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Abstract.  Procedural modeling of fire has been very practical and popular, but 
most of them are based on random parameters for the purpose of creating realistic 
looking flames, while physical based modeling is closer to the realism, but suf-
fered by complicated algorithms and heavy computational requirement. Our new 
approach on fire does not use any physical parameters, but uses real-life fire imag-
es and applies image-based methods and statistical analysis. We visualize the 
shape and motion of fire to analyze them, which can be used a simple and realistic 
fire modeling. We employ principal component analysis (PCA) and take it to a 
new level by introducing “eigenfires”, which are eigenvectors of the covariance 
matrix of fire videos, from variety of high-definition videos of real fire to visualize 
and understand the track of fire movement and how different flames are located in 
various locations. Our system provides flexibility for the artists to manipulate the 
ordinary style of a flame and change it to another distinct shape using a series of 
weights that are assigned to each eigenfire. Our method is also efficient in terms 
of compact representation of fire motion as PCA allows compression by cutting 
high dimension data for almost the same quality of the video. 
 
Keywords:  Fire, Flame, Smoke, Fluid, Procedural, PCA, Eigenface, Eigenfire, 
Reconstruction. 

1   Introduction 

Fire is an important item for various computer generated scenes. A popular way is 
a physical based fire modeling and animation using physical equations and param-
eters, which we call as microscopic approach. This approach pays attention to the 
interaction among nearby particles and as a result, the fire is generated. However 
in naked eyes, the fire has certain degree of regulation and it has not been studied 
well yet. In this paper we employ image-based techniques to analyze global shape 
of real-life fire and its motion. 

Our method differs from conventional procedural fire modeling approaches. 
Although procedural methods might not always be highly realistic, they offer fast-
er, efficient and economical features. The purpose of our research is introducing a 
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technique that is procedural, but the results are more realistic-looking in compari-
son to available procedural approaches.  

Our primary idea of employing principal component analysis (PCA) for fire is 
inspired by previous works from Pengcheng Xi et al. [22][23] on the topics of fa-
cial expression, in which PCA was utilized to create new facial expression, other 
than the common use of PCA for recognitions [20][5]. Unlike the methods men-
tioned above, we do not put our effort on interpolations among feature points or 
contours, but on image-based reconstruction techniques. This advantage is be-
cause of our large database of images consists of thousands of frames, recorded 
from real small-scale flames with two professional HD video cameras at frame 
rates of 60 fps. Fig. 1 shows this setup.  

 

 

Fig. 1 The photograph of our setup for capturing small-scale flames 

After transforming our training set of fire images into “eigenfires”, which are 
the eigenvectors of the covariance matrix of our set of fire images, we perform 
different analysis and observations to determine appropriate PCA approach for the 
visualization of fire tracks. Then, we make them available to animators via a user-
friendly interface. Anyone is capable of building a new database of eigenfires with 
their own camera and video, or loading one from our pre-processed library. Unlike 
eigenfaces [20], which are principal components of the training set of face images 
and are displayed as ghostly faces, our eigenfires are exhibiting remarkable fea-
tures of fire after isolating the shape of flames by removing the background; Some 
features such as shape, volume, holes, length, direction, and even deformation of a 
single flame to small pieces of flames. 

 
Briefly, the following features outline the main capabilities of our system: 

 Combining several clips (ranges) of different fire videos as training set, and 
building a database of eigenfires  

 Background and noise removal, and image quality enhancement for PCA 
 Pose and direction normalization using fitting line algorithm 
 User’s control on contribution of each eigenfire by weight adjustment  
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In this paper, we present our results as two-dimensional sequence of images, 
and we only work on one view of videos even though Fig. 1 shows a setting with 
two cameras. The setting shown in Fig. 1 is aimed for 3D fire visualization, which 
is not discussed in this paper.  

2 Related Work 

Physically-based approaches: 

Despite the fact that physically-based approaches [16][17][15][12] require signifi-
cant amount of time to be processed, they mostly produce high quality visualiza-
tion of fire and are more realistic if the correct parameters are set by the users for 
the variables of dynamic fluid equations in the system. Nguyen et al. [14] use a 
semi-Lagrangian stable fluids approach to model both fire and smoke; one set of 
incompressible flow equations to model the fuel and another one for the hot gase-
ous products. Thermal buoyancy is an important part of their model that influ-
ences fluid velocity. In this model, the temperature rises up until reaching a specif-
ic degree to ignite the fuel. An implicit surface, which is called blue core region, is 
created to divide the regions between gaseous fuel and soot. A realistic color and 
rendering using a stochastic ray marching algorithm complete their model. A sto-
chastic Lagrangian approach and a chemical composition evolution model are 
used by Adabala et al. [1]. A combination of fluid and combustion models was 
discussed by Min and Metaxas [13], and Pegoraro and Parker [15] employed de-
tailed simulation of the radiative emission and refractive transfer to achieve realis-
tic renderings of fire. 

Simulation of gaseous phenomena in turbulent wind fields was depicted in [18] 
using a clustering algorithm, and the gas was modeled as a fuzzy blobby, in which 
advection term was responsible for moving a blob, and diffusion term to deform it 
by an advection-diffusion equation. Detonation shock dynamics (DSD) was used 
in a work by Hong et al. [9] to produce cellular patterns in flames. The fire is gen-
erated by coupling the third order DSD equations to the Navier-Stokes equations.  

Producing 3D high resolution flames was achieved by Horvath and Geiger [10] 
on GPU for VFX of movies. The first stage is a coarse particle grid simulation 
which would allow the users to direct and control the motion of fire. Next, fine de-
tails will be added in the refinement stage, consisting of specific number of cam-
era-facing image planes. Attributes of particles will be projected onto these planes. 
A GPU-based volume rendering and a farm of 10 GPUs make it feasible to obtain 
high quality results, which might not be affordable for a small business, or home 
users. Another drawback of this technique is the huge amount of processing time. 
Harris [8] describes mathematical background and implementation of 2D fluid 
simulations using Navier-Stokes equations for incompressible flow on the GPU, 
which significantly increased the performance in comparison to Stam’s simulation 
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on CPU [17][16]. Valuable GPU rendering tricks and implementations about dy-
namic fluids and fire are also discussed in Crane et al. [4], which is a useful refer-
ence for everyone. 

An advantage of our non-physical-based approach is that it supports basic users 
with no prior knowledge and experience of dynamic fluids or its technical terms, 
such as buoyancy, vorticity and viscosity, to produce an elementary fire.  

Procedural approaches: 

Current procedural approaches tend more to imitate the characteristics of real 
flames by utilizing procedural noises and offsetting methods to incorporate turbu-
lence into the fluid. 

 Fuller et al. [7] take advantage of the improved Perlin noise and M-Noise, and 
then combine them with an interesting curve-based volumetric free-form defor-
mation to create fire procedurally. Their 3D hardware-accelerated volumetric ren-
dering allows an artist to easily manipulate and deform the fire along a curve in 
real-time. Although the system produces a good looking fire, the animations are 
not close to natural fire, as it is a system solely based on random noises. However, 
we provide a similar noise feature as an additional option, but using an innovative 
idea which is user’s control on contribution of each eigenfire via weight adjust-
ment. 

Vanzine and Vrajitoru [21] integrate the same system as above into a 3D game 
engine, and discuss statistical results of performance obtained from different pro-
cedural noises with variety of volume sizes, using both DirectX and OpenGL. 

 Lamorlette and Foster [11] propose a technique that a flame profile is created 
from a set of points as spine of the flame, and it is based on observed statistical 
properties of real fire. This curve, or spine, can break and evolve with a combina-
tion of physics-based and procedural fields, and it deforms implicit surface of the 
flame. Particles are sampled on this surface, in addition to applying animated pro-
cedural noises, and then they can be rendered volumetrically. The complexity of 
working with such a system is the drawback here, in which an animator becomes 
productive within a week, while it takes less than 10 minutes to learn how to work 
with our system. 

Beaudoin et al. [3] represent fire as a small set of flames instead of working 
with large numbers of particles, and it can spread progressively over the meshes. 
Skeleton technique, which is a small group of connected particles, forms the flame 
animation and is moved by turbulent as a time-varying vector field. Flames are 
modeled using implicit surfaces and are obtained from these skeletons. Finally, the 
model is rendered using a ray tracing algorithm. This approach is also utilizing 
noise functions or user defined parameters for air velocity field to animate the 
skeletons of the flames, in which they actually reduce the realism. In our ap-
proach, we extract the natural patterns of fire instead of noise functions. 
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Amarasinghe and Parberry [2] discuss real-time rendering and deformation of 
burning objects on GPU, while generating procedural fire using particles. Alt-
hough the deformation of burning objects looks great, the low quality of generated 
fire makes it unbelievable as a natural phenomenon. Therefore, we considerably 
pay attention to the quality criteria and recommend proper numbers of eigenfires 
to prevent lowering the quality. 

3 Pre-Processing of  Real-Life Fire Images 

In our approach, we are not concerned with measuring physical properties of fire, 
but extracting global motions of real fire. Our large fire database includes variety 
of styles and motions we intentionally created and recorded. 

3.1   Recording Fire Video 

We captured our videos in uncompressed format for more accuracy. They sequen-
tially form variety of motions which can be analyzed in PCA space, in order to re-
construct new copies that are following a similar pattern when we put them to-
gether. We picked variety of materials as our fuel and ignited them in an isolated 
space, in absolute darkness in front of a black background. Although we collected 
8 varied video clips of fire, and more than 15,000 frames in total at 60fps, we 
chose the best three fire samples that we found suitable for this paper. We name 
those samples respectively as fire A (a torch with lighter fuel), B (a pack of three 
solid fuel cubes) and C (a single burning cube) throughout this paper. And con-
struct our results based on them. Fig. 2 shows one frame of selected three real-life 
flames without applying our background removal step. Videos A, B and C contain 
500, 1500 and 700 frames respectively in our experiments, which are comprised of 
2700 images in total. The videos will be cropped aligned at the center of their fuel 
or the burning object, so that our flames are centered, and a smooth morphing can 
be performed later among them while reconstructing new images. Because of our 
restricted setup and safety regulations, we could not place our fuel far from the 
background. Therefore, the brightness of flames illuminated our black background 
in some frames, and we will eliminate it by darkening process in section 3.3. 

Characteristics of our selected videos are as follows: Video A is a short flame 
with a small volume, repeatedly bended toward the left side of the view, and con-
tains mixtures of colors, such as blue and red around the fuel. Flame B consists of 
larger width and volume, in addition to a unique shape, in which constantly sepa-
rates into smaller flames or branches every couple of frames. This feature is slight-
ly visible in Fig. 2 at the tip of flame. The third sample, fire C, includes a higher 



6  

length, smaller width in comparison to the second sample, and more distortions 
due to external forces (e.g. wind) which are made intentionally during recording. 

 

 

Fig. 2  Original recorded video samples chosen for this paper, cropped in this figure. (A) A small 
torch soaked in lighter fuel, (B) a pack of three solid fuel cubes, and (C) a single burning cube 

3.2   Contour Detection 

The first step for preparation of images is detecting contour of the flames, which is 
for the purpose of background removal, pose normalization, and detection of dif-
ferent color regions. There are many techniques that can be used to extract infor-
mation about the boundaries of different objects from images. Standard snake, 
gradient vector flow snake, contracting curve density algorithm (CCD) are a few 
methods of shape matching to approximate the object’s contour. However, based 
on our previous experiments and observations, we found them time-consuming, 
CPU intensive, and not proper for moving shapes, such as fluids. Utilizing these 
methods make the process of the detection non real-time or tedious for thousands 
of images of videos in HD format, and different results might be received with 
slight changes for consecutive frames of the same fire, due to minor errors in de-
tections. Because of high intensity and brightness of flames in comparison to our 
darker background, we figured out working on range of colors directs us to obtain 
proper contours which are more consistent throughout the entire video while the 
shape of our flames changes constantly. 

Finding specific range of colors is not easy in RGB color space. For example, 
we can detect how much of the red color is included in a specific pixel by simple 
comparison of values in the red component, but it is not easy to recognize that the 
final color of the pixel is still red after combining it with blue and green compo-
nents. Thus, we take advantage of HSV color space, and convert our RGB images 
into HSV color space. The user may define minimum and maximum thresholds 
for ranges of “hue”, “saturation” and “value” to pick specific pixels, and create a 
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mask image for them. Based on its cylindrical geometry, we may choose mini-
mum and maximum pure colors for Hue to find any combination of them (e.g. 
finding orange color between red and yellow). Similarly, Value and Saturation as-
sist us to accept or reject that color based on the amount of colorfulness or bright-
ness. This step can be repeated a few times if more regions for separate range of 
colors must be removed or kept untouched (e.g. blue or green color of the flames 
in specific frames). Our mask can be created using the following formula: 
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where ),( yxp  is a pixel on the image in HSV space at pixel location of ),( yx , and 
),( yxM  is our binary map that can be used to extract our contours. 

Morphological operations can be employed to filter out potential noises. Our 
application allows the users to apply well-known filters and operations (e.g. Dila-
tion, Erosion, Opening, Closing, Gaussian smoothing, contour optimization, hole 
removal, etc.) based on a bottom-up layer style for minor improvements, to obtain 
a consistent contour for the entire video. It should be considered that all the em-
ployed techniques will be applied to the entire frames of the video to eliminate or 
reduce the need of manual changes for specific frames. As a result, more inspec-
tion of techniques was required in comparison to regular image based approaches.  

Using Canny edge detection algorithm, binary thresholding and border follow-
ing algorithm [19], contours were retrieved from the binary mask we created. Fire 
is not always a closed shape, and it can split or create a hole in a few frames. We 
therefore store our contours hierarchically in a tree, to be able to remove unwanted 
contours based on a depth level system assigned to each of them. The area inside 
each contour is also calculated and stored. We call this as “Hole Removal”, which 
can be area-based or depth-based, to eliminate specific small contours that appear 
unexpectedly during an entire video. Finally, Douglas-Peucker algorithm [6] is 
used to optimize and approximate the contours whenever required. Fig. 3 shows 
the process of our contour detection. A depth level of “0” means the contour is 
separate from other detected ones, and depth level of “1” indicates a contour 
which is one level inside another one, and so forth.  
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Fig. 3 An example of contour detection. The top row: (Left) all detected contours with any pos-
sible depth levels, (middle) contours with depth levels of only zero, in addition to area-based re-
striction of specific number of pixels, (right) the original image of fire. The lower images illus-
trate the corresponding contours of the top row separately. 

3.3   Hermite Background Removal 

As we already discussed, luminosity of flames brightened both background and 
smoke. We are planning to diminish that undesirable brightness by a darkening 
process outside the contours. It is important to preserve the smooth shape of the 
fire, specifically around contours. We are trying to take advantage of this smooth-
ness to produce images with soft corners while calculating eigenfires. In majority 
of previous works that PCA was used such as [20][22][23], the images had been 
modified in such a way that the background was ignored outside the target with 
sharp boundaries. The reason is that they are mostly interested in detection and 
comparison of features inside the objects.  The difference is obvious from compar-
ison of the average of training images. In our initial experiments, we removed are-
as outside the contours by directly assigning zero values to every pixel, and in-
stead we could only produce flames with numerous layers of sharp edges, even by 
using a huge training set of images. It should be noted that eigenfires are highly 
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relevant to our average image, and therefore we can avoid unexpected artifacts 
during reconstruction while using small number of dimensions.  

After experimenting with linear, cubic and Hermite curve approaches, we real-
ized that the second Hermite basis function yields smooth transitions from pixels 
with very high intensities to the pixels with low intensities. The equation of this 
basis function and our intensity criteria are as follows: 

 ]1,0[32)( 23  SSSSIntensity  (2) 
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where S  is a number in range of ]1,0[  which is based on two values of maximum 

and minimum intensities, and are set by animators. The value of any pixels with 
intensity of higher than maxI does not change, but any pixels lower than minI  be-

come zero or black. Any pixel between them will be gradually darkened in respect 
to )(SIntensity , and finally produces a smooth transition of intensities.  

To get better results, we can consider our calculated contour of the flame as a 
bitmap mask and then ignore any changes of intensities inside the contour region. 
The result of this technique is shown in Fig. 4. 
 

 
(a) (b) (c) (d) 

Fig. 4  Hermite Background removal process. (a) Original RGB image converted to gray to be 

prepared for PCA, (b) a mask by choosing 220max I and 110min I , (c) modified pixels 

obtained from multiplying Intensity(s) with current pixels of our gray image located in black re-
gions of our mask, (d) final image with smooth borders 
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3.4   Direction Normalization 

Although our cameras’ positions are fixed and the root of a flame does not move 
during an entire video, we are combining multiple videos with different dimen-
sions and volume. Their fuel is also replaced with a new material, and therefore it 
is required to be repositioned and aligned at the center. Scaling and translation are 
performed manually once for each video which is not tedious with our user-
interface. Nonetheless, translation could be performed automatically by tracking 
static objects in the view (e.g. burning objects or upper part of the surface beneath 
the fuel) and thresholding. 

Using the vertices of the calculated contours , we are able to eliminate direction 
factor from fire, which is performed by fitting a line using weighted least-squares 
algorithm. After finding this line, we should trim it to calculate its length. Because 
it is not clear which point is the first or the last point along this fitted line, all the 
points should be projected into the line, and therefore farthest points are the end 
points for cutting the line. Using this line, we can rotate our image around the start 
point that is located in lower part of the line. Douglas-Peucker algorithm [6] is 
employed to simplify the contour, and to eliminate unnecessary vertices. This is il-
lustrated in Fig. 5.  

 

 

Fig. 5 Pose normalization. Top row: (left) original image, (right) auto-rotated image after pose 
normalization by fitting a line. Note: the entire background will be darkened based on section 
3.3. Bottom row: two contours with different levels of optimization that show almost the same 
direction. The fitted line is illustrated with a pink color, including projected data points on it 
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The direction of flame should always start from somewhere around fuel or 

burning object, but the line might be constructed incorrectly in another direction if 
the width of a flame span horizontally and become shorter in height. We suggest 
three techniques as remedy to this problem:  

1) The best approach is optimizing the contour and converting it to a low poly 
shape, in such a way that it only contains two points at the root; therefore it will 
perfectly create the desired line for the entire images with a very low error rate. 2) 
A user may set a region of interest before line fitting procedure, and increase the 
number of the points in that area for the contour. 3) Special weights may be as-
signed to data points in the same region of interest. 

Although auto-rotation yields interesting results for shape recognition, we de-
cided to disable it for video samples chosen for this paper after running a few ex-
periments. The reason is that the direction factor became part of our main eigen-
fires as an important feature. We explain it further in next sections. 

4 Eigenfires and Their Characteristics 

Principal components, represented as eigenfires, are calculated for 2700 frames of 
our three fire samples based on algorithms described in [20]. The images are 
cropped to 410x670 resolutions to speed up the process by avoiding unnecessary 
calculations for the static background. Considering N as dimension of eigenvec-
tors, each image is dealt with as a single data point in N = 274,700 dimensional 
space. Thus, the principal components are a series of vectors of N dimensions, and 
because the number of images in space is less than the dimension of space, the 
number of eigenfires (E) will be equal to the number of our data points (fire imag-
es) minus one.  

Among the first 30 eigenfires which clearly express significant features of our 
sample flames, the first 10 are mainly used as the foundation to reconstruct diverse 
shapes of flames with smooth edges. By projecting fire images into its eigenfire, a 
vector of weights will be constructed. Each weight represents contribution of its 
eigenfire to form a fire. Since assigning a negative or positive value for weights 
creates diverse styles of fire, we take advantage of that to scrutinize eigenfires, 
and later to reconstruct a new flame which can be a combination of three flames. 
The experiments suggest that with E = 700 eigenfires, we can properly identify 
similar frames through recognition stage, since our reconstructed images only lose 
some pixels (noise appearance) inside the boundaries of flames which is negligible 
in detections. Likewise, employing a higher numbers of eigenfires but still below 
50% of the total number of images (e.g. 700 < E < 1,200) would be sufficient for 
high quality reconstructions or to obtain ridge effect. The reason is because losing 
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some data here means appearance of small bumps which is acceptable for fire 
modeling. 

Fig. 6 displays the average of fire images. The first nine eigenfires and another 
three with lower eigenvalues are showed in Fig. 7. For better understanding of 
how negative or positive values of weights may contribute to each fire image, we 
give a simple but inaccurate explanation. First, assume a blank image as I. The in-
fluence of a negative value for a specific weight is similar to filling image I with a 
mask, which is the corresponding eigenfire, using dark pixels of that eigenfire vis-
ible in Fig. 7. Similarly, a positive value fills image I using bright pixels of that 
eigenfire (white pixels). The gray regions remain almost unchanged, such as 
background. Although this is not a precise definition, it is what you may visually 
perceive by changing weight for one specific eigenfire. The accurate definition of 
a weight ( w ) and projection is subtracting an image I with average of images, and 
then multiplying it with its eigenfire: 

 )( Average
T IIeigenfirew   (4) 

The weights are numbers in range of [-15000, +15000] for our samples, and this 
range changes based on the training set of images.  

In our system, the eigenvectors are stored in separate 32-bit floating point im-
ages, and then converted to 8-bit gray images to be displayed as eigenfires for vis-
ualization purposes. Since our eigenvectors may contain very small decimal num-
bers, we need to perform the following scaling and shifting on the pixel values for 
conversion to 8-bit images: 
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where minpixel and maxpixel  are respectively the smallest and the biggest values 

(slightly larger than zero) among N dimensions in each eigenvector. 
Short descriptions of a few effective features are provided in Table 1 for their 

relative principal components. Vague contributions are left blank in this table. We 
reconstructed new flames with customized weights to observe the influence of 
each eigenfire for this table, which is also partially predictable from Fig. 7. 

 
To better understand the pattern between data points in PCA subspace, weights 

of the first 10 eigenfires are illustrated in Fig. 8 using charts. For each video sam-
ple, 31 consecutive frames are depicted in clustered columns for comparison of 
the patterns and changes of the weighs. 

The data points of the first three principal components are also visualized in 
3D, in Fig. 9. This figure shows that the data points related to each video are dis-
tributed in separate locations far from each other. The center of the coordinates 
system is a vector of weights with zero values that produces an average image if 
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we reconstruct a point at that location. We labeled the data points corresponding to 
each video with the same labels as already mentioned in Fig. 2.  
 

Table 1 Features of the first ten principal components 

Principal 
Component 

Feature Description Positive weight Negative weight 

 

1 Direction of fire (a1) Toward left side Slightly toward right side 

2 Direction of fire (a2) Toward right side Slightly toward left side 

3 Height and width 
Increasing height,  
decreasing width 

Decreasing height, 
 increasing width 

4 Opening the flame at the tip (b1) 
Changing the tip to 
two wide branches 

- 

5 Shape of the tip of flame - Cone shape 

6 Volume Larger volume - 

7 Opening the flame at the tip (b2) Two sharp branches Three sharp branches 

8 Hole (c1) 
A hole at the tip  
(two branches) 

Two holes in fire 

9 General shape deformation - - 

10 Hole (c2) A hole in middle - 

 
 

 

Fig. 6 The average of fire images. A vector of weights with all values equal to zero will result 
this average image as well. Choosing a positive or negative value for weights deforms this shape, 
based on the corresponding eigenfire. 
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Fig. 7 Top three rows are showing the first nine principal components viewed as eigenfires. The 
bottom row from left to right: principal components of 200, 1600 and 2400. It is obvious from 
this row that eigenfires with smaller eigenvalues produce fine details and edges of our flames, 
depicted as some sort of noise 
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Fig. 8 Weights assigned to 31 consecutive frames of our three sample videos are shown in clus-
tered columns using the first 10 eigenfires. The darkest color on the left side of each clustered 
column starts with frame number 1, and brightest one ends with frame number 31 on the right 
side, which are also indicated on the figure 

 

Fig. 9 All M data points projected in PCA subspace, illustrated as a series of weights for the first 
three eigenfires. Red, green and blue axes are the first, second and third principal components re-
spectively. Red, yellow and green points are labeled with their relative fire’s name (remember: 
Fire A, B and C) 
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5 Eigen Fire Weight Adjustment for New Fire Creation 

A few reconstructed images, which are projected into multiple dimensional spac-
es, are depicted in Fig. 10. The Hermite background removal method is utilized to 
diminish undesirable artifacts from reconstructed images with lower dimensions, 
and the quality is enhanced considerably. 
 

 

Fig. 10 Projecting fire images into different dimensional spaces. Images of the first row from left 
to right are reconstructed using: 200, 700, 1100 and 2699 eigenfires. The Second row shows that 
the quality of the same images are improved with our Hermite background removal 
 

In this approach, animators may load the calculated weights of a specific im-
age, and then manually increase or decrease the ratio of certain eigenfires via user-
interface to deform the shape of a flame. This way, the new image is displayed in 
real-time for validation. Since our first 50 eigenfires carry major features of 
flames, it is not even very tricky to start from scratch, by assigning zero values to 
all the weights at the beginning, and then allocating new values for various eigen-
fires. The user may take a look at the generated eigenfires of the database, to find 
out the influence of assigning a positive or negative value to each eigenfire. Fig. 
11 illustrates a manually constructed image with manipulation of only 7 eigenfires 
(0.002% of dimensions!).  

Assigning small values to any eigenfire larger than 400 (e.g. 400 < E < 2700) 
produces some fine details, which is similar to applying procedural noises. An in-
teresting property here is that by assigning small values to weights of those ranges 
of eigenfires, most changes will appear over the white regions. It means our black 
background usually remains unaffected or less affected. The drawback of manual 
weight adjustment is difficulty of creating realistic animations. 
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Fig. 11  Manual weights are assigned to eigenfires of 1, 3, 4 and 10 for shape, and eigenfires of 
50, 100 and 650 for distortions and some details. The rest are set to zero values 

6 System Realization 

We ran our experiments on a system with Intel Core i7-2600k 3.4GHz CPU and 
8GB of memory. We developed our application with C++ language and cross-
platform Qt framework for user-interface. OpenGL 3.3 is also employed for 3D 
visualization. The 64-bit implementation allows the users to process very large 
video files, and virtual memory can take care of required memory which might not 
be available physically on a working system.  

Fig. 12 shows a screen-shot from our application. Using the optimized number 
of E=700 eigenfires (74% compression), in addition to darkening background and 
other functionalities of our system, it takes around 160 ms to reconstruct a new 
image, which is at least 3 times faster than using all dimensions (450 ms using all 
2699 eigenfires). It takes around 2 hours to prepare the initial database of eigen-
fires for 2700 images of 410x670. This total time includes both PCA calculations 
and projecting all training images into PCA subspace, which are only performed 
once and then saved as a library of fire. For 1000 images of the same resolution, 
the total PCA calculation time is only 12 minutes. 

 

7 Conclusions and Future Work 

We introduced a novel approach to procedurally model fire by extracting the pat-
terns of the real flames using eigenfires, which is not based on unrealistic random 
noises. We also proposed a few techniques, such as Hermite background removal 
and contour detection, to improve the quality of the final images. As a result, we 
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can compress the database to 26% of entire size with dimensional reduction. Our 
methods are fast and changes can be followed in real-time. Our research proves 
the fact that PCA can be extended to further topics with similar concept of recon-
structing new images out of an extensive database. 

Comparison of our sample videos recorded at both 30 fps and 60 fps reveal 
some subtle but important changes of model in majority of frames. Accordingly, 
more accurate results can be obtained from high-speed cameras that provide 
1920x1080 full HD resolutions at frame rates of at least 300 fps, such as Phantom 
HD Gold, Photron FastCam SA2 or recently Sony NEX-FS700 camera. Although 
these cameras can record up to 2,000 fps at HD resolution, we do not suggest cap-
turing higher than 300 fps, as it will dramatically increase the processing time of 
learning stage, and there will be very little variation among the shapes of consecu-
tive frames in fire, which can be ignored. 
 

 

Fig. 12 A screen-shot from our system, showing recorded videos and contour detection  
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