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Abstract – We present a system to simulate the realistic real-time 

carving of rigid objects. The system allows the user to move a 

virtual burr-like tool to carve the object using a haptic device. This 

tool removes the rigid volume of the object as it intersects the object, 

and the results are displayed in 3D. In our system the volume is 

represented using voxels, but is displayed using a triangle mesh. 

 

Keywords – carving, haptic, interactive, 3D, computer animation  

I. INTRODUCTION 

One of the goals of animation is to present to the viewers a 

believable representation of a physical process. When 

animating real-world processes it is often important to 

precisely capture the essences of the characteristics of the 

process. With this in mind, we developed a system to 

simulate the realistic real-time carving of rigid objects. 

The system allows the user to move a virtual burr-like tool 

to carve the object using a haptic device. This tool removes 

the rigid volume of the object as it intersects the object, and 

the results are displayed in 3D. The methods we used, 

though, are applicable to many areas of sculpting animation. 

These include virtual sculpting simulation, modelling, games, 

and medical applications. 

When simulating sculpting, it is necessary to maintain a 

representation of the remaining object volume, to render it in 

an accurate as well as tactically and visually appealing 

manner, and to update the visual and haptic representation at 

rates suitable for animation. In our system the volume is 

represented using voxels, but is displayed using a triangle 

mesh because direct visualization of voxels is unrealistic and 

unappealing. The voxel representation is used to compute the 

intersection of the cutting tool with the object being carved 

and to provide haptic feedback to the user. When voxels are 

removed by carving, the affected regions of the 

corresponding triangle mesh are updated.  

The process of updating the corresponding triangle mesh 

due to changes in the voxel set is performed using a novel 

extension of the well-known Ball Pivoting Algorithm, which 

we call the Dynamic Ball Pivoting Algorithm. 

II. RELATED WORK 

Carving objects in 3D has seen quite a bit of research in 

the past.  The work can be divided into three general areas, 

based on the data structure used to represent the volume: 

boundary representation methods, implicit function methods, 

and spatial partitioning methods. 

Boundary representations approximate 3D objects by 

dividing their boundary into a number of two dimensional 

faces. These representations are often called meshes. There 

are a number of carving methods that operate directly on the 

object mesh. The earliest methods are implementations of 

Boolean set operations on 3D objects. These operations are 

commonly implemented using Binary Space Partitioning 

(BSP) Trees [1][2]. It is possible to define Boolean set 

operations between two BSP trees (that is, union, 

intersection, and difference) by calculating the intersections 

between the planes represented by each tree. Using BSP tree 

methods it is possible to represent both the object to be 

carved and carving tool as BSP trees and compute the 

difference between them at each time interval. However these 

methods are difficult to implement reliably in the presence of 

round-off errors. [3] Since carving is an iterative process 

where small amounts of volume are repeatedly removed, any 

errors introduced at one cutting step will cause further errors 

later on. 

In [4] the authors demonstrate a method that operates on 

the polygon mesh boundary of the shape, and uses a 

Discontinuous FFD to represent the effect of the cutting 

blade, deforming the mesh when incising. Extra polygons are 

added to the mesh under the incision before deforming to 

help preserve the mesh shape. However this method is more 

applicable to simulating incision rather than carving since no 

actual volume is removed during a cut. 

Implicit function methods have received much attention in 

recent years. These methods represent the 3D solid as a set of 

implicit functions. The boundary of the solid is taken to be an 

implicit surface, which is the level-sets of the implicit 

functions; that is, the set of all values in the function domain 

that yield a certain constant range value: 

 

{ }( , , ) | ( , , )x y z f x y z c=
 

 

The equations are calculated so that their level-set is 

constrained to the object’s surface. Carving using these 

methods consists of adjusting the equations to account for the 

volume removal.  

The classical implicit method representation is found in 

the computational solid geometry (CSG) representation. CSG 

represents the object as the combination of a set of solid 

primitives. A primitive can be a parametric equation of a 

quadric surface (a plane, sphere, cone, cylinder, or 

paraboloid), or some other simple regular prism such as a 

cube. These primitives form the leaves of a binary tree, in 

which internal nodes represent rigid transformations 

(translations, rotations, or scales) of the children nodes, or 

represent regularized Boolean set operations (union, 

intersection, or difference) on the left or right sub-tree. 
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Performing cutting using CSG is simply a matter of 

representing the solid to be cut as a CSG sub-tree whose 

parent is a difference operation with a second sub-tree which 

is the union of all the positions of the cutting tool. However a 

major drawback of this cutting approach is that the solid to be 

cut must first be converted to a CSG representation, which is 

difficult and non-automated for complex objects such as 

human bones. In addition, the method does not scale well as 

the number of cuts increases since the tree representing each 

cut must be added to the main tree of the object. This makes 

the solid’s tree grow large quickly.  

In [5] and [6] the authors blend trivariate uniform Bspline 

functions to represent the surface. Sculpting is done by 

modifying the scalar coefficient values in the mesh so that the 

values are inside or outside the object (higher or lower than 

the level-set value). In [5] the authors allow existing discrete 

solids (such as existing meshes or point clouds) to be used as 

input to the system from which an initial implicit solid is 

created. In [7] the authors represent the surface as the 

solution to a set of partial differential equations, which are 

represented both implicitly and parametrically. Carving is 

supported through the use of CSG-like operations which 

combine separate PDE representations. 

In [8][9] the authors describe a framework for the 

simulation of bone surgery which involves both visual and 

haptic components. In order to represent the bone volume 

they store the bone data as voxels, but generate a triangle 

mesh to graphically display the bone. When voxels are 

removed by cutting the locally affected area is re-meshed. 

Their triangulation algorithm is brute force: create all 

possible triangles between neighbouring voxels and remove 

the triangles that are found to be duplicated or are below the 

object surface. 

In [10] the authors present a system for the haptic and 

visual simulation of temporal bone surgery which is based on 

a voxel representation. In addition to bone matter, bone dust, 

debris, and water are represented using a particle system 

during the simulation. Rendering of the voxels are done using 

a direct volume rendering technique, in which the voxels are 

rendered directly using the GPU of the graphics card. The 

voxels use a “proxy-geometry” of object-aligned slices which 

are accumulated back-to-front. Shading and opacity for 

individual voxels is computed by shader and vertex programs 

on the graphics card itself. The method is fast since most of 

the visualization computation is offloaded to the GPU. One 

drawback of this visualization method is that it still suffers 

from terracing artifacts. In addition since three separate axis-

aligned stacks of volume slices must be used so that the stack 

most perpendicular to the viewing direction can be chosen, 

when a new stack is selected for viewing when the viewpoint 

changes abrupt and unsightly changes to the texture can 

result. 

A. Ball-Pivoting Algorithm 

In order to visualize our volume, we use an adapted 

version of the well known Ball-Pivoting Algorithm (BPA) 

[11]. The BPA is an efficient method for computing a triangle 

mesh from a point cloud. Like marching triangles [13], it is a 

region-growing shape reconstruction algorithm. It uses a ball 

of fixed radius ρ, called a ρ-ball, to determine which points 

are surface points. The BPA begins with an initial seed 

triangle such that if a ρ-ball is touching all three points of the 

triangle it contains no other surface points. The edges of this 

triangle form the boundary of the expanding mesh called the 

front which is the set of edges from which the triangle mesh 

can expand. Each edge in the front has an associated ball-

centre which is the position of the centre of the ρ-ball when 

the ball had touched the edge’s vertices. 

While there are edges in the front one is picked and 

pivoted around by the ρ-ball. Beginning from the ball-centre 

that is associated with the edge, the ball is rotated such that 

the edge is the axis of rotation. The first or earliest point that 

the ball touches along it’s trajectory that is not processed, 

along with the pivoting edge, form a triangle that is added to 

the mesh. The front is updated by removing the edge we 

pivoted about, and adding the two new edges just created. If 

the ball is pivoted and no point is touched then the pivoting 

edge is marked as a boundary edge and is no longer 

considered as a candidate for pivoting around. 

The front begins as a simple cycle of edges, but as edges 

are added the topology can become complex. The front will 

eventually consist of more than one cycle of edges (these 

cycles are referred to as loops in [11]). The BPA uses two 

topological operators to maintain the front: join and glue. A 

join is performed when the pivoting ball touches a new point 

and removes the pivoting edge from the front and adds the 

two new edges. A glue is performed when the join operation 

causes coincident edges in the front are removes the 

coincident edges in such a manner as to ensure the front is a 

set of cycles.  

III. APPROACH 

Carving is performed using a virtual carving tool which is 

controlled by the Novint Falcon haptic input device. The 

virtual carving tool is implemented as a spherical cutting 

head with an attached non-cutting handle. Each time the user 

moves the cutting tool over the object being carved, voxels 

are removed and the mesh updated. At each new tool position 

the voxels whose centers are within a defined range of the 

center of the tool’s cutting head are removed from the voxel 

set.  

B. Initialization 

Our system is designed to operate on input 3D solids 

represented as voxels or as meshes. The voxel format is 

suitable when the input is medical data, such as images from 

CT or MRI scans which are often composited as a voxel 

dataset. Before carving, an initialization stage must be 

performed in which the input data is converted to voxels if 

necessary, and in which the initial triangle mesh 

representation for the voxel set is calculated.  



If the input object is a mesh, it is converted to voxels. To 

generate the voxel representation the bounding box of each 

triangle in the mesh is computed. The voxels that the corners 

of the bounding box fall within are determined to find the 

voxel-space volume that bounds the triangle. Then for each 

voxel within the volume the fast 3D triangle-box overlap test 

deleloped by Akenine-Möller is applied to the voxel and the 

triangle [12]. All intersecting voxels form a boundary around 

the mesh volume. The volume inside the boundary is then 

filled using a 3D scanline filling algorithm so that solid 

voxels represent the object.  

Once the voxel representation of the solid is computed, 

our system then computes the corresponding mesh used for 

display using the BPA. The algorithm is intended for 3D 

data-acquisition of real-world objects, but we have found it to 

be equally well suited to generating a triangle mesh from a 

set of voxels – the point set used as input to the algorithm is 

the set of points representing the centers of the voxels in the 

voxel set.  

C. Haptic Control During Carving 

When the user moves the virtual carving tool voxels are 

removed from the object, and force feedback is provided to 

the haptic device. To accurately model the effect of the user 

manipulating the carving tool we detection collision by 

checking whether the intersection of the tool head and the 

object is non-empty, and if so then move the tool head to a 

nearby position outside of the object and calculate the amount  

of resistive force that should be expressed to the user 

based on the impact. The process is described in more detail 

below. Each time the cutting tool is moved, the system 

detects whether there are any object voxels within the 

boundary of the carving tool’s head. If not then the tool head 

is completely outside the object and the tool head’s position 

is saved as the anchor point. If the tool is moved and there 

are voxels within the carving tool’s head then the tool’s head 

has collided with the object between the tool’s last position 

and the current position. In this case 26 candidate spheres 

with the same radius as the cutting head are computed around 

the last anchor point in an axis-aligned a 3D grid each spaced 

a fixed anchor-drag distance apart. The candidate sphere that 

is closest to the object boundary while not inside of it is taken 

as the force measurement sphere. The magnitude of resistive 

force to express to the user through the haptic device is 

approximately calculated using Hooke’s law with the 

displacement being the distance from the force measurement 

sphere to the current head position: 

 
 F x k= − ⋅  

 

where F is the resistive force, –x is the displacement and k is 

a scaled version of the material’s ultimate strength. 

Using an anchor point and candidate spheres allows the 

tool to slide along the surface of the object after it has 

collided. If a drag feature were not implemented, the burr-

tool would be virtually glued to a spot on the model where it 

collided and would only relinquish its spot when the burr tool 

was fully pulled away from the model. 

 

 
(a) 

 
(b) 

Figure 1: Method for computing the haptic feedback force. In (a) candidate 

spheres generated around the solid anchor point are used to determine an 

approximate position for the cutting head entirely outside the object. In (b) 

the difference between the closest outside candidate point (solid green) and 

the current cutting head (solid grey) is used as the displacement vector in 

Hooke’s Law. 

 

This use of Hooke’s Law is analogous to the engineering 

stress-strain relationship, since the colliding head has put an 

amount of stress on the object approximately equal to the 

head displacement resulting in a proportional amount of 

stress. The force is applied outwards in the direction from the  

collided head position to the approximate surface head 

position. Approximating the force in this way is done in 

grinding simulation [14]. 

The voxels actually removed from the object are those that 

were within a distance less than ¾ of the radius away from 

the center of the cutting head.  

D. Visualization During Carving 

For visualization we use three major data structures to 

represent the object being carved: a voxel set used for volume 

calculations, a triangle mesh used for display, and a BPA 

front used when updating the display mesh from the voxel 

set. Each surface voxel in the voxel set has a link to the 

corresponding mesh vertex that it supports. The triangle mesh 

is defined such that vertices are shared between adjacent 

edges, and edges shared between adjacent triangles. 

When voxels are removed from the voxel set the 

corresponding triangle mesh used for visualization is updated 

using a dynamic version of the BPA algorithm (DBPA).  

The DBPA proceeds in two steps: the first step is to create a 

new front that bounds the mesh elements affected by the 

voxel removal, and the second is to use the standard BPA 

 



algorithm to triangulate and re-close the surface using this 

front. The standard BPA algorithm begins with a front that 

bounds a single triangle and grows outwards from that front 

to cover the entire surface. Likewise in the second step of 

DBPA we will begin BPA with a more complex front and 

grow triangles to close the front, ultimately replacing deleted 

triangles with new triangles in the existing mesh. Figure 2 

shows the process of creating the new front for a simple mesh 

when two surface voxels are to be removed. 

 

In the first step, for each voxel v removed, if v was not a 

surface voxel then no additional steps need to be taken. If v 

was a surface voxel it has a corresponding mesh vertex and 

adjacent triangles. Since the voxel is removed so must the 

adjacent mesh triangles and the edges that are allowed to be 

removed. When these triangles are removed, a new loop in 

the front is created that bounds the removed triangles. We 

call the set of remaining edges that bound the mesh triangles 

removed by removing a voxel the rim of the removed voxel. 

The rim must be ordered so that each edge in the rim is 

adjacent to the last. 

When creating the rim, however, we must be careful that 

we only remove edges that are not already part of another 

loop that was added to the front by removing a voxel 

previously in the step. For example, in Fig. 2 the voxel 

corresponding to the mesh vertex a was removed first. When 

b was later removed the correct rim includes bc and bg, not 

ac and ag like expected since those edges have already been 

deleted and would cause overlapping loops in the front which 

violates the pre-conditions of BPA. 

Instead we create coincident edges in the front. In the 

standard BPA these duplicate coincident edges may occur 

after a join operation, and they are removed using the BPA 

glue operation, which merges adjacent loops together as 

appropriate. We use the same glue operation to remove our 

coincident edges. 

In order for the second step of the DBPA process to work, 

certain information must be stored on each edge in the front. 

When the BPA processes a front, it pivots a ball around each 

edge in the front until it strikes a point. To perform this 

calculation it must use not only the coordinates of the edge’s 

vertices that it is pivoting around, but also the ball-center and 

opposite point of the existing triangle that bounds the front 

edge. The ball-center is the coordinate of the center of the ρ-

ball then it had previously struck the point that generated the 

triangle. 

Thus, for BPA to operate on the front that was created in 

the first step of DBPA, the front edges must have the correct 

ball-center and opposite point associated. In the classic BPA 

algorithm this is trivial: each front edge will only have one 

associated ball-center, being the one that was used to generate 

the front edge, and one opposite point. However since we are 

generating a front from an existing mesh we must choose the 

ball-center and opposite point for the mesh triangle that is 

adjacent to the edge we are creating, and has not been 

removed. In order to have this information available, each 

time a triangle is created in the mesh the ball-centre is stored 

with the triangle.  

When each edge in a rim is added to the front the front 

edge created for that rim edge is created with both the ball-

centre and opposite point from the adjacent triangle that has 

not been deleted. Figure 3 demonstrates the process. 

 

 
Figure 3: Ball-pivoting from a new front, in 2D. Only surface points are 

shown. After the vertices c and e are removed, pivoting occurs about “front 

edges” b and g to close the hole. For b, the ball-centre used to begin pivoting 

is the circle stored with ab, and the opposite point used is a. 

   
a b c 

Figure 2: Steps taken to create a new front when the vertices a and b are to be removed from a sample mesh. (a) a section of a triangle mesh is shown. (b) the 

vertices a and b have been removed in that order. The adjacent triangles (abc, acd, bci, bih, etc.), the adjacent edges (ab, ac, bi, bh, etc.) are removed from the 

mesh. Removed edges are shown as dotted lines. Two new loops are created in the front: bcdefgb and bcihgb (shown in bold) are created. By adding the new 

cycle, the front contains a coincident pair of edges for bc between the two cycles, and a coincident pair for bg. (c) the coincident edges are removed by applying 

glue to each coincident pair in turn, resulting in a single cycle. 



 
Figure 4: To create a 3D texture a 2D image is duplicated along the third 

dimension to create a 3D array of pixels. 

E. Texturing 

To provide realism and visual appeal the objects being 

carved display texture. Our method allows the specification 

of a 2D external texture and 3D internal texture for the object 

being carved.  

The output of the initialization stage of our method is a 

voxel set and an associated triangle mesh. To apply the 2D 

texture to the object being carved the triangle mesh can be 

imported into a separate 3D modeling tool such as 3D studio 

max and have a 2D texture applied to it and then be re-

imported into the system. To apply a 3D texture to the object 

a 3D texture consisting of a number of 2D image slices is 

created separately such that the axes of the texture are aligned 

with the object. Figure 4 shows this process. 

With the 2D texture mapped to the initial mesh and the 3D 

texture available, our system can then initialize with the mesh 

and textures for carving. Initially the object appears with only 

the 2D texture visible since it was mapped to the external 

faces of the object being carved.  

When carving is performed, however, each triangle 

created by applying the DBPA is instead mapped using the 

3D texture. When the mesh being cut is first loaded the 

maximum axis-aligned dimensions of the mesh are stored.  

When a new triangle is created using DBPA the physical 

coordinates are divided by the maximum initial dimensions of 

the mesh, giving relative texture coordinates. These relative 

texture coordinates are then scaled by the axis-aligned size of 

the 3D texture to obtain the actual texture coordinates.  

For our experiments we created simple 3D textures by 

layering multiple copies of an image on top of itself. The 2D 

image was loaded and repeated as 2D slices of a 3D array. 

The 3D array is used as a 3D texture in the graphic library, 

with each image being a one “pixel” slice of the 3D texture. 

IV. RESULTS 

Our experiments were performed on a 2.8 GHz Pentium D 

processor machine. The OpenSceneGraph graphics library 

was used for rendering. Qualitative results can be seen in 

Figures 7 and 8. 

We present quantitative results from a hip dataset. The hip 

object was created from a voxel space of dimension 

120×120×120, and is shown in Fig. 6. A cutting tool with a 

spherical head was used to carve the surface. The 

performance results are shown in Table 1 and graphed in 

Figure 5. 

  
Table 1: Carving Performance 

Voxels Cut Front BPA Total FPS 

42.8 6.7 5.1 11.8 84.7 

148.8 23.4 15.9 39.3 25.4 

382.3 26.8 38.4 65.2 15.3 

680.3 44.2 59.1 103.3 9.7 

 

In Table 1 each row is the average of ten sample cuts 

using the same cutting tool. Each cut is performed using a 

sphere centered on the hip surface. Voxels Cut is the average 

number of voxels removed per cut. Front is the average time 

in milliseconds to remove the voxels and mesh triangles, and 

compute the new front. BPA is the average time to re-mesh 

the front using BPA. Total is the sum of Front and BPA. FPS 

is the number of frames per second that can be achieved 

based on the time taken to cut the voxels. 
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Figure 5: Graph of average time to complete a cut of varying numbers of 

voxels 

 

The results are promising. Our system can achieve real-time 

rates on a large data set when removing below about 14 

voxels per cut, which is approximately a volume of 5x5x5 

voxels removed each cut. 

 

 
Figure 6: Hip dataset used for quantitative analysis.  



The graph in Fig. 5 demonstrates that though it does take 

longer to regenerate the triangle mesh after each cut as the 

number of voxels affected by the cut increases, the time taken 

increases generally linearly. In Table 1 we see that the time 

taken to generate a new front increases slower than the time 

taken to regenerate the mesh using BPA. This is intuitive 

since generating the new front logically involves processing 

less surface area than generating the new triangles for the cut 

area; in the worst case an area roughly equal to the diameter 

of the cutting tool would be processed in the former, while in 

the latter an area roughly equal to the outer surface area of the 

tool head would be processed. 

V. CONCLUSION 

We have presented an interactive 3D carving system that 

animates carving in real time using feedback from a haptic 

input device. By representing the object being cut internally 

as voxels but rendering the results to the display as a triangle 

mesh, the system achieves quick computation of the carving 

effects while providing a pleasing and realistic 3D view of 

the object. The DBPA and texturing techniques presented in 

the paper are suitably generic that they can be used for 

various carving purposes from medical simulation to games. 

Avenues for future work include smoothing the results of 

individual cuts, and using a mathematical model for grinding 

rather than one for the stress-strain relationship to determine 

the amount of resistive force. 
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Figure 7: Demonstration of carving an externally and internally textured object. The cucumber uses an external 2D texture as well as an internal 3D texture 

   
Figure 8: Demonstration of cutting an externally textured object. The apple uses an external 2D texture and a simple white internal colour. 

 


