she
finishes the drawing. A scene created in our system is rendered
exactly the same as the designers have drawn with the selected
strokes. There is no change in shading when the view is changed,
since no lighting information is applied to the scene. In other
words, the scene will remain in the 2D drawing style when it is
manipulated. As a result, designers gain a “what you see is what
you get” experience when using with our system.

Through several users over several months, our system has
obtained feedback that it provides significant advantages over
both 2D drawing systems and 3D modeling and animation
systems. Compared with 2D drawing systems, our system has the
freedom to allow designers to continuously change the viewpoint.
As we can see from Figure 7, once the scene is drawn, we can
view the scene from different view directions as in any 3D
programs, while retaining a sketchy style all the time. Compared
with 3D modeling and animation systems, our system keeps the
sense of traditional 2D drawing style very well. Designers do not
have to follow the tedious 3D modeling, texturing, and lighting
process to obtain a final result. The sketchy style of objects
provided by our system can hardly be achieved by rendering 3D
models in any traditional 3D programs even with some powerful
non-photorealistic rendering functionality. Besides, the 2D
performance of our system is not limited to the current
implementation. Any advanced functionality in 2D painting
system could be introduced into our system to improve the
drawing quality.

Figure 8 and Figure 9 show another two results created by the
animation art students. The quality of the animation produced in
our system is quite acceptable. The students were pleased with the

results they were able to achieve using our system, with only a
shallow learning curve. All of the users were familiar with some
3D modeling programs in order to compare our system with the
3D animation creation process.

6 Conclusion

This paper has presented a novel system for creating 3D
animation using space canvases for free-hand drawing. To our
knowledge, it is the first system that designers have been able to
create a 3D animation in the way almost same as 2D drawing,
while enabling 3D capabilities in order to manipulate both the
objects and the camera.

The system is able to create rather complicated scenes that consist
of only free-hand drawn strokes. All the strokes are drawn in 3D
space with the help of either planar or non-planar malleable
canvases. Designers are allowed to draw strokes without facing
the difficulty to deal with a polygonal mesh or the inflexibility of
a parametric pipeline.

Our approach suggests several interesting avenues for future work.
The animation of strokes can be more articulated focusing on
intuitive user gestures and automatic novel view creations out of
existing views can create a larger amount of freedom to go for a
full 3D feeling. We also plan to include sound track editing for a
complete system.

Acknowledgement

We would like to thank Yi Zheng, Jing Jing and other animation
art students for experimenting with the system and creating the
examples shown in Figures 1, 3, and 7-9. This system builds on
some preliminary ideas outlined in a Master thesis authored by
Miao Wang, which was supervised by the first author. This project
was supported by NSFC grant (No. 60403037).

7 References

[BCD01] Bourguignon D., Cani M.-P., Drettakis G.: Drawing for
illustration and annotation in 3D. In Computer
Graphics Forum (sep 2001), Chalmers A., Rhyne
T.-M., (Eds.), vol. 20 of EUROGRAPHICS Conference
Proceedings, EUROGRAPHICS, Blackwell Publishers,
pp. C114–C122.

[CMZ*99] Cohen J. M., Markosian L., Zeleznik R. C., Hughes J.
F., Barzel R.: An Interface For Sketching 3d Curves. In
Si3d ’99: Proceedings of The 1999 Symposium on
Interactive 3d Graphics (New York, Ny, Usa, 1999),
ACM Press, pp. 17–21.

[CPC04] Company P., Piquer A., Contero M.: on the evolution of
geometrical reconstruction as a core technology to
sketch-based modeling. In Eurographics Workshop on
Sketch-Based Interfaces and Modeling, August, 2004,
Hughes J. F., Jorge J. A., (Eds.), Eurographics.

[DML04] Diehl H., Müller F., Lindemann U.: From raw
3d-sketches to exact CAD product models --concept for
an assistant-system. In Eurographics Workshop on
Ketch-Based Interfaces and Modeling, August, 2004,
Hughes J. F., Jorge J. A., (Eds.), Eurographics.

[DXS*07] Dorsey, J., Xu, S., Smedresman, G., Rushmeier, H.,
and Mcmillan, L., The mental canvas: a tool for
conceptual architectural design and analysis, In:
Proceedings of Pacific Graphics, October, 2007.

[Cri07] Cristiano G., Storyboard design course: principles,

practice, and techniques, Barron's Educational Series,
October 1, 2007.

[Her98] Hertzmann A., Painterly rendering with curved brush
strokes of multiple sizes. SIGGRAPH 98 Conference
Proceedings. pp. 453-460. Orlando, Florida. July, 1998.

[IH03] Igarashi T., Hughes J. F., Smooth meshes for sketch-based
freeform modeling, ACM Symposium on Interactive 3D
Graphics, ACM I3D'03, Monterey, California, April
27-30, 2003, pp.139-142.

[IMT99] Igarashi T., Matsuoka S., Tanaka H.: Teddy: a sketching
interface for 3D freeform design. In Siggraph ’99:
Proceedings of The 26th Annual Conference on
Computer Graphics and Interactive Techniques (New
York, Ny, Usa, 1999), ACM Press/Addison-Wesley
Publishing Co., pp. 409–416.

[Kal05] Kallio K. 3D6B Editor: Projective 3D Sketching with
line-based rendering. In: Proc. of Eurographics
Workshop on Sketch-Based Interfaces and Modeling, pp.
73–79, 2005.

[KH06] Karpenko O. A., Hughes J. F., SmoothSketch: 3D
free-form shapes from complex sketches, ACM

Transactions on Graphics, 25(3), 2006, pp. 589-598.

[Las80] Laseau P.: Graphic Thinking for architects and designers.
Van Nostrand Reinhold, New York, Ny, Usa, 1980.

[Lim03] Lim C.-K.: An insight into the freedom of using a pen:
pen-based system and pen-and-paper. In Proc. 6th Asian
Design International Conference (Oct. 2003).

[SS05] Sharlin E., Sousa M. C.: Drawing in space using the 3d
tractus. In 2nd IEEE Workshop on New Directions in 3D
User Interfaces (IEEE VR 2005) (Mar. 2005).

[SWS05] Schmidt R., Wyvill B., Sousa M. C., Jorge J. A.,
Shapeshop: Sketch-based solid modeling with Blobtrees,
Eurographics Workshop on Sketch-Based Interfaces and
Modeling (2005), pp.

[TDM99] Tolba O., Dorsey J., Mcmillan L.: Sketching with
projective 2d strokes. In Uist ’99: Proceedings of the
12th Annual ACM Symposium on User Interface
Software and Technology (New York, Ny, Usa, 1999),
ACM Press, Pp. 149–157.

[WL07] Wang H., and Lee M., Free-form sketch,
EUROGRAPHICS Workshop on Sketch-Based
Interfaces and Modeling (2007), pp.53-58.

Figure 7: A glass table and several chairs shown in different view points.

Figure 8: A lady in traditional dress walking in a marble road with a woody surrounding.

Figure 9: A fairy flying across a peaceful lake.

