
An Incremental Parallel Particle Swarm Approach for Classification Rule Discovery 
from Dynamic Data 

Kaveh Hassani and Won-Sook Lee 
School of Electrical Engineering and Computer Science  

University of Ottawa 
Ottawa, Canada 

kaveh.hassani@uottawa.ca and wslee@uottawa.ca 

Abstract— classification is a supervised learning technique 
that predicts the classes of unobserved data by employing a
model built from available data. One of the efficient ways to 
represent this predictive model is to express it as an optimal set of 
classification rules to provide comprehensibility and precision, 
simultaneously. In this paper, we propose a novel incremental 
parallel Particle Swarm Optimization (PSO) approach for 
classification rule discovery. Our proposed method separates the 
training data into a set of data chunks regarding the classes and 
extracts optimal set of classification rules for each chunk in a 
parallel manner. In order to extract the rules from data chunks, 
we introduce an incremental PSO algorithm in which the 
previously extracted rules are directly employed to initialize the 
swarm population. Moreover, in each generation of the swarm, a 
tournament method is employed to substitute the weak 
individuals with strong extracted knowledge. To support the 
parallelism, we assign a PSO thread for each data chunk. As soon 
as all the PSO threads are completed, the extracted rules are 
integrated into a rule-base to construct a classification model. 
The evaluation results of the proposed approach on six datasets 
suggest that the classification precision of our proposed 
framework is competitive with offline learning methods and is 
35% faster than its counterpart offline PSO approach. 

Keywords—classification; rule discovery; incremental learning; 
parallel computation; particle swarm optimization 

I. INTRODUCTION

Data classification is the most applied supervised machine 
learning approach whose goal is to predict the class of 
unobserved data. It employs a set of available data samples and 
their classes to construct a model able to predict the classes of 
new data objects. Regarding knowledge representation scheme, 
data classification methods can be categorized as rule based 
and non-rule based approaches [1]. Rule based methods 
construct the classification model as a set of explicit rules. C4.5 
decision tree [2] and RIPPER rule learner [3] are examples of 
rule based classifiers.  Mostly, the rule based classification 
methods exploit a set of IF-THEN prediction rules which 
benefit from semantic symbolic knowledge representation and 
enhanced comprehensibility [4]. Antecedents of each rule are 
usually in conjunctive normal form (CNF) with features as 
literals, and the consequent is the predicted class. Fuzzy 
classifier is an other example of rule based classifiers that 
allows modeling of uncertainties and interpolation between 
rules [5,6]. Non-rule based approaches are black box models
that represent the discovered knowledge implicitly. Although 

these methods tend to have high accuracy, they have low 
comprehensibility. Support vector machines [7] and Artificial 
Neural Networks (ANN) [8] are examples of non-rule based 
classification methods. 

Moreover, regarding employed learning scheme, classifiers 
can be categorized to offline and incremental systems. In 
offline learning approach (i.e. batch training), it is assumed that 
the training data is static and completely available in the initial 
stage of the learning process. On the other hand, in incremental 
learning (i.e. online or adaptive learning), the system learns the 
model from dynamic data stream. In offline learning, if the 
training data changes after the learning process, the constructed 
model is invalidated and a new model is generated, whereas in 
incremental learning, the constructed model is modified in 
response to data changes. In addition to the fact that finding 
accurate and complete training data in the initial stage is 
difficult, big training data is not memory resident (i.e. page 
swapping overload) which leads to slow model construction 
and storage space problems [9]. In real world applications, the 
training data can change in three possible ways including: 
availability of new training data, availability of new features, 
and availability of new classes [10]. 

Extracting optimal set of classification rules from a data set 
is an NP-complete problem [11], and its complexity increases 
significantly with dynamic training data. There are three 
possible options for extracting these rules. The first option is to 
construct a model by employing non-rule based approaches and 
then extract set of rules from the model. Although this 
approach provides accurate results, it is not efficient (e.g. 
generating symbolic rules from a neural network is an NP-hard 
problem [12]). The second option is to utilize greedy rule based 
approaches such as decision trees. Although these methods 
demonstrate high performance, they tend to get trapped in 
locally optimal solutions. Finally, the third option is to exploit 
meta-heuristic methods. Although most of these methods  
suffer from low convergence speed, they are able to reach the 
globally optimal solutions. 

Particle Swarm Optimization (PSO) algorithm introduced 
by Eberhart and Kennedy [13] is a swarm intelligence (SI) 
based meta-heuristic that imitates the individual and social 
behavior of flocks of birds to find the globally optimal 
solutions within the problem hyperspace. Elbeltagia, Hegazyb, 
and Griersonb compared the performance of five evolutionary 
and SI algorithms including genetic algorithm (GA), memetic 
algorithm (MA), ant colony optimization (ACO), shuffled frog
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leaping algorithm (SFLA), and PSO in solving benchmark 
problems. They concluded that the PSO method generally 
outperforms other algorithms in terms of success rate, solution 
quality and processing time [14]. Moreover, it is shown that the 
PSO algorithm provides more successful results than the 
artificial bee colony (ABC) algorithm [15]. Prado, Galan, 
Exposito and Yuste proved that PSO achieves a faster 
convergence than the GA [16]. Finally, Akay experimentally 
showed that the PSO is scalable and its processing time grows 
at a linear rate with respect to the size of the problem [17].

In this paper, we propose a novel incremental parallel PSO 
(IPPSO) approach for classification rule discovery based on the 
methods proposed in [18,19]. Our proposed method employs a 
separate and conquer approach [20] to separate the training 
data into a set of data chunks regarding the classes and extracts 
optimal set of classification rules for each chunk in a parallel 
manner. To extract the rules from data chunks, we introduce an 
incremental PSO algorithm in which the previously extracted 
rules are directly employed to initialize the swarm population. 
Moreover, in each generation, a tournament selection method is 
employed to substitute the weak individuals with strong 
extracted knowledge. In order to support the parallelism, we 
assign a PSO thread for each data chunk. As soon as all the 
PSO threads are completed, the extracted rules are integrated 
into a rule-base to construct a classification model. The paper is 
organized as follows: in section 2 an overview of related work 
is presented. In section 3, we describe our proposed 
incremental parallel PSO-based approach. In section 4, we 
discuss the evaluations and experimental results. Finally, 
section 5 concludes the paper. 

II. RELATED WORK

Many studies have employed SI techniques for 
classification rule discovery. Ant-miner [21], ABC-miner [22]
and MOPSO-P [23] are examples of classifiers that utilize 
ACO, ABC and PSO, respectively. Also, many classification 
rule mining algorithms are constructed based on evolutionary 
approaches such as GA [24], SFLA [25], MA [26], genetic 
programming (GP) [27] and gene expression programming 
(GEP) [28]. GA and PSO are the most frequent biologically 
inspired algorithms applied for classification rule mining. 
Regarding individual representation, they are categorized to 
Michigan and Pittsburgh approaches. In the Michigan approach 
each individual represents a single rule, whereas in the 
Pittsburgh approach each individual encodes a set of rules [29].
As far as the authors’ knowledge is concerned, proposed 
methods in literature mostly employ Michigan approach. 

Au, Chan, and Yao proposed data mining by evolutionary 
learning (DMEL) algorithm to handle classification problem.  
Their proposed method initializes the population by a 
probabilistic induction technique. The initial population 
consists of a set of first-order rules which are expanded 
iteratively [24]. Chan, Chiang, and Fu introduced a two-phase 
multi-objective evolutionary algorithm which first searches 
decent rules and then produces the final rule sets regarding rule 
interactions [1]. Guan and Zhu employed GA as a basic 
learning algorithm for incremental learning within classifier 
agents in a multi-agent environment [10]. Bakirli, Birant, and 
Kut devised an incremental GA for classification. Their 

proposed approach initializes the population by extracted 
knowledge from previous training steps [18]. Dehuria, 
Patnaika, Ghoshb, and Mallc presented an elitist multi-
objective GA (EMOGA) for mining classification rules from 
large databases by emphasizing on predictive accuracy, 
comprehensibility and interestingness of the rules [30]. Lu, 
Yang, Li, and Wang proposed a multi-objective evolutionary 
algorithm called improved niched Pareto genetic algorithm 
(INPGA) for mining multi-objective rules from large databases 
[31]. Another multi-objective evolutionary-based method for 
mining classification rules is proposed in [32].  

Although GA is a well-founded and frequently applied 
algorithm with high exploration capability, it suffers from two 
pitfalls: low exploitation and convergence speed. On the other 
hand, PSO is able to reach the globally optimal solution within 
a few iterations. In literature, it has been experimentally shown 
that PSO-based classification outperforms ACO (e.g. Ant-
Miner), GA (e.g. ESIA and OCEC),  estimation of distribution 
algorithm (EDA), artificial immune systems (AIS), self-
organizing map (e.g. 2D-SOM), multi-layer perceptron (MLP),
radial basis function ANN (RBF), k-nearest neighbor algorithm 
(k-NN), k-Means, KStar, Bagging, Multi-BoostAB, naive 
Bayes tree (NBTree), ripple down rule (Ridor), voting feature 
interval (VFI), C4.5 decision tree, and Bayes Net classifiers [4, 
33-36]. Furthermore, Sousa, Silva, and Neves suggested that 
discrete PSO (DPSO) outperforms constricted PSO (CPSO), 
linear decreasing weight PSO (LDWPSO), GA and C4.5 in 
classification tasks with nominal data [37].  

Some research works have employed multi-objective PSO 
(MOPSO) for classification rule mining to satisfy 
incommensurable and conflicting criteria such as predictive 
accuracy and comprehensibility [33, 38-39]. MOPSO-P [23]
and MOPSO-RL [40] are examples of MOPSO classifiers. 
Connolly, Granger, and Sabourin proposed an incremental 
learning strategy based on aggregated dynamical niching PSO 
(ADNPSO) to evolve heterogeneous classifier ensembles in 
response to new reference data. They applied their proposed 
framework for real time video face recognition [41]. Zhao, 
Zeng, Gao, and Yang employed a PSO algorithm to extract an 
optimal group of fuzzy classification rules [42]. Chen and 
Ludwig devised a PSO-based discrete implementation with a 
local search strategy (DPSO-LS) to find the best possible 
classification model [43]. Moreover, some research works have 
introduced hybrid PSO methods for classification rule mining. 
Hybrid PSO-ACO [44], immune-based PSO [9] and rough set-
based PSO [45] are examples of hybrid classification rule 
discovery methods introduced in literature. 

III. PROPOSED CLASSIFICATION APPROACH

Our proposed framework for incremental and parallel 
classification rule discovery is shown in Fig. 1. This 
framework consistently receives training data chunks and 
modifies its classification model in a way that it can address 
both old and new data. When a new training data chunk 
arrives, a fast preprocessing step refines the data and splits it 
into smaller chunks regarding the class each data object 
belongs to. Then, for each split data sub-chunk, a thread is 
assigned whose core function implements an IPPSO algorithm. 
By employing this method, we concurrently extract 
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classification rules for all classes. Once all threads are stopped, 
the resulted rules are directly extracted from fittest individuals, 
and then are integrated as a classification model. During the 
rule extraction process, the extracted rules from previous data 
chunks are directly injected into IPPSO algorithm. This 
mechanism supports the individuals with a compact knowledge 
that represents the data seen so far, and let them to modify it in 
a way that it can represent both old and new data. Finally, the 
extracted rules are pruned regarding their support count (i.e. 
those rules whose support count is less than minimum support 
count are removed). Furthermore, the old and new data are 
accumulated in a repository and the accuracy of the extracted 
model is tested by classifying data samples from that 
repository. In other words, we construct the model by new data 
and test its performance by both old and new data. 

A. Individual Representation 
We employ Michigan approach for the individual 

representation where each individual represents a single rule.
Furthermore, we utilize bitmap indexing approach for rule 
encoding, which assigns a bit for each possible value of the 
feature. In this encoding, if all the bits of a feature equal to 0 or 
1, the feature will be considered as a “do not care”. As an 
example, suppose that training data consists of two features: A1
and A2. The first feature consists of three possible values {a11,
a12, a13}, and the second feature has two distinct values {a21,
a22}. In this case, each individual will consist of five bits where 
the first three bits represent the first feature and the last two bits 
encode the second feature. Thus, a binary string such as 10101
will represent the rule shown in (1). 

� IF (A1=a11 OR A1=a13) AND (A2=a22) THEN Class=Ci� ����

B. IPPSO Algorithm 
Our proposed PSO algorithm, shown in Fig. 2, is a binary 

PSO. The first step in this algorithm is to initialize the swarm. 
We have adopted the method introduced in [18] to populate the 
initial swarm. In this method, instead of initializing the swarm 
randomly, we employ the extracted rules to generate 
individuals. To do so, we apply a roulette wheel to select which 
rules to be copied to the individuals. Those rules that have 
higher support count (i.e. number of instances they cover) have 
better chances of being overwritten in initial population. After 
initializing the swarm, the optimization loop begins. The first 
method within the loop evaluates the particles. The particle’s 
fitness equals to well-known Fβ measure as shown in (2).  

�
2

2

(1 ) precision recallF
precision recall�

�
�
� � �

	
� �

� �
��

where β determines the precision and recall weights. 
Classification precision and recall (i.e. sensitivity) criteria are 
computed by (3). 

�    ,   TP TPprecision recall
TP FP TP FN

	 	
� �

� ����

Figure 1. Our proposed framework for classification rule discovery by 
employing incremental parallel PSO algorithm. 

where TP refers to the number of positive data objects that 
are correctly classified, FP is the number of negative instances 
that are incorrectly classified, and FN refers to positive objects 
that are mislabeled as negative.

As soon as the evaluation process is completed, the 
particles’ velocity and position vectors are updated. We applied 
binary PSO algorithm introduced in [19] for this purpose which 
exploits a probabilistic updating model. It computes the 
probability of changing a bit in the position vector based on its 
corresponding value in personal and global best particles. 
Intuitively, the probability of changing a bit to 0 is high, if the 
corresponding bit in both global and personal bests is 0.  

We have added a new function to the conventional PSO 
algorithm to reinforce the swarm. This function utilizes a 
tournament selection method to select one candidate particle 
from swarm and one candidate rule from classification model 
constructed previously. In order to select the candidate particle, 
it randomly selects m particles (i.e. m is fairly smaller than 
swarm size) and determines the weakest (i.e. lowest fitness) 
particle among selected particles as the candidate. On the other 
hand, it uses same method to select the candidate rule. 
However, it defines the candidate rule as the rule with greatest 
support count among the selected rules. Finally, it overwrites 
the selected rule on the selected particle to reinforce the swarm.  

Stochastic characteristic of the tournament selection 
prevents the algorithm from getting trapped in local optimums 
and enhances the convergence speed and accuracy of the 
classification model. When the reinforcement phase is 
completed, the best personal and global vectors are updated.  

1.   Initialize swarm (Extracted Rules)
2.   While (NOT satisfactory fitness)
3.   {
4.      Evaluate Swarm ( )
5.     Update Velocity ( )
6.     Update Position ( )
7.        Reinforce Swarm ( )
8.    Update Personal Bests ( )
9.      Update Global Best ( )
10. }
11.  Return Global Best ( )

Figure 2. Proposed PSO algorithm for incremental learning. 
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IV. EXPERIMENTAL RESULTS

In order to evaluate the proposed method, we conducted 
two experiments. The goal of the first experiment is to evaluate 
the accuracy of classifier constructed by PSO algorithm in 
offline training mode and comparing it to the well-known 
classifiers. To do so, six datasets are utilized from UCI 
machine learning repository. The characteristics of datasets are 
shown in Table I. These datasets present a proper distribution 
of different characteristics. We employed WEKA data mining
software for data preprocessing (i.e. removing noise, replacing 
missing values, data normalizing, and discretizing-- five bins 
with equal frequency). After preprocessing the datasets, we 
used our PSO algorithm implemented in visual C#.Net to 
extract the classification rules from each of the datasets. The 
PSO parameters are set based on expert knowledge as follows: 
the social and personal parameters (c1 and c2) are set to 2, 
number of particles is set to 10, number of iterations is set to 
1000, and the inertia boundaries are set to 0.1 and 0.9. Finally, 
min support count is set to 3% of the dataset size, and the β
element is set to 2. We employed six well-known classifies 
from WEKA software to classify the same datasets. The 
parameters of these classifiers are set on default values of the 
WEKA software. In the second experiment, we employed our 
proposed parallel framework to incrementally construct the 
classification models for the selected datasets. We 
implemented two programs in visual C#.Net for incremental 
parallel classification rule discovery. In the first program, 
IPPSO-I, we implemented the system without swarm 
reinforcing step (i.e. Step 7 in Fig. 2 is removed from the 
algorithm). IPPSO-I is the PSO-based version of the 
incremental genetic algorithm proposed in [18]. In the second 
program, IPPSO-II, we implemented our proposed method. 
The values of the parameters except for the iteration number 
are the same as those in offline implementation. In IPPSO-I
and IPPSO-II, we set the number of iterations to 100, and the 
number of selected candidates for tournament selection (m) to 
3. In order to provide these two programs with training data 
chunks, a data streaming simulation program is implemented in 
visual C#.Net. This program splits the dataset to a few data 
chunks considering the predetermined window size by using a

stratified sampling method. Due to stratified sampling, the 
distributions of classes in data chunks are similar and thus there 
is no concept drift in the stream. The data stream simulator 
sends the training data chunks with predefined frequency to the 
IPPSO-I and IPPSO-II programs via a socket. We employed 
IPPSO-I and IPPSO-II to extract classification rules from the 
benchmark datasets with four different data window sizes: 5%, 
10%, 20%, and 30% of the dataset size. We repeated this 
process for 10 times. The average classification precision for 
Tic-Tac-Toe dataset extracted by IPPSO-I and IPPSO-II
programs are shown in Fig. 3. As shown, our proposed method 
is approximately 20% more accurate than the incremental 
approach introduce in [18]. Furthermore, as shown in Fig. 3,
increasing the window size leads to an increase in precision. 
Finally, to evaluate the performance of the applied parallelism 
in our proposed approach, we computed the average processing 
time for both incremental and offline learning on a computer 
with a 3.9GHz 64-bit processor and 8GB3 dual channel DDR3 
SDRAM at 1600MHz memory. Comparison made between the 
comprehensibility, precision and average processing time of 
the offline PSO-based classifier, IPPSO and other classifiers 
are shown in Tables II, III and IV, respectively. The acquired 
results verify the experimental results reported in [4, 34-38]. A
comparison between average processing time for parallel 
incremental method and serial offline method suggests that our 
parallel incremental approach is 35% faster than serial 
approach. Finally, it can be concluded that our proposed 
method is competitive with offline learning in terms of 
precision. 

V. CONCLUSION

In this paper, we introduced a novel incremental parallel 
PSO-based classification rule discovery framework. Our 
proposed framework supports parallelism by assigning a PSO 
thread for each class in the training data. Also, it supports the 
incremental learning by guided initialization and reinforcing 
swarm in each generation by employing available knowledge. 
The results suggest that the classification precision of our 
proposed framework is competitive with offline learning 
methods and is 35% faster than them.  

TABLE I. CHARACTERISTICS OF THE BENCHMARK DATASETS

Characteristics
Dataset

Nursery Tic-Tac-Toe Breast Cancer Iris Statlog (Heart) Thyroid

#Instances 12960 958 569 150 270 3163

#Classes 5 2 2 3 2 2

#Features 8 9 31 4 12 25

TABLE II. A COMPARISON BETWEEN PSO AND OTHER CLASSIFIERS REGARDING NUMBER OF RULES

Classifier
Dataset

Nursery Tic-Tac-Toe Breast Cancer Iris Statlog (Heart) Thyroid

J. 48 (C4.5) decision tree 359 95 29 13 24 38

JRIP rule learner (RIPPER) 127 9 12 5 6 2

Binary PSO 104 7 9 8 5 2

IPPSO 106 9 13 10 8 5
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TABLE III. A COMPARISON BETWEEN PSO AND OTHER CLASSIFIERS REGARDING CLASSIFICATION PERCISION

Classifier
Dataset

Nursery Tic-Tac-Toe Breast Cancer Iris Statlog (Heart) Thyroid

J. 48 (C4.5) decision tree 0.970 0.849 0.915 0.940 0.778 0.974

Bagging 0.972 0.921 0.941 0.913 0.782 0.979

SMO (SVM) 0.931 0.984 0.939 0.927 0.815 0.977

MLP 0.998 0.967 0.944 0.888 0.792 0.976

Naïve Bayesian 0.906 0.682 0.947 0.913 0.844 0.980

JRIP rule learner (RIPPER) 0.970 0.978 0.891 0.915 0.777 0.979

Binary PSO 0.970 0.995 0.956 0.952 0.800 0.976

IPPSO 0.963 0.983 0.944 0.932 0.768 0.968

TABLE IV. A COMPARISON BETWEEN PSO AND OTHER CLASSIFIERS REGARDING RUN TIME (IN MILLISECONDS) 

Classifier
Dataset

Nursery Tic-Tac-Toe Breast Cancer Iris Statlog (Heart) Thyroid

J. 48 (C4.5) decision tree 30 10 10 50 70 10

Bagging 260 40 50 6 20 90

SMO (SVM) 25790 230 170 20 50 310

MLP 92060 5680 86850 610 3950 63920

Naïve Bayesian 10 6 10 4 6 7

JRIP rule learner (RIPPER) 27220 40 50 8 10 50

Binary PSO 45120 6540 74150 5110 62140 53480

IPPSO 29140 4180 49260 3220 40430 33520

Figure 3. A comparison between the precision of the two introduced incremental parallel PSO classifiers with different windows sizes (Tic-Tac-Toe Dataset). (a) 
window size = 5% of dataset size, (b) window size = 10% of dataset size, (c) window size = 20% of dataset size, and (d) window size = 30% of dataset size. 
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