
HAVE 2008 – IEEE International Workshop on

Haptic Audio Visual Environments and their Applications

Ottawa – Canada, 18-19 October 2008

Interactive 3D Haptic Carving using Combined Voxels and Mesh

Jeff Williams
1
, Gabriel Telles O’Neill

 1
, Won-Sook Lee

1

1
University of Ottawa

Abstract – We present a system to simulate the realistic real-time

carving of rigid objects. The system allows the user to move a

virtual burr-like tool to carve the object using a haptic device. This

tool removes the rigid volume of the object as it intersects the object,

and the results are displayed in 3D. In our system the volume is

represented using voxels, but is displayed using a triangle mesh.

Keywords – carving, haptic, interactive, 3D, computer animation

I. INTRODUCTION

One of the goals of animation is to present to the viewers a

believable representation of a physical process. When

animating real-world processes it is often important to

precisely capture the essences of the characteristics of the

process. With this in mind, we developed a system to

simulate the realistic real-time carving of rigid objects.

The system allows the user to move a virtual burr-like tool

to carve the object using a haptic device. This tool removes

the rigid volume of the object as it intersects the object, and

the results are displayed in 3D. The methods we used,

though, are applicable to many areas of sculpting animation.

These include virtual sculpting simulation, modelling, games,

and medical applications.

When simulating sculpting, it is necessary to maintain a

representation of the remaining object volume, to render it in

an accurate as well as tactically and visually appealing

manner, and to update the visual and haptic representation at

rates suitable for animation. In our system the volume is

represented using voxels, but is displayed using a triangle

mesh because direct visualization of voxels is unrealistic and

unappealing. The voxel representation is used to compute the

intersection of the cutting tool with the object being carved

and to provide haptic feedback to the user. When voxels are

removed by carving, the affected regions of the

corresponding triangle mesh are updated.

The process of updating the corresponding triangle mesh

due to changes in the voxel set is performed using a novel

extension of the well-known Ball Pivoting Algorithm, which

we call the Dynamic Ball Pivoting Algorithm.

II. RELATED WORK

Carving objects in 3D has seen quite a bit of research in

the past. The work can be divided into three general areas,

based on the data structure used to represent the volume:

boundary representation methods, implicit function methods,

and spatial partitioning methods.

Boundary representations approximate 3D objects by

dividing their boundary into a number of two dimensional

faces. These representations are often called meshes. There

are a number of carving methods that operate directly on the

object mesh. The earliest methods are implementations of

Boolean set operations on 3D objects. These operations are

commonly implemented using Binary Space Partitioning

(BSP) Trees [1][2]. It is possible to define Boolean set

operations between two BSP trees (that is, union,

intersection, and difference) by calculating the intersections

between the planes represented by each tree. Using BSP tree

methods it is possible to represent both the object to be

carved and carving tool as BSP trees and compute the

difference between them at each time interval. However these

methods are difficult to implement reliably in the presence of

round-off errors. [3] Since carving is an iterative process

where small amounts of volume are repeatedly removed, any

errors introduced at one cutting step will cause further errors

later on.

In [4] the authors demonstrate a method that operates on

the polygon mesh boundary of the shape, and uses a

Discontinuous FFD to represent the effect of the cutting

blade, deforming the mesh when incising. Extra polygons are

added to the mesh under the incision before deforming to

help preserve the mesh shape. However this method is more

applicable to simulating incision rather than carving since no

actual volume is removed during a cut.

Implicit function methods have received much attention in

recent years. These methods represent the 3D solid as a set of

implicit functions. The boundary of the solid is taken to be an

implicit surface, which is the level-sets of the implicit

functions; that is, the set of all values in the function domain

that yield a certain constant range value:

{ }(, ,) | (, ,)x y z f x y z c=

The equations are calculated so that their level-set is

constrained to the object’s surface. Carving using these

methods consists of adjusting the equations to account for the

volume removal.

The classical implicit method representation is found in

the computational solid geometry (CSG) representation. CSG

represents the object as the combination of a set of solid

primitives. A primitive can be a parametric equation of a

quadric surface (a plane, sphere, cone, cylinder, or

paraboloid), or some other simple regular prism such as a

cube. These primitives form the leaves of a binary tree, in

which internal nodes represent rigid transformations

(translations, rotations, or scales) of the children nodes, or

represent regularized Boolean set operations (union,

intersection, or difference) on the left or right sub-tree.

978-1-4244-2669-0/08/$25.00 ©2008 IEEE

Performing cutting using CSG is simply a matter of

representing the solid to be cut as a CSG sub-tree whose

parent is a difference operation with a second sub-tree which

is the union of all the positions of the cutting tool. However a

major drawback of this cutting approach is that the solid to be

cut must first be converted to a CSG representation, which is

difficult and non-automated for complex objects such as

human bones. In addition, the method does not scale well as

the number of cuts increases since the tree representing each

cut must be added to the main tree of the object. This makes

the solid’s tree grow large quickly.

In [5] and [6] the authors blend trivariate uniform Bspline

functions to represent the surface. Sculpting is done by

modifying the scalar coefficient values in the mesh so that the

values are inside or outside the object (higher or lower than

the level-set value). In [5] the authors allow existing discrete

solids (such as existing meshes or point clouds) to be used as

input to the system from which an initial implicit solid is

created. In [7] the authors represent the surface as the

solution to a set of partial differential equations, which are

represented both implicitly and parametrically. Carving is

supported through the use of CSG-like operations which

combine separate PDE representations.

In [8][9] the authors describe a framework for the

simulation of bone surgery which involves both visual and

haptic components. In order to represent the bone volume

they store the bone data as voxels, but generate a triangle

mesh to graphically display the bone. When voxels are

removed by cutting the locally affected area is re-meshed.

Their triangulation algorithm is brute force: create all

possible triangles between neighbouring voxels and remove

the triangles that are found to be duplicated or are below the

object surface.

In [10] the authors present a system for the haptic and

visual simulation of temporal bone surgery which is based on

a voxel representation. In addition to bone matter, bone dust,

debris, and water are represented using a particle system

during the simulation. Rendering of the voxels are done using

a direct volume rendering technique, in which the voxels are

rendered directly using the GPU of the graphics card. The

voxels use a “proxy-geometry” of object-aligned slices which

are accumulated back-to-front. Shading and opacity for

individual voxels is computed by shader and vertex programs

on the graphics card itself. The method is fast since most of

the visualization computation is offloaded to the GPU. One

drawback of this visualization method is that it still suffers

from terracing artifacts. In addition since three separate axis-

aligned stacks of volume slices must be used so that the stack

most perpendicular to the viewing direction can be chosen,

when a new stack is selected for viewing when the viewpoint

changes abrupt and unsightly changes to the texture can

result.

A. Ball-Pivoting Algorithm

In order to visualize our volume, we use an adapted

version of the well known Ball-Pivoting Algorithm (BPA)

[11]. The BPA is an efficient method for computing a triangle

mesh from a point cloud. Like marching triangles [13], it is a

region-growing shape reconstruction algorithm. It uses a ball

of fixed radius ρ, called a ρ-ball, to determine which points

are surface points. The BPA begins with an initial seed

triangle such that if a ρ-ball is touching all three points of the

triangle it contains no other surface points. The edges of this

triangle form the boundary of the expanding mesh called the

front which is the set of edges from which the triangle mesh

can expand. Each edge in the front has an associated ball-

centre which is the position of the centre of the ρ-ball when

the ball had touched the edge’s vertices.

While there are edges in the front one is picked and

pivoted around by the ρ-ball. Beginning from the ball-centre

that is associated with the edge, the ball is rotated such that

the edge is the axis of rotation. The first or earliest point that

the ball touches along it’s trajectory that is not processed,

along with the pivoting edge, form a triangle that is added to

the mesh. The front is updated by removing the edge we

pivoted about, and adding the two new edges just created. If

the ball is pivoted and no point is touched then the pivoting

edge is marked as a boundary edge and is no longer

considered as a candidate for pivoting around.

The front begins as a simple cycle of edges, but as edges

are added the topology can become complex. The front will

eventually consist of more than one cycle of edges (these

cycles are referred to as loops in [11]). The BPA uses two

topological operators to maintain the front: join and glue. A

join is performed when the pivoting ball touches a new point

and removes the pivoting edge from the front and adds the

two new edges. A glue is performed when the join operation

causes coincident edges in the front are removes the

coincident edges in such a manner as to ensure the front is a

set of cycles.

III. APPROACH

Carving is performed using a virtual carving tool which is

controlled by the Novint Falcon haptic input device. The

virtual carving tool is implemented as a spherical cutting

head with an attached non-cutting handle. Each time the user

moves the cutting tool over the object being carved, voxels

are removed and the mesh updated. At each new tool position

the voxels whose centers are within a defined range of the

center of the tool’s cutting head are removed from the voxel

set.

B. Initialization

Our system is designed to operate on input 3D solids

represented as voxels or as meshes. The voxel format is

suitable when the input is medical data, such as images from

CT or MRI scans which are often composited as a voxel

dataset. Before carving, an initialization stage must be

performed in which the input data is converted to voxels if

necessary, and in which the initial triangle mesh

representation for the voxel set is calculated.

If the input object is a mesh, it is converted to voxels. To

generate the voxel representation the bounding box of each

triangle in the mesh is computed. The voxels that the corners

of the bounding box fall within are determined to find the

voxel-space volume that bounds the triangle. Then for each

voxel within the volume the fast 3D triangle-box overlap test

deleloped by Akenine-Möller is applied to the voxel and the

triangle [12]. All intersecting voxels form a boundary around

the mesh volume. The volume inside the boundary is then

filled using a 3D scanline filling algorithm so that solid

voxels represent the object.

Once the voxel representation of the solid is computed,

our system then computes the corresponding mesh used for

display using the BPA. The algorithm is intended for 3D

data-acquisition of real-world objects, but we have found it to

be equally well suited to generating a triangle mesh from a

set of voxels – the point set used as input to the algorithm is

the set of points representing the centers of the voxels in the

voxel set.

C. Haptic Control During Carving

When the user moves the virtual carving tool voxels are

removed from the object, and force feedback is provided to

the haptic device. To accurately model the effect of the user

manipulating the carving tool we detection collision by

checking whether the intersection of the tool head and the

object is non-empty, and if so then move the tool head to a

nearby position outside of the object and calculate the amount

of resistive force that should be expressed to the user

based on the impact. The process is described in more detail

below. Each time the cutting tool is moved, the system

detects whether there are any object voxels within the

boundary of the carving tool’s head. If not then the tool head

is completely outside the object and the tool head’s position

is saved as the anchor point. If the tool is moved and there

are voxels within the carving tool’s head then the tool’s head

has collided with the object between the tool’s last position

and the current position. In this case 26 candidate spheres

with the same radius as the cutting head are computed around

the last anchor point in an axis-aligned a 3D grid each spaced

a fixed anchor-drag distance apart. The candidate sphere that

is closest to the object boundary while not inside of it is taken

as the force measurement sphere. The magnitude of resistive

force to express to the user through the haptic device is

approximately calculated using Hooke’s law with the

displacement being the distance from the force measurement

sphere to the current head position:

 F x k= − ⋅

where F is the resistive force, –x is the displacement and k is

a scaled version of the material’s ultimate strength.

Using an anchor point and candidate spheres allows the

tool to slide along the surface of the object after it has

collided. If a drag feature were not implemented, the burr-

tool would be virtually glued to a spot on the model where it

collided and would only relinquish its spot when the burr tool

was fully pulled away from the model.

(a)

(b)

Figure 1: Method for computing the haptic feedback force. In (a) candidate

spheres generated around the solid anchor point are used to determine an

approximate position for the cutting head entirely outside the object. In (b)

the difference between the closest outside candidate point (solid green) and

the current cutting head (solid grey) is used as the displacement vector in

Hooke’s Law.

This use of Hooke’s Law is analogous to the engineering

stress-strain relationship, since the colliding head has put an

amount of stress on the object approximately equal to the

head displacement resulting in a proportional amount of

stress. The force is applied outwards in the direction from the

collided head position to the approximate surface head

position. Approximating the force in this way is done in

grinding simulation [14].

The voxels actually removed from the object are those that

were within a distance less than ¾ of the radius away from

the center of the cutting head.

D. Visualization During Carving

For visualization we use three major data structures to

represent the object being carved: a voxel set used for volume

calculations, a triangle mesh used for display, and a BPA

front used when updating the display mesh from the voxel

set. Each surface voxel in the voxel set has a link to the

corresponding mesh vertex that it supports. The triangle mesh

is defined such that vertices are shared between adjacent

edges, and edges shared between adjacent triangles.

When voxels are removed from the voxel set the

corresponding triangle mesh used for visualization is updated

using a dynamic version of the BPA algorithm (DBPA).

The DBPA proceeds in two steps: the first step is to create a

new front that bounds the mesh elements affected by the

voxel removal, and the second is to use the standard BPA

algorithm to triangulate and re-close the surface using this

front. The standard BPA algorithm begins with a front that

bounds a single triangle and grows outwards from that front

to cover the entire surface. Likewise in the second step of

DBPA we will begin BPA with a more complex front and

grow triangles to close the front, ultimately replacing deleted

triangles with new triangles in the existing mesh. Figure 2

shows the process of creating the new front for a simple mesh

when two surface voxels are to be removed.

In the first step, for each voxel v removed, if v was not a

surface voxel then no additional steps need to be taken. If v

was a surface voxel it has a corresponding mesh vertex and

adjacent triangles. Since the voxel is removed so must the

adjacent mesh triangles and the edges that are allowed to be

removed. When these triangles are removed, a new loop in

the front is created that bounds the removed triangles. We

call the set of remaining edges that bound the mesh triangles

removed by removing a voxel the rim of the removed voxel.

The rim must be ordered so that each edge in the rim is

adjacent to the last.

When creating the rim, however, we must be careful that

we only remove edges that are not already part of another

loop that was added to the front by removing a voxel

previously in the step. For example, in Fig. 2 the voxel

corresponding to the mesh vertex a was removed first. When

b was later removed the correct rim includes bc and bg, not

ac and ag like expected since those edges have already been

deleted and would cause overlapping loops in the front which

violates the pre-conditions of BPA.

Instead we create coincident edges in the front. In the

standard BPA these duplicate coincident edges may occur

after a join operation, and they are removed using the BPA

glue operation, which merges adjacent loops together as

appropriate. We use the same glue operation to remove our

coincident edges.

In order for the second step of the DBPA process to work,

certain information must be stored on each edge in the front.

When the BPA processes a front, it pivots a ball around each

edge in the front until it strikes a point. To perform this

calculation it must use not only the coordinates of the edge’s

vertices that it is pivoting around, but also the ball-center and

opposite point of the existing triangle that bounds the front

edge. The ball-center is the coordinate of the center of the ρ-

ball then it had previously struck the point that generated the

triangle.

Thus, for BPA to operate on the front that was created in

the first step of DBPA, the front edges must have the correct

ball-center and opposite point associated. In the classic BPA

algorithm this is trivial: each front edge will only have one

associated ball-center, being the one that was used to generate

the front edge, and one opposite point. However since we are

generating a front from an existing mesh we must choose the

ball-center and opposite point for the mesh triangle that is

adjacent to the edge we are creating, and has not been

removed. In order to have this information available, each

time a triangle is created in the mesh the ball-centre is stored

with the triangle.

When each edge in a rim is added to the front the front

edge created for that rim edge is created with both the ball-

centre and opposite point from the adjacent triangle that has

not been deleted. Figure 3 demonstrates the process.

Figure 3: Ball-pivoting from a new front, in 2D. Only surface points are

shown. After the vertices c and e are removed, pivoting occurs about “front

edges” b and g to close the hole. For b, the ball-centre used to begin pivoting

is the circle stored with ab, and the opposite point used is a.

a b c

Figure 2: Steps taken to create a new front when the vertices a and b are to be removed from a sample mesh. (a) a section of a triangle mesh is shown. (b) the

vertices a and b have been removed in that order. The adjacent triangles (abc, acd, bci, bih, etc.), the adjacent edges (ab, ac, bi, bh, etc.) are removed from the

mesh. Removed edges are shown as dotted lines. Two new loops are created in the front: bcdefgb and bcihgb (shown in bold) are created. By adding the new

cycle, the front contains a coincident pair of edges for bc between the two cycles, and a coincident pair for bg. (c) the coincident edges are removed by applying

glue to each coincident pair in turn, resulting in a single cycle.

Figure 4: To create a 3D texture a 2D image is duplicated along the third

dimension to create a 3D array of pixels.

E. Texturing

To provide realism and visual appeal the objects being

carved display texture. Our method allows the specification

of a 2D external texture and 3D internal texture for the object

being carved.

The output of the initialization stage of our method is a

voxel set and an associated triangle mesh. To apply the 2D

texture to the object being carved the triangle mesh can be

imported into a separate 3D modeling tool such as 3D studio

max and have a 2D texture applied to it and then be re-

imported into the system. To apply a 3D texture to the object

a 3D texture consisting of a number of 2D image slices is

created separately such that the axes of the texture are aligned

with the object. Figure 4 shows this process.

With the 2D texture mapped to the initial mesh and the 3D

texture available, our system can then initialize with the mesh

and textures for carving. Initially the object appears with only

the 2D texture visible since it was mapped to the external

faces of the object being carved.

When carving is performed, however, each triangle

created by applying the DBPA is instead mapped using the

3D texture. When the mesh being cut is first loaded the

maximum axis-aligned dimensions of the mesh are stored.

When a new triangle is created using DBPA the physical

coordinates are divided by the maximum initial dimensions of

the mesh, giving relative texture coordinates. These relative

texture coordinates are then scaled by the axis-aligned size of

the 3D texture to obtain the actual texture coordinates.

For our experiments we created simple 3D textures by

layering multiple copies of an image on top of itself. The 2D

image was loaded and repeated as 2D slices of a 3D array.

The 3D array is used as a 3D texture in the graphic library,

with each image being a one “pixel” slice of the 3D texture.

IV. RESULTS

Our experiments were performed on a 2.8 GHz Pentium D

processor machine. The OpenSceneGraph graphics library

was used for rendering. Qualitative results can be seen in

Figures 7 and 8.

We present quantitative results from a hip dataset. The hip

object was created from a voxel space of dimension

120×120×120, and is shown in Fig. 6. A cutting tool with a

spherical head was used to carve the surface. The

performance results are shown in Table 1 and graphed in

Figure 5.

Table 1: Carving Performance

Voxels Cut Front BPA Total FPS

42.8 6.7 5.1 11.8 84.7

148.8 23.4 15.9 39.3 25.4

382.3 26.8 38.4 65.2 15.3

680.3 44.2 59.1 103.3 9.7

In Table 1 each row is the average of ten sample cuts

using the same cutting tool. Each cut is performed using a

sphere centered on the hip surface. Voxels Cut is the average

number of voxels removed per cut. Front is the average time

in milliseconds to remove the voxels and mesh triangles, and

compute the new front. BPA is the average time to re-mesh

the front using BPA. Total is the sum of Front and BPA. FPS

is the number of frames per second that can be achieved

based on the time taken to cut the voxels.

0

20

40

60

80

100

120

0 200 400 600 800

Avg. voxels per cut

T
im

e
 t

o
 c

u
t

(m
s
)

Figure 5: Graph of average time to complete a cut of varying numbers of

voxels

The results are promising. Our system can achieve real-time

rates on a large data set when removing below about 14

voxels per cut, which is approximately a volume of 5x5x5

voxels removed each cut.

Figure 6: Hip dataset used for quantitative analysis.

The graph in Fig. 5 demonstrates that though it does take

longer to regenerate the triangle mesh after each cut as the

number of voxels affected by the cut increases, the time taken

increases generally linearly. In Table 1 we see that the time

taken to generate a new front increases slower than the time

taken to regenerate the mesh using BPA. This is intuitive

since generating the new front logically involves processing

less surface area than generating the new triangles for the cut

area; in the worst case an area roughly equal to the diameter

of the cutting tool would be processed in the former, while in

the latter an area roughly equal to the outer surface area of the

tool head would be processed.

V. CONCLUSION

We have presented an interactive 3D carving system that

animates carving in real time using feedback from a haptic

input device. By representing the object being cut internally

as voxels but rendering the results to the display as a triangle

mesh, the system achieves quick computation of the carving

effects while providing a pleasing and realistic 3D view of

the object. The DBPA and texturing techniques presented in

the paper are suitably generic that they can be used for

various carving purposes from medical simulation to games.

Avenues for future work include smoothing the results of

individual cuts, and using a mathematical model for grinding

rather than one for the stress-strain relationship to determine

the amount of resistive force.

VI. REFERENCES

[1] William C. Thibault and Bruce F. Naylor. “Set operations on polyhedra

using binary space partitioning trees,” SIGGRAPH Comput. Graph.,

21(4):153–162, 1987.

[2] Bruce Naylor, John Amanatides, and William Thibault. “Merging bsp

trees yields polyhedral set operations,” SIGGRAPH Comput. Graph.,

24(4):115–124, 1990.

[3] J. Rossignac and A. Requicha, “Solid modeling,” In J. Webster, editor,

Encyclopedia of Electrical and Electronics Engineering. John Wiley

and Sons, 1999.

[4] Guy Sela, Sagi Schein, and Gershon Elber. “Real-time incision

simulation using discontinuous free form deformation,” Lecture Notes

in Computer Science, 3078/2004:114–123, 2004.

[5] Jing Hua, Hong Qin, "Haptics-Based Dynamic Implicit Solid

Modeling," IEEE Transactions on Visualization and Computer

Graphics, vol. 10, no. 5, pp. 574-586, Sept/Oct, 2004.

[6] A. Raviv and G. Elber. “Three Dimensional Freeform Sculpting via

Zero Sets of Scalar Trivariate Functions,” Proc. Fifth ACM Symp.

Solid Modeling and Applications, pp. 246-257, 1999.

[7] Haixia Du, Hong Qin, "Free-Form Geometric Modeling by Integrating

Parametric and Implicit PDEs," IEEE Transactions on Visualization

and Computer Graphics, vol. 13, no. 3, pp. 549-561, May/Jun, 2007

[8] D. Morris, C. Sewell, N. Blevins, F. Barbagli, and K Salisbury. “A

collaborative virtual environment for the simulation of temporal bone

surgery,” In Proceedings of MICCAI. Springer-Verlag, 2004.

[9] D. Morris, S. Girod, F. Barbagli, and K Salisbury. “An interactive

simulation environment for craniofacial surgical procedures.” In

Proceedings of MMVR (Medicine Meets Virtual Reality), 2005.

[10] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A, Picasso B,

Sellari Franceschini S. "A haptic model of a bone-cutting burr," Stud.

Health Technol. Inform. 2003; 94:4-10.

[11] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin.

The ball-pivoting algorithm for surface reconstruction. IEEE

Transactions on Visualization and Computer Graphics, 5(4):349–359,

1999.

[12] Tomas Akenine-Möller. “Fast 3d triangle-box overlap testing,” In

SIGGRAPH '05: ACM SIGGRAPH 2005Courses, page 8, New York,

NY, USA, 2005. ACM.

[13] S. Akkouche and E. Galin. “Adaptive implicit surface polygonization

using marching triangles”. In Computer Graphics Forum, volume

20(2), pages 67–80, 2001.

[14] Ren, X. y.; Mueller and H.; Kuhlenkoetter, B., “Surfel-based surface

modeling for robotic belt grinding simulation”, Journal – Zhejiang

University Science A. Vol. 7, no. 7, pp. 1215–1224, 2006.

Figure 7: Demonstration of carving an externally and internally textured object. The cucumber uses an external 2D texture as well as an internal 3D texture

Figure 8: Demonstration of cutting an externally textured object. The apple uses an external 2D texture and a simple white internal colour.

