
Fire Visualization using Eigenfires

Nima Nikfetrat, Won-Sook Lee

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa
Ottawa, Canada
nnikf006@uottawa.ca, wslee@uottawa.ca

Abstract. Procedural modeling of fire has been very practical and popular, but
most of them are based on random parameters for the purpose of creating realistic
looking flames, while physical based modeling is closer to the realism, but suf-
fered by complicated algorithms and heavy computational requirement. Our new
approach on fire does not use any physical parameters, but uses real-life fire imag-
es and applies image-based methods and statistical analysis. We visualize the
shape and motion of fire to analyze them, which can be used a simple and realistic
fire modeling. We employ principal component analysis (PCA) and take it to a
new level by introducing “eigenfires”, which are eigenvectors of the covariance
matrix of fire videos, from variety of high-definition videos of real fire to visualize
and understand the track of fire movement and how different flames are located in
various locations. Our system provides flexibility for the artists to manipulate the
ordinary style of a flame and change it to another distinct shape using a series of
weights that are assigned to each eigenfire. Our method is also efficient in terms
of compact representation of fire motion as PCA allows compression by cutting
high dimension data for almost the same quality of the video.

Keywords: Fire, Flame, Smoke, Fluid, Procedural, PCA, Eigenface, Eigenfire,
Reconstruction.

1 Introduction

Fire is an important item for various computer generated scenes. A popular way is
a physical based fire modeling and animation using physical equations and param-
eters, which we call as microscopic approach. This approach pays attention to the
interaction among nearby particles and as a result, the fire is generated. However
in naked eyes, the fire has certain degree of regulation and it has not been studied
well yet. In this paper we employ image-based techniques to analyze global shape
of real-life fire and its motion.

Our method differs from conventional procedural fire modeling approaches.
Although procedural methods might not always be highly realistic, they offer fast-
er, efficient and economical features. The purpose of our research is introducing a

2

technique that is procedural, but the results are more realistic-looking in compari-
son to available procedural approaches.

Our primary idea of employing principal component analysis (PCA) for fire is
inspired by previous works from Pengcheng Xi et al. [22][23] on the topics of fa-
cial expression, in which PCA was utilized to create new facial expression, other
than the common use of PCA for recognitions [20][5]. Unlike the methods men-
tioned above, we do not put our effort on interpolations among feature points or
contours, but on image-based reconstruction techniques. This advantage is be-
cause of our large database of images consists of thousands of frames, recorded
from real small-scale flames with two professional HD video cameras at frame
rates of 60 fps. Fig. 1 shows this setup.

Fig. 1 The photograph of our setup for capturing small-scale flames

After transforming our training set of fire images into “eigenfires”, which are
the eigenvectors of the covariance matrix of our set of fire images, we perform
different analysis and observations to determine appropriate PCA approach for the
visualization of fire tracks. Then, we make them available to animators via a user-
friendly interface. Anyone is capable of building a new database of eigenfires with
their own camera and video, or loading one from our pre-processed library. Unlike
eigenfaces [20], which are principal components of the training set of face images
and are displayed as ghostly faces, our eigenfires are exhibiting remarkable fea-
tures of fire after isolating the shape of flames by removing the background; Some
features such as shape, volume, holes, length, direction, and even deformation of a
single flame to small pieces of flames.

Briefly, the following features outline the main capabilities of our system:

 Combining several clips (ranges) of different fire videos as training set, and
building a database of eigenfires

 Background and noise removal, and image quality enhancement for PCA
 Pose and direction normalization using fitting line algorithm
 User’s control on contribution of each eigenfire by weight adjustment

3

In this paper, we present our results as two-dimensional sequence of images,
and we only work on one view of videos even though Fig. 1 shows a setting with
two cameras. The setting shown in Fig. 1 is aimed for 3D fire visualization, which
is not discussed in this paper.

2 Related Work

Physically-based approaches:

Despite the fact that physically-based approaches [16][17][15][12] require signifi-
cant amount of time to be processed, they mostly produce high quality visualiza-
tion of fire and are more realistic if the correct parameters are set by the users for
the variables of dynamic fluid equations in the system. Nguyen et al. [14] use a
semi-Lagrangian stable fluids approach to model both fire and smoke; one set of
incompressible flow equations to model the fuel and another one for the hot gase-
ous products. Thermal buoyancy is an important part of their model that influ-
ences fluid velocity. In this model, the temperature rises up until reaching a specif-
ic degree to ignite the fuel. An implicit surface, which is called blue core region, is
created to divide the regions between gaseous fuel and soot. A realistic color and
rendering using a stochastic ray marching algorithm complete their model. A sto-
chastic Lagrangian approach and a chemical composition evolution model are
used by Adabala et al. [1]. A combination of fluid and combustion models was
discussed by Min and Metaxas [13], and Pegoraro and Parker [15] employed de-
tailed simulation of the radiative emission and refractive transfer to achieve realis-
tic renderings of fire.

Simulation of gaseous phenomena in turbulent wind fields was depicted in [18]
using a clustering algorithm, and the gas was modeled as a fuzzy blobby, in which
advection term was responsible for moving a blob, and diffusion term to deform it
by an advection-diffusion equation. Detonation shock dynamics (DSD) was used
in a work by Hong et al. [9] to produce cellular patterns in flames. The fire is gen-
erated by coupling the third order DSD equations to the Navier-Stokes equations.

Producing 3D high resolution flames was achieved by Horvath and Geiger [10]
on GPU for VFX of movies. The first stage is a coarse particle grid simulation
which would allow the users to direct and control the motion of fire. Next, fine de-
tails will be added in the refinement stage, consisting of specific number of cam-
era-facing image planes. Attributes of particles will be projected onto these planes.
A GPU-based volume rendering and a farm of 10 GPUs make it feasible to obtain
high quality results, which might not be affordable for a small business, or home
users. Another drawback of this technique is the huge amount of processing time.
Harris [8] describes mathematical background and implementation of 2D fluid
simulations using Navier-Stokes equations for incompressible flow on the GPU,
which significantly increased the performance in comparison to Stam’s simulation

4

on CPU [17][16]. Valuable GPU rendering tricks and implementations about dy-
namic fluids and fire are also discussed in Crane et al. [4], which is a useful refer-
ence for everyone.

An advantage of our non-physical-based approach is that it supports basic users
with no prior knowledge and experience of dynamic fluids or its technical terms,
such as buoyancy, vorticity and viscosity, to produce an elementary fire.

Procedural approaches:

Current procedural approaches tend more to imitate the characteristics of real
flames by utilizing procedural noises and offsetting methods to incorporate turbu-
lence into the fluid.

 Fuller et al. [7] take advantage of the improved Perlin noise and M-Noise, and
then combine them with an interesting curve-based volumetric free-form defor-
mation to create fire procedurally. Their 3D hardware-accelerated volumetric ren-
dering allows an artist to easily manipulate and deform the fire along a curve in
real-time. Although the system produces a good looking fire, the animations are
not close to natural fire, as it is a system solely based on random noises. However,
we provide a similar noise feature as an additional option, but using an innovative
idea which is user’s control on contribution of each eigenfire via weight adjust-
ment.

Vanzine and Vrajitoru [21] integrate the same system as above into a 3D game
engine, and discuss statistical results of performance obtained from different pro-
cedural noises with variety of volume sizes, using both DirectX and OpenGL.

 Lamorlette and Foster [11] propose a technique that a flame profile is created
from a set of points as spine of the flame, and it is based on observed statistical
properties of real fire. This curve, or spine, can break and evolve with a combina-
tion of physics-based and procedural fields, and it deforms implicit surface of the
flame. Particles are sampled on this surface, in addition to applying animated pro-
cedural noises, and then they can be rendered volumetrically. The complexity of
working with such a system is the drawback here, in which an animator becomes
productive within a week, while it takes less than 10 minutes to learn how to work
with our system.

Beaudoin et al. [3] represent fire as a small set of flames instead of working
with large numbers of particles, and it can spread progressively over the meshes.
Skeleton technique, which is a small group of connected particles, forms the flame
animation and is moved by turbulent as a time-varying vector field. Flames are
modeled using implicit surfaces and are obtained from these skeletons. Finally, the
model is rendered using a ray tracing algorithm. This approach is also utilizing
noise functions or user defined parameters for air velocity field to animate the
skeletons of the flames, in which they actually reduce the realism. In our ap-
proach, we extract the natural patterns of fire instead of noise functions.

5

Amarasinghe and Parberry [2] discuss real-time rendering and deformation of
burning objects on GPU, while generating procedural fire using particles. Alt-
hough the deformation of burning objects looks great, the low quality of generated
fire makes it unbelievable as a natural phenomenon. Therefore, we considerably
pay attention to the quality criteria and recommend proper numbers of eigenfires
to prevent lowering the quality.

3 Pre-Processing of Real-Life Fire Images

In our approach, we are not concerned with measuring physical properties of fire,
but extracting global motions of real fire. Our large fire database includes variety
of styles and motions we intentionally created and recorded.

3.1 Recording Fire Video

We captured our videos in uncompressed format for more accuracy. They sequen-
tially form variety of motions which can be analyzed in PCA space, in order to re-
construct new copies that are following a similar pattern when we put them to-
gether. We picked variety of materials as our fuel and ignited them in an isolated
space, in absolute darkness in front of a black background. Although we collected
8 varied video clips of fire, and more than 15,000 frames in total at 60fps, we
chose the best three fire samples that we found suitable for this paper. We name
those samples respectively as fire A (a torch with lighter fuel), B (a pack of three
solid fuel cubes) and C (a single burning cube) throughout this paper. And con-
struct our results based on them. Fig. 2 shows one frame of selected three real-life
flames without applying our background removal step. Videos A, B and C contain
500, 1500 and 700 frames respectively in our experiments, which are comprised of
2700 images in total. The videos will be cropped aligned at the center of their fuel
or the burning object, so that our flames are centered, and a smooth morphing can
be performed later among them while reconstructing new images. Because of our
restricted setup and safety regulations, we could not place our fuel far from the
background. Therefore, the brightness of flames illuminated our black background
in some frames, and we will eliminate it by darkening process in section 3.3.

Characteristics of our selected videos are as follows: Video A is a short flame
with a small volume, repeatedly bended toward the left side of the view, and con-
tains mixtures of colors, such as blue and red around the fuel. Flame B consists of
larger width and volume, in addition to a unique shape, in which constantly sepa-
rates into smaller flames or branches every couple of frames. This feature is slight-
ly visible in Fig. 2 at the tip of flame. The third sample, fire C, includes a higher

6

length, smaller width in comparison to the second sample, and more distortions
due to external forces (e.g. wind) which are made intentionally during recording.

Fig. 2 Original recorded video samples chosen for this paper, cropped in this figure. (A) A small
torch soaked in lighter fuel, (B) a pack of three solid fuel cubes, and (C) a single burning cube

3.2 Contour Detection

The first step for preparation of images is detecting contour of the flames, which is
for the purpose of background removal, pose normalization, and detection of dif-
ferent color regions. There are many techniques that can be used to extract infor-
mation about the boundaries of different objects from images. Standard snake,
gradient vector flow snake, contracting curve density algorithm (CCD) are a few
methods of shape matching to approximate the object’s contour. However, based
on our previous experiments and observations, we found them time-consuming,
CPU intensive, and not proper for moving shapes, such as fluids. Utilizing these
methods make the process of the detection non real-time or tedious for thousands
of images of videos in HD format, and different results might be received with
slight changes for consecutive frames of the same fire, due to minor errors in de-
tections. Because of high intensity and brightness of flames in comparison to our
darker background, we figured out working on range of colors directs us to obtain
proper contours which are more consistent throughout the entire video while the
shape of our flames changes constantly.

Finding specific range of colors is not easy in RGB color space. For example,
we can detect how much of the red color is included in a specific pixel by simple
comparison of values in the red component, but it is not easy to recognize that the
final color of the pixel is still red after combining it with blue and green compo-
nents. Thus, we take advantage of HSV color space, and convert our RGB images
into HSV color space. The user may define minimum and maximum thresholds
for ranges of “hue”, “saturation” and “value” to pick specific pixels, and create a

7

mask image for them. Based on its cylindrical geometry, we may choose mini-
mum and maximum pure colors for Hue to find any combination of them (e.g.
finding orange color between red and yellow). Similarly, Value and Saturation as-
sist us to accept or reject that color based on the amount of colorfulness or bright-
ness. This step can be repeated a few times if more regions for separate range of
colors must be removed or kept untouched (e.g. blue or green color of the flames
in specific frames). Our mask can be created using the following formula:

]1,0[],1,0[],360,0[

0

),(

),(

),(

1
),(

maxmin

maxmin

maxmin































valuesaturationhue

otherwise

valueyxpvalue

saturationyxpsaturation

hueyxphue

yxM
 (1)

where),(yxp is a pixel on the image in HSV space at pixel location of),(yx , and
),(yxM is our binary map that can be used to extract our contours.

Morphological operations can be employed to filter out potential noises. Our
application allows the users to apply well-known filters and operations (e.g. Dila-
tion, Erosion, Opening, Closing, Gaussian smoothing, contour optimization, hole
removal, etc.) based on a bottom-up layer style for minor improvements, to obtain
a consistent contour for the entire video. It should be considered that all the em-
ployed techniques will be applied to the entire frames of the video to eliminate or
reduce the need of manual changes for specific frames. As a result, more inspec-
tion of techniques was required in comparison to regular image based approaches.

Using Canny edge detection algorithm, binary thresholding and border follow-
ing algorithm [19], contours were retrieved from the binary mask we created. Fire
is not always a closed shape, and it can split or create a hole in a few frames. We
therefore store our contours hierarchically in a tree, to be able to remove unwanted
contours based on a depth level system assigned to each of them. The area inside
each contour is also calculated and stored. We call this as “Hole Removal”, which
can be area-based or depth-based, to eliminate specific small contours that appear
unexpectedly during an entire video. Finally, Douglas-Peucker algorithm [6] is
used to optimize and approximate the contours whenever required. Fig. 3 shows
the process of our contour detection. A depth level of “0” means the contour is
separate from other detected ones, and depth level of “1” indicates a contour
which is one level inside another one, and so forth.

8

Fig. 3 An example of contour detection. The top row: (Left) all detected contours with any pos-
sible depth levels, (middle) contours with depth levels of only zero, in addition to area-based re-
striction of specific number of pixels, (right) the original image of fire. The lower images illus-
trate the corresponding contours of the top row separately.

3.3 Hermite Background Removal

As we already discussed, luminosity of flames brightened both background and
smoke. We are planning to diminish that undesirable brightness by a darkening
process outside the contours. It is important to preserve the smooth shape of the
fire, specifically around contours. We are trying to take advantage of this smooth-
ness to produce images with soft corners while calculating eigenfires. In majority
of previous works that PCA was used such as [20][22][23], the images had been
modified in such a way that the background was ignored outside the target with
sharp boundaries. The reason is that they are mostly interested in detection and
comparison of features inside the objects. The difference is obvious from compar-
ison of the average of training images. In our initial experiments, we removed are-
as outside the contours by directly assigning zero values to every pixel, and in-
stead we could only produce flames with numerous layers of sharp edges, even by
using a huge training set of images. It should be noted that eigenfires are highly

9

relevant to our average image, and therefore we can avoid unexpected artifacts
during reconstruction while using small number of dimensions.

After experimenting with linear, cubic and Hermite curve approaches, we real-
ized that the second Hermite basis function yields smooth transitions from pixels
with very high intensities to the pixels with low intensities. The equation of this
basis function and our intensity criteria are as follows:

]1,0[32)(23  SSSSIntensity (2)

 maxmin
minmax

min),(
)(

),(
IyxpIif

II

Iyxp
S 




 (3)

where S is a number in range of]1,0[which is based on two values of maximum

and minimum intensities, and are set by animators. The value of any pixels with
intensity of higher than maxI does not change, but any pixels lower than minI be-

come zero or black. Any pixel between them will be gradually darkened in respect
to)(SIntensity , and finally produces a smooth transition of intensities.

To get better results, we can consider our calculated contour of the flame as a
bitmap mask and then ignore any changes of intensities inside the contour region.
The result of this technique is shown in Fig. 4.

(a) (b) (c) (d)

Fig. 4 Hermite Background removal process. (a) Original RGB image converted to gray to be

prepared for PCA, (b) a mask by choosing 220max I and 110min I , (c) modified pixels

obtained from multiplying Intensity(s) with current pixels of our gray image located in black re-
gions of our mask, (d) final image with smooth borders

10

3.4 Direction Normalization

Although our cameras’ positions are fixed and the root of a flame does not move
during an entire video, we are combining multiple videos with different dimen-
sions and volume. Their fuel is also replaced with a new material, and therefore it
is required to be repositioned and aligned at the center. Scaling and translation are
performed manually once for each video which is not tedious with our user-
interface. Nonetheless, translation could be performed automatically by tracking
static objects in the view (e.g. burning objects or upper part of the surface beneath
the fuel) and thresholding.

Using the vertices of the calculated contours , we are able to eliminate direction
factor from fire, which is performed by fitting a line using weighted least-squares
algorithm. After finding this line, we should trim it to calculate its length. Because
it is not clear which point is the first or the last point along this fitted line, all the
points should be projected into the line, and therefore farthest points are the end
points for cutting the line. Using this line, we can rotate our image around the start
point that is located in lower part of the line. Douglas-Peucker algorithm [6] is
employed to simplify the contour, and to eliminate unnecessary vertices. This is il-
lustrated in Fig. 5.

Fig. 5 Pose normalization. Top row: (left) original image, (right) auto-rotated image after pose
normalization by fitting a line. Note: the entire background will be darkened based on section
3.3. Bottom row: two contours with different levels of optimization that show almost the same
direction. The fitted line is illustrated with a pink color, including projected data points on it

11

The direction of flame should always start from somewhere around fuel or

burning object, but the line might be constructed incorrectly in another direction if
the width of a flame span horizontally and become shorter in height. We suggest
three techniques as remedy to this problem:

1) The best approach is optimizing the contour and converting it to a low poly
shape, in such a way that it only contains two points at the root; therefore it will
perfectly create the desired line for the entire images with a very low error rate. 2)
A user may set a region of interest before line fitting procedure, and increase the
number of the points in that area for the contour. 3) Special weights may be as-
signed to data points in the same region of interest.

Although auto-rotation yields interesting results for shape recognition, we de-
cided to disable it for video samples chosen for this paper after running a few ex-
periments. The reason is that the direction factor became part of our main eigen-
fires as an important feature. We explain it further in next sections.

4 Eigenfires and Their Characteristics

Principal components, represented as eigenfires, are calculated for 2700 frames of
our three fire samples based on algorithms described in [20]. The images are
cropped to 410x670 resolutions to speed up the process by avoiding unnecessary
calculations for the static background. Considering N as dimension of eigenvec-
tors, each image is dealt with as a single data point in N = 274,700 dimensional
space. Thus, the principal components are a series of vectors of N dimensions, and
because the number of images in space is less than the dimension of space, the
number of eigenfires (E) will be equal to the number of our data points (fire imag-
es) minus one.

Among the first 30 eigenfires which clearly express significant features of our
sample flames, the first 10 are mainly used as the foundation to reconstruct diverse
shapes of flames with smooth edges. By projecting fire images into its eigenfire, a
vector of weights will be constructed. Each weight represents contribution of its
eigenfire to form a fire. Since assigning a negative or positive value for weights
creates diverse styles of fire, we take advantage of that to scrutinize eigenfires,
and later to reconstruct a new flame which can be a combination of three flames.
The experiments suggest that with E = 700 eigenfires, we can properly identify
similar frames through recognition stage, since our reconstructed images only lose
some pixels (noise appearance) inside the boundaries of flames which is negligible
in detections. Likewise, employing a higher numbers of eigenfires but still below
50% of the total number of images (e.g. 700 < E < 1,200) would be sufficient for
high quality reconstructions or to obtain ridge effect. The reason is because losing

12

some data here means appearance of small bumps which is acceptable for fire
modeling.

Fig. 6 displays the average of fire images. The first nine eigenfires and another
three with lower eigenvalues are showed in Fig. 7. For better understanding of
how negative or positive values of weights may contribute to each fire image, we
give a simple but inaccurate explanation. First, assume a blank image as I. The in-
fluence of a negative value for a specific weight is similar to filling image I with a
mask, which is the corresponding eigenfire, using dark pixels of that eigenfire vis-
ible in Fig. 7. Similarly, a positive value fills image I using bright pixels of that
eigenfire (white pixels). The gray regions remain almost unchanged, such as
background. Although this is not a precise definition, it is what you may visually
perceive by changing weight for one specific eigenfire. The accurate definition of
a weight (w) and projection is subtracting an image I with average of images, and
then multiplying it with its eigenfire:

)(Average
T IIeigenfirew  (4)

The weights are numbers in range of [-15000, +15000] for our samples, and this
range changes based on the training set of images.

In our system, the eigenvectors are stored in separate 32-bit floating point im-
ages, and then converted to 8-bit gray images to be displayed as eigenfires for vis-
ualization purposes. Since our eigenvectors may contain very small decimal num-
bers, we need to perform the following scaling and shifting on the pixel values for
conversion to 8-bit images:

minmax

min

minmax

255255

pixelpixel

pixel
shifting

pixelpixel
scaling







 (5)

where minpixel and maxpixel are respectively the smallest and the biggest values

(slightly larger than zero) among N dimensions in each eigenvector.
Short descriptions of a few effective features are provided in Table 1 for their

relative principal components. Vague contributions are left blank in this table. We
reconstructed new flames with customized weights to observe the influence of
each eigenfire for this table, which is also partially predictable from Fig. 7.

To better understand the pattern between data points in PCA subspace, weights

of the first 10 eigenfires are illustrated in Fig. 8 using charts. For each video sam-
ple, 31 consecutive frames are depicted in clustered columns for comparison of
the patterns and changes of the weighs.

The data points of the first three principal components are also visualized in
3D, in Fig. 9. This figure shows that the data points related to each video are dis-
tributed in separate locations far from each other. The center of the coordinates
system is a vector of weights with zero values that produces an average image if

13

we reconstruct a point at that location. We labeled the data points corresponding to
each video with the same labels as already mentioned in Fig. 2.

Table 1 Features of the first ten principal components

Principal
Component

Feature Description Positive weight Negative weight

1 Direction of fire (a1) Toward left side Slightly toward right side

2 Direction of fire (a2) Toward right side Slightly toward left side

3 Height and width
Increasing height,
decreasing width

Decreasing height,
 increasing width

4 Opening the flame at the tip (b1)
Changing the tip to
two wide branches

-

5 Shape of the tip of flame - Cone shape

6 Volume Larger volume -

7 Opening the flame at the tip (b2) Two sharp branches Three sharp branches

8 Hole (c1)
A hole at the tip
(two branches)

Two holes in fire

9 General shape deformation - -

10 Hole (c2) A hole in middle -

Fig. 6 The average of fire images. A vector of weights with all values equal to zero will result
this average image as well. Choosing a positive or negative value for weights deforms this shape,
based on the corresponding eigenfire.

14

Fig. 7 Top three rows are showing the first nine principal components viewed as eigenfires. The
bottom row from left to right: principal components of 200, 1600 and 2400. It is obvious from
this row that eigenfires with smaller eigenvalues produce fine details and edges of our flames,
depicted as some sort of noise

15

Fig. 8 Weights assigned to 31 consecutive frames of our three sample videos are shown in clus-
tered columns using the first 10 eigenfires. The darkest color on the left side of each clustered
column starts with frame number 1, and brightest one ends with frame number 31 on the right
side, which are also indicated on the figure

Fig. 9 All M data points projected in PCA subspace, illustrated as a series of weights for the first
three eigenfires. Red, green and blue axes are the first, second and third principal components re-
spectively. Red, yellow and green points are labeled with their relative fire’s name (remember:
Fire A, B and C)

16

5 Eigen Fire Weight Adjustment for New Fire Creation

A few reconstructed images, which are projected into multiple dimensional spac-
es, are depicted in Fig. 10. The Hermite background removal method is utilized to
diminish undesirable artifacts from reconstructed images with lower dimensions,
and the quality is enhanced considerably.

Fig. 10 Projecting fire images into different dimensional spaces. Images of the first row from left
to right are reconstructed using: 200, 700, 1100 and 2699 eigenfires. The Second row shows that
the quality of the same images are improved with our Hermite background removal

In this approach, animators may load the calculated weights of a specific im-
age, and then manually increase or decrease the ratio of certain eigenfires via user-
interface to deform the shape of a flame. This way, the new image is displayed in
real-time for validation. Since our first 50 eigenfires carry major features of
flames, it is not even very tricky to start from scratch, by assigning zero values to
all the weights at the beginning, and then allocating new values for various eigen-
fires. The user may take a look at the generated eigenfires of the database, to find
out the influence of assigning a positive or negative value to each eigenfire. Fig.
11 illustrates a manually constructed image with manipulation of only 7 eigenfires
(0.002% of dimensions!).

Assigning small values to any eigenfire larger than 400 (e.g. 400 < E < 2700)
produces some fine details, which is similar to applying procedural noises. An in-
teresting property here is that by assigning small values to weights of those ranges
of eigenfires, most changes will appear over the white regions. It means our black
background usually remains unaffected or less affected. The drawback of manual
weight adjustment is difficulty of creating realistic animations.

17

Fig. 11 Manual weights are assigned to eigenfires of 1, 3, 4 and 10 for shape, and eigenfires of
50, 100 and 650 for distortions and some details. The rest are set to zero values

6 System Realization

We ran our experiments on a system with Intel Core i7-2600k 3.4GHz CPU and
8GB of memory. We developed our application with C++ language and cross-
platform Qt framework for user-interface. OpenGL 3.3 is also employed for 3D
visualization. The 64-bit implementation allows the users to process very large
video files, and virtual memory can take care of required memory which might not
be available physically on a working system.

Fig. 12 shows a screen-shot from our application. Using the optimized number
of E=700 eigenfires (74% compression), in addition to darkening background and
other functionalities of our system, it takes around 160 ms to reconstruct a new
image, which is at least 3 times faster than using all dimensions (450 ms using all
2699 eigenfires). It takes around 2 hours to prepare the initial database of eigen-
fires for 2700 images of 410x670. This total time includes both PCA calculations
and projecting all training images into PCA subspace, which are only performed
once and then saved as a library of fire. For 1000 images of the same resolution,
the total PCA calculation time is only 12 minutes.

7 Conclusions and Future Work

We introduced a novel approach to procedurally model fire by extracting the pat-
terns of the real flames using eigenfires, which is not based on unrealistic random
noises. We also proposed a few techniques, such as Hermite background removal
and contour detection, to improve the quality of the final images. As a result, we

18

can compress the database to 26% of entire size with dimensional reduction. Our
methods are fast and changes can be followed in real-time. Our research proves
the fact that PCA can be extended to further topics with similar concept of recon-
structing new images out of an extensive database.

Comparison of our sample videos recorded at both 30 fps and 60 fps reveal
some subtle but important changes of model in majority of frames. Accordingly,
more accurate results can be obtained from high-speed cameras that provide
1920x1080 full HD resolutions at frame rates of at least 300 fps, such as Phantom
HD Gold, Photron FastCam SA2 or recently Sony NEX-FS700 camera. Although
these cameras can record up to 2,000 fps at HD resolution, we do not suggest cap-
turing higher than 300 fps, as it will dramatically increase the processing time of
learning stage, and there will be very little variation among the shapes of consecu-
tive frames in fire, which can be ignored.

Fig. 12 A screen-shot from our system, showing recorded videos and contour detection

References

[1] Adabala, N. & Hughes, C. (2004), A Parametric model for real-time flickering fire, in
'Proceedings of Computer Animation and Social Agents(CASA)'.

[2] Amarasinghe, D. & Parberry, I. (2011), Towards fast, believable real-time rendering of burn-
ing objects in video games, in 'Proceedings of the 6th International Conference on Founda-
tions of Digital Games', ACM, New York, NY, USA, pp. 256--258.

[3] Beaudoin, P.; Paquet, S. & Poulin, P. (2001), Realistic and controllable fire simulation, in 'No
description on Graphics interface 2001', Canadian Information Processing Society, Toronto,
Ont., Canada, Canada, pp. 159--166.

[4] Crane, K.; Llamas, I. & Tariq, S.Nguyen, H., ed., (2007), Real Time Simulation and Render-
ing of 3D Fluids, Addison-Wesley, chapter 30.

[5] Dardas, N.H.; Petriu, E.M.; , "Hand gesture detection and recognition using principal compo-
nent analysis," Computational Intelligence for Measurement Systems and Applications
(CIMSA), 2011 IEEE International Conference on , vol., no., pp.1-6, 19-21 Sept. 2011

19

[6] Douglas, D. H. & Peucker, T. K. (2011), Algorithms for the Reduction of the Number of
Points Required to Represent a Digitized Line or its Caricature, John Wiley & Sons, Ltd, pp.
15--28.

[7] Fuller, A. R.; Krishnan, H.; Mahrous, K.; Hamann, B. & Joy, K. I. (2007), Real-time proce-
dural volumetric fire, in 'Proceedings of the 2007 symposium on Interactive 3D graphics and
games', ACM, New York, NY, USA, pp. 175--180.

[8] Harris, M. (2004), Fast Fluid Dynamics Simulation on the GPU, in Randima Fernando, ed.,
'GPU Gems', Addison-Wesley, , pp. 637--665.

[9] Hong, J.-M.; Shinar, T. & Fedkiw, R. (2007), Wrinkled flames and cellular patterns, in 'ACM
SIGGRAPH 2007 papers', ACM, New York, NY, USA.

[10] Horvath, C. & Geiger, W. (2009), Directable, high-resolution simulation of fire on the GPU,
in 'ACM SIGGRAPH 2009 papers', ACM, New York, NY, USA, pp. 41:1--41:8.

[11] Lamorlette, A. & Foster, N. (2002), Structural modeling of flames for a production envi-
ronment, in 'Proceedings of the 29th annual conference on Computer graphics and interactive
techniques', ACM, New York, NY, USA, pp. 729--735.

[12] Melek, Z. & Keyser, J. (2002), Interactive Simulation of Fire, in 'Proceedings of the 10th
Pacific Conference on Computer Graphics and Applications', IEEE Computer Society, Wash-
ington, DC, USA, pp. 431 - 432.

[13] Min, K. & Metaxas, D. (2007), 'A combustion-based technique for fire animation and visu-
alization', The Visual Computer 23, 679-687.

[14] Nguyen, D. Q.; Fedkiw, R. & Jensen, H. W. (2002), Physically based modeling and anima-
tion of fire, in 'Proceedings of the 29th annual conference on Computer graphics and interac-
tive techniques', ACM, New York, NY, USA, pp. 721--728.

[15] Pegoraro, V. & Parker, S. G. (2006), 'Physically-Based Realistic Fire Rendering''In Eu-
rographics Workshop on Natural Phenomena, E. Galin and N. Chiba (editors)', 237--244.

[16] Stam, J. (2003), Real-Time Fluid Dynamics for Games, in 'Proceedings of the Game Devel-
oper Conference'.

[17] Stam, J. (1999), Stable fluids, in 'Proceedings of the 26th annual conference on Computer
graphics and interactive techniques', ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, pp. 121--128.

[18] Stam, J. & Fiume, E. (1993), Turbulent wind fields for gaseous phenomena, in 'Proceedings
of the 20th annual conference on Computer graphics and interactive techniques', ACM, New
York, NY, USA, pp. 369--376.

[19] Suzuki, S. & Abe, K. (1985), 'Topological structural analysis of digitized binary images by
border following', Computer Vision, Graphics, and Image Processing 30(1), 32-46.

[20] Turk, M. & Pentland, A. (1991), 'Eigenfaces for recognition', J. Cognitive Neuroscience
3(1), 71--86.

[21] Vanzine, Y. & Vrajitoru, D. (2008), Pseudorandom Noise for Real-Time Volumetric Ren-
dering of Fire in a Production System, in 'Volume Graphics', pp. 129-136.

[22] Xi, P.; Lee, W.-S.; Frederico, G.; Joslin, C. & Zhou, L. (2006), Comprehending and trans-
ferring facial expressions based on statistical shape and texture models, in 'Proceedings of the
24th Computer Graphics International ', Springer-Verlag, Berlin, Heidelberg, pp. 265--276.

[23] Xi, P.; Lee, W.-S. & Shu, C. (2007), A Data-driven Approach to Human-body Cloning Us-
ing a Segmented Body Database, in 'Proceedings of the 15th Pacific Conference on Computer
Graphics and Applications', IEEE Computer Society, Washington, DC, USA, pp. 139--147.

