
HaptiCast: A Physically-Based 3D Game with Haptic Feedback

Sheldon Andrews

Javier Mora

Jochen Lang

Won Sook Lee

SITE, University of Ottawa

{sandr071 | jmora091 | jlang | wslee}@site.uottawa.ca

Abstract

Modern haptic technology allows users to receive

realistic kinesthetic and tactile cues in a computer

generated environment. When applied to video games,

it gives players a higher sense of immersion as well as

new and interesting ways to interact with the game

environment. In this paper, we present a game which

acts as an experimental framework for assessing haptic

effects in 3D games. In HaptiCast, players assume the

role of a wizard with an arsenal of haptically-enabled

wands which they may use to interact with the game

world. We discuss the integration of haptic feedback

in this first-person shooter style video game that uses a

“vanilla” 3D game engine. The haptic rendering

algorithms and effects used in our approach are

presented, along with some non-haptic features which

enhance this modality.

Keywords: haptics, gaming, physics, force feedback

1 Introduction

Haptics refers to technology which stimulates the user’s

sense of touch. Users are able to literally touch and feel

characteristics about computer generated objects such as

texture, roughness, viscosity, elasticity, and many other

characteristics. The human tactile and kinesthetic

senses are stimulated through computer controlled

forces which convey to the user a sense of natural feel

about a virtual or remote environment.

The applications of haptic technology are widespread.

For instance, in combination with a visual display,

haptics technology may be used to train people for tasks

requiring hand-eye coordination, such as surgery or ship

docking maneuvers. Haptics may also be used for

entertainment applications, such as video games.

Players feel the physical properties of in-game objects,

adding an extra level of interaction that traditional

interface devices do not offer.

Currently, there is a variety of haptic interfaces

available. Some devices, such as the Logitech

Rumblepad or Microsoft Wingman, offer 2 degrees-of-

freedom (DOF) interactivity and display simple haptic

effects to the user— open-loop vibrotactile feedback,

predefined force feedback signals. More sophisticated

devices, such as the Phantom Omni and Novint Falcon,

offer a higher level of interactivity by providing 6 DOF

input and 3 DOF feedback to the user.

1.1 Haptics in Gaming

There are many games currently take advantage of the

haptic effects offered by mainstream haptic device. For

example, in a car racing game, players may feel

vibrations in their joysticks or steering wheels as they

drive over a rough section of road. Or players of an

action game may feel a rumble from their mouse as

rockets shoot past their heads. While these devices can

increase the level of immersion experienced by the user,

we feel their use in games is often trivial or poorly

planned. Granted, these devices cannot offer the level

of interaction which is offered by modern haptic

devices, but this is something which we believe will

soon change.

Nintendo’s president, Satoru Iwata, highlighted in his

keynote speech at the GDC 2006 [15] that there is a

cultural need for innovative entertainment; a need to

revolutionize electronic gaming. The upcoming release

of Nintendo’s new game console, Wii [13], shows an

attempt to satisfy the need for innovative gameplay and

enhanced immersive gaming experiences. We believe

that in the near future, haptic devices will become more

accessible to the average computer and console user and

will play an important role in providing innovative

forms of entertainment. This trend is heralded by the

announced release of devices such as Novint’s Falcon,

which has an affordable target, even for mainstream

consumers. Opportunities are arising for developers to

invest in haptic applications and gaming titles.

As suggested by Chang [1], haptic technology will

become an integral part of the game design process and

require creative planning in order to take full advantage

of this bi-directional modality. Gamer habits may

change too in order to incorporate their sense of touch,

which gives them more complex interaction with the

game environment.

In Section 2 of this paper we discuss projects similar to

this one. In Section 3 we present a description of our

game, as well as haptic effects and rendering techniques

used by our game. We also present some other methods

of interaction which may be combined with haptic

interfaces. The results of user trials are presented in

Section 4, and possible future improvements to the

project are presented in Section 5. This paper concludes

in Section 6.

2 Related Work

The amount of literature regarding haptic technology

and rendering has increased substantially in recent

years. A description of our rendering technique is given

in Section 3. For a more complete background on haptic

rendering and haptics in general can be found in other

articles ([4], [5], [6], [14]).

Haptic Battle Pong [2], a pong clone with haptic support

for SensAble Phantom devices, is one of the few

attempts at introducing modern haptics to gaming.

Force-feedback is used to haptically display contact

between a ball and a paddle. However, interaction with

the game environment is limited since players can feel

only the transient forces generated as the paddle strikes

the ball.

There has also been some other work concerning the

integration of haptics into a 3D game engine. Nilsson

and Aamisepp [3] explain the relevance of incorporating

haptics in a 3D engine and a plug-in for Crystal Space

[22] was developed to demonstrate this integration

successfully. However, haptic interaction in the context

of 3D gaming was not well explored by this project.

Other efforts [7] to combine haptic and graphical

rendering are ambitious, but don’t contain features

which are desirable for 3D game development.

Our approach builds on the work discussed in this

section. By using existing, well-developed game engine

components—specifically, a scene graph library and

physics engine – and augmenting them with haptic

rendering, we create a highly useful haptic game

development environment which we use to experiment

with haptic interaction in 3D games—of which a by-

product is an actual game. The algorithms used for

haptic rendering are simple, fast, and use the capabilities

of existing software components.

3 HaptiCast

Figure 1: A screenshot from HaptiCast

HaptiCast is a multi-player 3D game which places the

players in a first-person shooter (FPS) death match

setting. It is designed to provide fast-paced action and a

high level of interactivity. A screenshot of the game is

shown in Figure 1.

An important component of HaptiCast is the physics

engine, which simulates Newtonian physics for all

objects in the virtual game environment. Variables such

as mass, velocity, friction, and external forces all

contribute to the realism of the game. This component

provides collision detection and response amongst in-

game objects, allowing character and object control

using physical dynamics, as well as access to

information used by haptic rendering algorithms. The

physics engine we’ve chosen for the HaptiCast project is

Newton Game Dynamics [9], which is a small, fast rigid

body physics engine for development in C/C++. Every

object in our game world has a physical representation,

and therefore is capable of exhibiting realistic physical

behaviour.

The scene graph library we’ve chosen for the HaptiCast

project is Irrlicht [8], which is a fast, cross-platform 3D

graphic engine that includes features such as Gourad

shading, z-buffering, dynamic lighting, mesh loaders,

particle systems, texturing, and many more. This

component is responsible for displaying 3D objects on

the screen, as well as a graphical user interface.

The supported platform for HaptiCast is Windows

2000/XP using a Phantom Omni or Desktop [21] device

from SensAble Technologies. For good haptic and

graphical rendering to occur, a Pentium 4 processor and

hardware 3D graphics processor is recommended. Due

to haptic rendering and synchronization constraints,

players must currently use the same machine in order to

compete against each other.

3.1 Haptic Wands

In our game, the player interacts with the game world

using a series of wands. When the player uses a wand, a

spell is cast which displays a haptic effect and offers a

different way of interacting with the game environment.

Figure 2 shows a selection of wands whose haptic

effects are discussed in the next section.

Figure 2: The haptic wands (from left to right): lift/swing,

blast, bolt, lob

The haptic rendering of each wand is synchronized with

the time-step updates of the physics engine. That is,

force values at the haptic device are calculated and

displayed each time the physics engine is updated.

Since the physics engine simulation controls the position

and orientation of all objects in the game, there should

be no discontinuity between what the user sees and what

the user feels while interacting with the game world.

3.1.1 Lift and Swing wand

The lift wand uses the most complex haptic rendering of

all the wands. This wand, named because its intended

function is to allow the player to pickup and lift objects

in the environment, display the weight, momentum, and

contact forces to the player. It allows any object in the

environment to become a haptic probe, with smaller

objects able to display finer details about the

environment. Players may also manipulate objects so as

to block oncoming projectiles or crush their opponents.

The teaser for this paper shows the lift wand in action,

as a player controls a haptic device in order to suspend a

table over a gap in the floor.

A player selects an object by moving close to it,

pointing at it with the wand, and holding the button on

the haptic device. The player can immediately feel the

haptic feedback of forces affecting the object.

The rendering algorithm used by this wand is similar to

existing techniques [5] which use a penalty-based

rendering technique. A distance vector from the center

of the selected object to the virtual position of the haptic

interface point (HIP) is used to calculate a spring force

which is then displayed at the haptic interface. The

equation used to generate the force displayed at the

haptic device is calculated as:

k)P(PQQF objHIPplayerhaptichaptic ⋅−××=

where Fhaptic is the force to display at the haptic device,

Qplayer is the transformation of a point in the global

frame to player frame, Qhaptic is the transformation of a

point in the player frame to haptic device frame, Pobj is

the current position of the selected object, and k is a

scalar which controls stiffness. PHIP, which is the haptic

interface’s position in the virtual game world, is

calculated as:

)]P(PQ[PQPP haptichaptic
01

hapticobj
01

playerplayerHIP −++=
−−

where Pplayer is the current position of the player, P
0

obj is

the starting position of the object (when the object is

picked up), Phaptic is the current position of the haptic

device, and P
0

haptic is the starting position of the haptic

device. Using this rendering equation, haptic forces are

always rendered from the player’s viewpoint, which we

find is more intuitive for the player.

As indicated by the rendering equation, the first step of

the algorithm is to calculate the position of the HIP

relative to the position of the selected object. Initially,

these two positions are the same, but as the player

manipulates the haptic device the object tries to “keep

up”. A force is rendered at the haptic device which is

directly proportional to the vector (times the stiffness

scalar) between the selected object and the position of

the HIP. A scaled version of this force is also applied to

the object so that it moves towards the HIP’s position in

the game world. Imagine that the player is dragging the

object through space using a virtual spring, with one end

attached to the HIP and the other to the selected object.

A free-body diagram explaining this interaction is

shown in Figure 3.

Figure 3: An illustration of the lift wand rendering algorithm.

In the figure, the HIP’s position has penetrated a static

obstacle. Since the selected object cannot move to the

HIP’s position, a spring force is displayed at haptic

device and the user can feel a collision response.

A benefit of using a spring force (based on Hooke’s

spring law) to move and direct the selected object is that

the physics engine should keep objects from penetrating

by performing collision detection and response.

Instability only becomes an issue if the spring force

becomes unusually large, or if the simulation time step

is too large. Special precautions need to be taken so that

such cases never arise. The algorithm doesn’t directly

alter the position of the object since this would override

any collision detection and response performed by the

physics engine.

Another benefit of using forces to move and direct the

selected object is that the user feels “drag” when they

move heavier objects, which is a direct result of

Newton’s second law. While this feature is not wholly

physically accurate, it does provide interesting feedback

to the user.

If the physics engine is also capable of simulating

frictional forces between objects in contact, these forces

are indirectly displayed to the user. “Sticking” occurs

when the selected object is in contact with another

object and the HIP is moved so as to slide the selected

object along its surface. Very high frictional coefficient

values result in the object rolling across the surface,

whereas low values result in no observable sticking or

frictional force.

The player also has the option of enabling display of

other forces at the haptic device. Scaled versions of

gravity and impulse forces due to collision that affect

the selected object may also be included in the rendering

equation. This allows the user to feel the weight of the

object as well as the impact of the object hitting an

obstacle. These forces are calculated for us by the

physics engine.

The swing wand is similar to the lift wand, but some of

the forces generated during haptic rendering also affect

the player’s in-game character. The intended function of

this wand is to allow the player to latch onto static

objects in the environment and swing, or be suspended

in midair, by using the spring forces to direct their

movement.

3.1.2 Bolt and Blast wand

These wands do not make use of sophisticated haptic

rendering, but display novel haptic effects to the user. A

recoil effect is felt by the user as projectiles are fired out

the end of the wand. With the blast wand, the user can

feel the haptic force ramp up over time. The magnitude

of the force is proportional to the energy and speed with

which a fiery projectile is fired from the wand. The bolt

wand displays small, transient forces to the user as

energy bolts are rapidly fired from the wand. Users may

take advantage of the 6 DOF input of the haptic device

in aiming their wand.

3.1.3 Lob wand

This wand resembles a slingshot, which gives the user

an indication as to its functionality. The lob wand

allows the user to throw a grenade-like projectile at an

enemy. The force displayed at the haptic device is

directly proportional to the force with which the

projectile will be flung from the wand. The user

estimates the distance to their target and pulls the

slingshot to the appropriate tightness.

3.2 Gesture Recognition

Gesture recognition allows a computer to recognize

human gestures using a mathematical algorithm. This is

a non-haptic feature which we are currently

implementing for HaptiCast. We feel gesture

recognition is a necessary progression which will allow

game developers to take full advantage of the high

degree-of-freedom input capabilities of modern haptic

devices.

The orientation and workspace of the Phantom series of

haptic devices allow the user to make natural, human

gestures using a stylus. The idea of waving a haptic

stylus through the air in order to cast spells is appealing

in that it makes the player feel as if they really are a

wizard. This is a feature-in-progress, but current results

look promising. Simple 2D shape recognition is done

using a neural network-based recognition engine, using

an approach similar to others ([10], [11]), whom also

provide good introductions to neural networks.

The workspace of the haptic device is separated into

discrete regions which represent states. As players

manipulate their wands, the neural recognition engine is

fed a sliding window of the most current state

transitions. The engine is trained to recognize which

sequences of state transitions are meaningful within the

context of the game, and which are not. Figure 4 shows

the high-level design of the recognition engine, which

uses a time-delay neural network (TDNN) to perform

shape recognition. Some of the gestures we have

trained the network to recognize using a haptic device as

input include clockwise, counter-clockwise circles and

diagonal strokes.

For test trials, the TDNN uses 16 input nodes, a hidden

layer with 24 nodes, and 4 output nodes. A total of 25

states were used for the haptic workspace—a 5 by 5 grid

in the x-y plane. The z-axis position value of the device

was disregarded. A sliding window of the 8 most recent

state transitions was also used. During experiments, the

average calculation time for a single recognition was

less than 10 ms. A large part of completing this feature

will be to generate a training set which will enable the

TDNN to accurately identify a pre-defined set of

gestures.

3.3 Speech Recognition

An early prototype of the game included a speech

recognition feature, and by using a microphone players

were able to trigger wand functionality by saying a spell

command phrase. For example, the player could say the

phrase “fire blast” and a fire ball would shoot from the

end of his wand. The speech recognition feature

increased the level of interactivity with the game,

certainly made the player feel more like a wizard casting

spells, but was prone to several problems. Because of

these problems, this feature was removed.

Figure 4: The gesture recognition engine

False positive recognition was one problem which

contributed to the eventual removal of the speech

recognition feature. This resulted in the incorrect spell

being cast by the wand (initially command words were

used to select the spell for a single wand), or a spell

being cast when the user had spoken no command.

Delays caused during the speech recognition process

resulted in awkward user interaction with the game

environment. Speech recognition times would vary, but

usually resulted in 1 or 2 second delay before a wand’s

functionality was activated. This was deemed

unacceptable. Some speech recognition engines do

allow a trade-off of speed vs. accuracy. However this

created more false positive/false negative recognitions.

Perhaps the biggest reason for removal of the speech

recognition feature is that during test trials (see Section

4), many users felt uncomfortable speaking aloud the

command words which cast spells.

4 Game Description and Results

After using HaptiCast, there is no doubt that the

integration of haptics into the game increases its realism,

the level of immersion felt by the user, as well as the

entertainment value of the game.

Each player is given a set of wands, as described in

Section 3, which they may use to interact with the game

environment and to battle their opponent. Players start

with a certain amount of health which may decrease if

the player is hit by a wand projectile (e.g., from the bolt

and blast wand), is hit by an object, or falls from a high

enough height. A player may increase their health by

running into power-ups scattered throughout the level.

When a player’s health reaches zero, they die and are

resurrected at a starting point.

Each wand, too, is given a certain amount of energy

which is used to supply power to the wand. When a

wand’s energy reaches zero, the player may no longer

use that wand until its energy is replenished. A wand’s

energy may be replenished by running into the

appropriate power-up.

An early version of the game was showcased during a

course project presentation and at the University of

Ottawa Engineering open house. At each event

students, alumni, faculty and their families provided us

with feedback about the game. Some of them were

eager to play our game and we got very useful feedback

from their experiences.

Adult players showed a tendency to be reluctant to say

out loud the words to cast a spell, which lowered the

player’s motivation to fully immerse themselves into the

role of a wizard, as well as defeating the purpose of

integrating speech recognition into the game. The

quality of speech recognition also varied, depending on

the user’s pitch, speed, and accent while speaking. This

influenced us to change our game design and re-evaluate

the speech recognition feature (also discussed in Section

3).

Children seemed to be more haphazard in exploring the

game and made creative use of the magic spells.

However, they had a larger learning curve and needed

instruction while handling the haptic device. Adults

supervised the session and children were instructed to

firmly grasp the wand while lifting heavy objects. Both

children and adults expressed awkwardness when

initially using the haptic device, but most became more

agile in their use of the Phantom stylus once they had

some practice.

The recommended haptic update rate of 1000 Hz [5]

was not achieved in trials of HaptiCast. However, frame

rates of more than 60 fps (frames per second) were

common. Though high update rates were not possible

for the haptic rendering, there were no observable

discontinuities or instability.

5 Future Work

A next step for the HaptiCast playground is to integrate

haptic texture rendering into the game world. Bump

maps have been shown as a suitable method to render

tactile surface features of objects in a haptic virtual

environment world [20]. The benefit of using a bump

map or height field is that many 3D graphic drivers also

support rendering of these textures.

Other approaches for haptic texturing use stochastic

statistically-based models [17], spectral analysis [18],

and virtual springs to render the roughness of a surface

[19]. The suitability of each method for use in 3D video

game needs investigation.

Another intended feature is the integration of network

play into the game. This would allow multiple players

to play HaptiCast using a LAN or Internet configuration.

However, due to the highly interactive nature of the

game, special consideration needs to be taken in order

for stable, high-quality haptic rendering to occur. As

previous work indicates [16], network latency is a

source of instability and discontinuity in haptic

rendering across a network. The physical simulation of

the game world, too, must be synchronized across all

network nodes.

6 Conclusion

From the test trials and user feedback we’ve received,

HaptiCast promises to be a suitable test bed for

experimenting with haptic interaction and effects in 3D

games. The wands described in Section 3 contribute

significantly to the immersion and entertainment value

of the game, yet other methods of interaction using

haptic interfaces are to be explored. Our contribution

will be to develop these interaction techniques and to

report on them to the game development and haptic

communities. For this purpose, an open source project

has been created for HaptiCast and may be found online

[23].

Acknowledgements

We wish to give special thanks to the University of

Ottawa and NSERC for providing equipment and funds

to pursue our research. We also thank Dr. A. El Saddik

for the opportunity to begin the HaptiCast project as part

of his course curriculum. Finally, we thank

SourceForge.net for hosting our project online.

References

[1] Chang, D., Haptics: Gaming's New Sensation,

Computer, Volume 35, Issue 8, pp.84 – 86,

2002.

[2] Morris, D., Neel, J., and Salisbury, K., Haptic

Battle Pong: High-Degree-of-Freedom Haptics in

a Multiplayer Gaming Environment.

Experimental Gameplay Workshop, GDC 2004.

[3] Nilsson, D., and Aamisepp, H., Haptic hardware

support in a 3D game engine. Master thesis,

Department of Computer Science, Lund

University, May 2003.

[4] Srinivasan, M., and Basdogan, C., Haptics in

Virtual Environments: Taxonomy, Research

Status, and Challenges. Computer and Graphics.

21(4), pp. 393-404, 1997.

[5] Basdogan, C., Haptic rendering tutorial. Available

at:

http://network.ku.edu.tr/~cbasdogan/Tutorials/hap

tic_tutorial.html

[6] Ho, C.H., Basdogan, C., and Srinivasan, M. A.

Efficient point-based rendering techniques for

haptic display of virtual objects. Presence 8, 5,

pp.477-491, 1999.

[7] Conti F., Barbagli F., Morris D., Sewell C., CHAI:

An Open-Source Library for the Rapid

Development of Haptic Scenes. Demo paper

presented at IEEE World Haptics, Pisa, Italy.

March 2005.

[8] Irrlicht Engine. http://irrlicht.sourceforge.net/

[9] Newton Dynamics game engine.

http://www.newtondynamics.com/

[10] Boukreev, K., Mouse gestures recognition. Code

Project article. Available at:

http://www.codeproject.com/cpp/gestureapp.asp

[11] Murakami, K., and Taguchi, H. Gesture

Recognition using Recurrent Neural Networks.

Proceedings: Conference on Human Factors in

Computing Systems, pp. 237 – 242, 1991.

[12] Novint Technologies. http://www.novint.com/

[13] Nintendo Wii. http://wii.nintendo.com/

[14] W. Mark, S. Randolph, M. Finch, J. V. Verth, and

R. M. Taylor II. Adding Force Feedback to

Graphics Systems: Issues and Solutions. In

SIGGRAPH’96, pp. 447-452, August 1996.

[15] Carless, S., Detailed Nintendo Keynote Coverage.

Gamasutra article. Available at:

http://www.gamasutra.com/php-

bin/news_index.php?story=8656

[16] Fukuda, I., Soju, M., Iijima, M., Hikichi, K.,

Morino, H., Sezaki, K., and Yasuda, Y., A Robust

System for Haptic Collaboration over the

Network, from “Touch In Virtual Environments”,

Prentice Hall, 2002.

[17] Siira, J., and Pai, D., Haptic Texturing – A

Stochastic Approach, Proc. International

Conference on Robotics and Automation, pp. 557-

562, 1996.

[18] Wall, S.A., and Harwin, W.S., Modelling Of

Surface Identifying Characteristics Using Fourier

Series, DSC - Vol.67, Proc. ASME Dynamic

Systems and Control Division (Symposium on

Haptic Interfaces for Virtual Environments and

Teleoperators), pp. 65-71, 1999.

[19] Minsky, M., Ming, O., Steele, O., Brooks, F.P., and

Behensky, M., Feeling and seeing: issues in force

display, Proc. of the 1990 Symposium on

Interactive 3D Graphics, pp. 235-241, 1990.

[20] Theoktisto, V., Fairen, M., Navazo, I., Monclus, E.,

Rendering detailed haptic textures, Workshop on

Virtual Reality Interaction and Physical

Simulation, 2005.

[21] SensAble Technologies. http://www.sensable.com/

[22] Crystal Space 3D. http://www.crystalspace3d.org/

[23] HaptiCast. http://sourceforge.net/projects/hapticast

