
G. Csurka et al. (Eds.): VISIGRAPP 2011, CCIS 274, pp. 53–68, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Feature-First Hole Filling Strategy for 3D Meshes

Hanh T.-M. Ngo and Won-Sook Lee

School of Information Technology and Engineeing, University of Ottawa, Ontario, Canada
{tngo087,wslee}@uottawa.ca

Abstract. In this paper we introduce an efficient hole-filling strategy for 3D
meshes and at the same time aesthetically recover the sharp features of the
original 3D model at the hole areas. Commonly, hole filling techniques try to
fill up the hole first then smooth it. Very few have tried to recover the fine
features of the original model at the holes. Our hole filling technique is different
from other existing techniques as features are taken as the first subject to
reconstruct, which eventually drive the feature-definite surface filling process.
Feature curves in the missing part are reconstructed by extending salient
features of the existing parts. The hole is partitioned into several smaller and
more planar sub-holes by the feature curves and then the hole-filling step are
done on those sub-holes. User intervention is allowed to design features to be in
desired shape. This indeed guides feature curve reconstruction wherever
ambiguity exists or results are unsatisfactory. It is also very efficient as a user
is interfering only with sharp features and the actual hole-filling step is dealing
with only simple holes.

Keywords: Hole filling, Surface reconstruction, 3D modelling, Real time user
interaction.

1 Introduction

3D computer models of real life objects can be obtained by several ways such as 3D
scanning devices, or computer-aided design software (Autodesk Maya, 3DS Max,
etc.). A common scenario, especially when dealing with 3D shapes obtained from 3D
scanning, is to have incomplete surfaces. These appear in areas where the object
geometry occludes the scanning device, notable examples when scanning human
bodies include the area under the chin, armpits or between the fingers, hence limiting
the information obtained. Because of these issues, many post processing techniques
are needed to be applied onto the raw models before being able to use them as the
input of design or animation applications. The repair of incomplete polygon meshes is
a fundamental problem in the reconstruction of 3D models in the field of computer
graphics.

One of key aspects of reconstruction of 3D models is hole-filling. This is to
complete the shape of the 3D object where surface information is missing. This is
essential for a wide range of applications such as computer animation, pattern
recognition, or character design. Hole-filling techniques aim to keep the filled surface
continuously and smoothly fitted at the boundary of the hole to conform to the shape

54 H.T.-M. Ngo and W.-S. Lee

of the original model. Although there is a large body of research on hole filling, very
little attention has been devoted to the problem of recovering fine features of the 3D
object, for instance the sharpness of the edge geometry. Most research focuses on
automatic methods that require performing complex optimization processes [1] [4] [7]
[10] [12] [14] [18]. In many cases, although the models obtained are hole-free,
interpolation algorithms fail to preserve fine details, ignoring sharp edges and corner
shapes.

Due to the complexity of the regions where holes are generated, automatic model
modification methods may not give satisfactory results in dealing with holes.
Complex optimization frameworks are computationally expensive. In addition,
processing large and complicated models is a time consuming task. Despite of the
great computational overhead, fine features in models are not recovered. Since there
are potentially several possible results for the surface recovery process, the user
should have the ability to influence the quality of the output surface. Furthermore,
although there are ways to set the constraints for automatic methods to resolve
ambiguous topology problem, there will always be the cases that require high-level
knowledge to disambiguate or have multiple answers, where the selection depends on
user’s preference. We believe a program interface that allows user intervention
efficiently helps to reduce the implementation effort, to give better visually plausible
results and to enhance the versatility of the system since the user would have the
ability to choose the desired feature-topology and the shape of the filled mesh.

We are motivated by the need of a hole filling system that is able to plausibly
recover the fine geometry features of the 3D models, especially the sharp features,
with some possible simple guidance by users at the hole locations using a real time
Graphics User Interface (GUI). Our goal is to develop a system that can repair the
holes of the 3D models and, at the same time, aesthetically preserve the sharpness of
the model at the hole locations with the aid from user intervention.

Our main contributions are two-fold: (i) salient features of the mesh geometry are
taken as the first subject to reconstruct, which eventually drive the feature-definite
surface filling process; (ii) the user is allowed to influence the hole filling process at
feature designing level while the rest is taken care by the automatic functions. Our
results show missing hole features are recovered with high quality while supporting
flexibility.

2 Related Works

Many researches on hole filling topic have been done up to now. However, there are
only few hole-filling approaches attempting to preserve and to recover the sharp
features of the 3D model. In this section we focus our discussion on feature sensitive
recovering methods for 3D meshes as they are of our special interest.

Barequet and Kumar [2] proposed a method that allows users to inspect the
automatic results of the first iteration and also to mark the areas to be corrected. The
second iteration produces the final results. The approach can produce “intuitively-
correct” filling of the holes with the aid of the user.

 Feature-First Hole Filling Strategy for 3D Meshes 55

In the paper by Ohtake et al. [13], to preserve the shape of sharp edges and corners
at the hole locations, a multilevel piecewise surface fitting method is employed to
represent a mesh model that has fine structures. Local approximation for fitting edges
and corners are based on the piecewise quadric surface fitting method. It consists of a
number of tests (edge tests and corner tests) in order to determine the type of
approximation surface or shape function that should be used. Edges and corners are
automatically recognized by clustering the normals of the mesh vertices.

In Sharf et al. [15], a context-based completion method is proposed to recover the
missing fine details in a repaired hole. The method employs the idea of texture
synthesis, by replicating portions of regions from adequate examples. Based on this
idea, the fine structure of the 3D model is recovered by finding a piece in the original
model or in the template models that is similar in shape to replace the initial repaired
hole. Hence, this method is particularly efficient for repairing holes in textured mesh
model.

Attene et al. [1] proposed a method to recover the sharp features of 3D mesh model
which are lost by reverse engineering or by remeshing processes that use a non-
adaptive sampling of the original surface. The algorithm starts by identifying the
smooth edges in the mesh model then applying the filters to get the chamfer edges.
Each chamfer edge and its incident triangles are subdivided by inserting new vertices.
These vertices are calculated so that they lie on intersections of planes that locally
approximate the smooth surfaces that meet at the sharp features.

In Chen et al. [5], holes are filled and sharpness is recovered by applying a
sharpness-dependent filter. The filter operates based on the distribution of the
sharpness values of triangle faces in the vicinity of a hole boundary. In this context,
the vicinity of a hole boundary is defined as its two-ring neighborhood. For any
triangle face, its sharpness value is computed as the variance of the angles between its
normal and each of the normals of the neighboring faces.

In He and Chen [9], both automatic and interactive methods are employed for hole-
filling. A novel hole-filling system that makes use of a haptic device is proposed.
After the hole identification phase, the hole boundaries are smoothed in the
interpolation step. This step is to correct boundary topologies and to adjust the
boundary edge lengths in order to avoid the uneven distribution of points at the hole
boundary. Then the user can decompose those complex holes into simpler ones in
stitching process. Sub-holes are then automatically triangulated using regular
triangulation methods. The user can repeat the intervention process until obtaining
satisfactory results. The authors proposed an interesting idea about using haptic for
3D user intervention. However, the limitation of this method is the lack of an
automatic method to detect the fine features of the mesh to serve as the guidance for
the user.

In Zhap et al. [19], holes are detected then triangulated using the modified
minimum-weight triangulation technique. Sharp features are recovered by crest line
fairing. The system makes use of the crest line detection technique in paper [17] to
detect the feature lines in the original mesh. Crest lines are the salient surface features
defined via the first- and the second-order curvature derivatives. Detected crest lines
are then used in region growing and fairing processes to recover the sharp features at
the hole areas. The users are also able to connect some crest lines before the region
growing step.

56 H.T.-M. Ngo and W.-S. Lee

Chen and Cheng [4] presented a sharpness-based method for filling holes. The
whole algorithm performs in two steps: an interpolation step for filling the hole which
produces the first approximation of the final model, and a post-processing step which
modifies the approximation model to match the original. The patch for the hole is
interpolated using the radial basis function to create a smooth implicit surface to fill
the holes. The implicit surface is triangulated using a regularized matching tetrahedral
algorithm. Then the triangulated surface patch is stitched to the hole boundary to
obtain the repaired model. In the post-processing step, a sharpness-dependent filter is
applied to the repaired model to recover its sharp features. In this paper, the
sharpness-dependent filter is an improvement of the one presented in paper by Chen
et al. [5]. Although the algorithm works quite effectively in repairing the models, the
system is difficult to implement.

Although an automatic system is always desirable, dealing with fine features at the
hole areas is a challenging task. In spite of a complicated hole-filling optimization
engine to get the results automatically as in paper by Zhat et al. [18], the fine features
are not adequately recovered in many cases. Most of the systems require user
intervention to obtain the best guess of fine features at the hole areas and to correct
the automatic results [2] [19].

Our hole-filling system provides both fully automatic and semi-automatic
capabilities where semi-automatic allows user to be comfortable dealing with only
several feature elements. If there is no ambiguity in pairing the feature points and no
inaccurate crest lines detected at the hole vicinities, our system can fully
automatically produce aesthetical results. Furthermore, while most hole filling
algorithms provide only automatic function and manual hole filling takes a lot of
user's time and effort as it is at surface mesh level with numerous points to touch and
requires expert knowledge about the objects and about how to manipulate on the 3D
mesh, our hole filling method, in the more complex cases, need a very limited user
intervention at the feature level to support the hole filling procedure.

3 User-Guided Feature Sensitive Hole Filling

Our hole filling algorithm can completely fill the holes of a model and aesthetically
recover the sharpness of the model at the hole areas, if any. It includes the solution for
efficient preservation of sharpness properties of 3D mesh models during the hole
filling procedure; the solution for implementation of a user-friendly interface to
support user intervention in real-time.

3.1 Algorithm Overview

Fig. 1 shows a high level view of our user-guided feature sensitive hole filling system.
The input model information is loaded into our designed data structure for further
usage in two modules: Crest Line Detection and Hole Identification. Crest line
information helps to find feature points in the holes and their vicinities, which are
used later for sharp feature interpolation. Here, the user can interfere the crest point
positions and design the shape of the patch mesh. Using this corrected information,
our system performs a feature line interpolation procedure over the holes. This

 Feature-First Hole Filling Strategy for 3D Meshes 57

process defines the expected fine features of the hole geometries and also divides
large complex holes into smaller and more planar ones. For each of these simpler
holes, patch is generated by projecting the hole on its projection plane, performing
triangulation and then mapping the triangulated topology back to 3D space. The 3D
patch is then stitched into the 3D model, and it is regularized to make the patch
consistent with the original mesh, in order to produce the final repaired mesh model.

Incomplete model

Crest Line Detection Hole Identification

Feature pts Interpolation User Intervention

Feature Line Interpolation

Patch Generation

Patch Regulation

Repaired model

Fig. 1. The framework of our system

3.2 Crest Line Detection

Defined in paper by Yoshizawa et al. [16], the crest lines are the salient surface
features defined via the first- and the second-order curvature derivatives. Crest line
detection has a significant role in our system since it guides the user to pair the feature
points on the hole boundaries and to correctly interpolate the feature lines over the
holes. In our implementation, we employed the crest line detection approach proposed
in paper [16].

Consider an oriented surface S and denote kmax and kmin its maximal and minimal
principal curvatures. Denote by tmax and tmin the corresponding principal directions.
Denote cmax and cmin the derivatives of the principal curvatures along their
corresponding curvature directions. The convex crest lines, also called ridges, are
given by

cmax = 0, δcmax/δtmax < 0, kmax > |kmin| (1)

while the concave crest lines, also called ravines, are characterized by

cmin = 0, δcmin/δtmin > 0, kmin < -|kmin| (2)

58 H.T.-M. Ngo and W.-S. Lee

It also turns out that in our cases, the mesh models are usually with holes, the crest
lines that suppose to pass over the holes areas are missing after the crest line detection
phase and need to be recovered by some way. Furthermore, since there is no surface
information at the hole areas the detected crest lines in the hole vicinity are usually go
incorrectly comparing to the case when the mesh model is complete. In our algorithm,
the detected crest line information is used to interpolate the missing parts. Hence, in
order to have the accurate interpolation results it is necessary to correct the crest
information at the hole vicinities first before the interpolation is proceeded. We
believe user intervention to correct the crest line information is the most efficient way
and it is chosen in our method. An example of inaccurately detected crest lines at the
hole’s vicinity and the corrected ones by user through our GUI is showed in Fig. 2.

Fig. 2. (a) An example of inaccurate crest line detection at the hole area: detected crest lines
and crest points are colored in green and blue correspondingly; (b) Crest lines are corrected by
user intervention

3.3 Hole Identification

In the loading phase, all of the 1-ring neighbourhood and connected component
information of vertices, edges and triangles of the input mesh model are calculated
and stored in our designed data structures to facilitate further processing. Hence, at
this step, all boundary edges can be easily identified by checking the numbers of their
adjacent triangles, i.e. for an edge, if the number of its adjacent triangles is equal to
one then that edge is a boundary edge. Its two end vertices are the boundary vertices
and its adjacent triangle is the boundary triangle. Once the boundary edge is detected,
its two end vertices are used as seeds to trace along the connected boundary edges and
vertices. If all identified points form a closed loop they make up a hole.

3.4 Feature Line Interpolation

At this step, before doing the filling work, we attempt to recover the sharp features,
i.e. the feature lines that suppose to pass over the hole areas. After the feature lines are
interpolated, the holes are also subdivided by these feature lines into the smaller and
more planar ones. This indeed facilitates the later hole filling procedure.

3.4.1 Basic Concepts
In our system convention, feature points are defined as the crest points, either
detected or interpolated, that lie on the feature line segment passing over a hole.

 Feature-First Hole Filling Strategy for 3D Meshes 59

Detected feature point is defined as the intersection point between the crest line,
either ridge or ravine, with the hole boundary (see Fig. 3). Intersection point are the
detected crest point, either ridge- or ravine- point, that lies on hole edge, also called
boundary edge. Interpolated feature point is the feature point obtained during the
feature line interpolation process. Figure 3 provides illustration of these concepts.

Fig. 3. An example of interpolating the feature lines over a hole using spline interpolation: the
interpolated feature line is colored in blue, the interpolated feature points are colored in green

In the same way with Jun [10], we consider two types of holes: simple hole and
complex hole. Simple holes are those that can be filled with planar triangulations,
which is the case when all boundary edges can be projected into a plane, without self-
intersection (as illustrated in Fig. 4(a)). It is not adequate to fill the complex hole with
planar triangulations since there are usually self-intersections when projecting the
complex hole boundaries into a plane (Fig. 4(b)). Thus, in our perspective, we attempt
to properly subdivide the complex holes into simple ones in order to fill the holes by
planar triangulation (see Section 3.4.4).

Fig. 4. Example of projecting holes onto planes: (a) Simple hole makes no self-intersections;
(b) Complex hole creates self-intersections (colored in red) on the projection plane

3.4.2 User Intervention
Once feature points are detected in the previous step, some limited user intervention
at feature level is needed

• to pair the detected feature points to avoid ambiguity for the case there are multiple
feature lines passing over the hole;

60 H.T.-M. Ngo and W.-S. Lee

• to adjust the inaccurately detected crest points to enhance the accuracy and the
quality of the final result; and to specify the hole at the corner of the object model
by specifying the triple of detected feature points lying on the hole boundary at the
corner area.

3.4.3 Feature Line Interpolation
To interpolate the missing feature lines passing over the holes, the following issue
should be addressed: since we try to make use of the crest line information which is
automatically detected by the system, the interpolated feature lines passing over the
hole should be interpolated by the available crest lines and crest points.

We choose spline interpolation for interpolating the feature lines at the hole areas.
A spline is a mathematical representation of a curve. It consists of a series of points,
called control points, at certain intervals along the curve, and a function that allows
defining additional points within an interval.

Two requirements for the spline interpolation in our case are

1. The curve should pass through all the control points, as they define feature line,
and its segments act as the edges in the polygonal mesh model;

2. It is necessary to be able to calculate the exact positions of missing control points
of the spline based on the available ones.

There are various functions available for approximating a curve and Catmull-Rom
spline is the one that satisfy the above requirements.

P0

P1

P2 P3

Fig. 5. The Catmull-Rom spline passes through all of its control points

Recall the properties of Catmull-Rom spline interpolation, a new point can be
found between two control points. This point is specified by a value t that represents a
proportion of the distance from one control point to the next one, as shown in Fig. 5.
Given the control points P0, P1, P2, P3 and parameter t, 0≤ t ≤1.0, we can compute the
new point location q using the following equation:

0

12 3

2

3

0 2 0 0

1 0 1 0
() 0.5 (1.0, , ,)

2 5 4 1

1 3 3 1

P

P
q t t t t

P

P

  
  −   = ∗ ∗ ∗
  − −
  − −   

(3)

Figure 3 illustrates our method to interpolate a feature line passing over a hole using
the detected crest line information. In our implementation, to interpolate a feature line
passing over a hole, the pair of feature points on the hole boundary and their adjacent
crest points make four initial control points for the Catmull-Rom interpolation
equation (3). Since we attempt to interpolate a feature line that has the point density

 Feature-First Hole Filling Strategy for 3D Meshes 61

as consistent as possible to the original mesh, the value t that appears in equation (3)
is approximated in our implementation as follow:

Given a hole that has n edges on its boundary. Denote length(ei) the length of
boundary edge ei; denote a the average edge length of the hole boundary. We have:

n
a

n

i
i

elength
== 1

)((4)

Denote d the Euclidean distance between the feature points F1 and F2 then we have

a

d
t = (5)

3.4.4 Hole Partitioning
Once all the feature lines at the holes are interpolated, a hole tracing procedure is
executed. For each hole, the procedure starts with a vertex on the hole boundary, then
it does the tracing along the connected boundary edges and its corresponding feature
lines. If all identified points form a closed loop they make up a hole. By involving
feature lines in the hole identification process at this step, the original complex holes
are indeed subdivided into smaller, more planar and simpler sub-holes right at the
feature line locations.

In [10], the author discusses the self-intersection problem when projecting a
complex hole onto a plane. This means some edges on the hole boundary may overlap
each other in the projection plane. In our system, since the holes are split at the salient
feature curves, the sub-holes obtained are already quite planar. In addition, by using
of the tangent plane of the hole boundary as its projection plane our approach avoids
efficiently the self-intersection of the hole boundary.

3.5 Hole Filling

After all the polygonal holes in the original mesh model are identified, for each hole
its boundary edges are then projected onto a projection plane for further triangulation.

3.5.1 Projection Plane Calculation
For each hole or sub-hole identified in the input mesh, we need to calculate the plane
to project its boundary onto. The requirement for such a plane is that the projection of
the boundary edges of a polygonal hole on it is a bounded domain and it should limit
the possibility of creating the problem of self-intersecting of the projected boundary
as much as possible.

We use the method to calculate the projection plane that is based on the maximum
area vector method. The direction of the plane is derived from the normalized sum of
the normals of the boundary triangles. The illustration of a hole and the direction
of its projection plane are shown in Fig. 6. The formula for computing the normal N
of the projection plane P for a hole is as follow:

62 H.T.-M. Ngo and W.-S. Lee


=

=
v

i
inN

1

 (6)

where v is the number of the boundary triangles of the hole, ni is the normal of the ith
boundary triangle of the hole.

Fig. 6. An example of a hole and the direction of its projection plane

3.5.2 Filling Holes through Planar Triangulation
In our system, for each hole, once its boundary in the original mesh model are
projected onto its corresponding projection plane, the projected boundary vertices are
used as the input for the constrained Delaunay triangulation to get the patch mesh for
the hole in 2D. The procedure of mapping back to 3D space of the patch mesh is done
by applying the topological structure of the constructed 2D triangulation to the
original 3D boundary.

4 Results and Validation

The visualization system Hole3D was developed as the implementation to
demonstrate our user-guided feature sensitive hole filling system presented in this
paper. The visualization and user interface were implemented in MS Visual Studio
2005 Development Environment with Coin3D (a high-level 3D graphics toolkit for
developing cross-platform real-time 3D visualization and visual simulation software),
VTK (the Visualization Toolkit) and MFC (Microsoft® Foundation Classes). The
programming language used is C++.

We demonstrate how the proposed algorithm can be used to reconstruct hole
regions. Basically, the test cases are processed in two mesh models, the moai model
and the stripped fandisk model. Many possible cases of hole are created and filled by
our system to verify its effectiveness.

Fig. 7 shows the input moai model with two holes and concave sharp edges at the
neck area. The sharp features are recovered properly using our method. The patches
stitched to the hole areas are marked with the yellow boundary. Although we do not
implement mesh refinement and fairing techniques in our system, the patch is
adequate to complete the model in expected way. Fig. 12 shows the result of filling a
fandisk model with a concave corner hole (Fig. 12(a)). The final mesh model after
applying our feature sensitive hole filling algorithm are displayed in Fig. 12(b)(c).

 (a)

Fig. 7. Applied our algorithm
edges; (b) Hole filling result o
points

As shown in Fig. 9, with
the proper results. Fig. 9(b)
system without a user corre
with user interaction to co
lines passing over the hole a

We demonstrate the robu
with the results presented in
in fandisk mesh model, w
(Figure 10(a)). As presente
10(b)), the method in [19] p
not recovered properly (Fig
convex and concave corne
filter hole filling method in

 (a)

Fig. 8. Applied our algorithm
final hole filling result with p
shaded render of the final resu

To have a visual compari
we applied our hole filling m
as in the input mesh mode
modified mesh model shows
be recovered: one hole with
passing over and one hole

Feature-First Hole Filling Strategy for 3D Meshes

 (b)

m: (a) The input moai model with two holes and concave sh
obtained in our system with user intervention to pair the fea

h the hole at the convex sharp edge, our system can achi
 shows the hole filling result obtained automatically by

ecting the detected crest lines. Better result can be obtai
orrect the detected crest lines before interpolating feat
as shown in Fig. 9(c).
ustness of our system by comparing our experiment res
n papers [5] [19]. As shown in Fig. 10, there are three ho
hich has one, two and three ridges passed through th
d in [19], the method in [12] can only close the holes (F
produces better result but the geometry at the corner hol
g. 10(c)). Fig. 11 demonstrates the hole filling results
er holes obtained after applying the sharpness depend
[5].

 (b) (c)

m: (a) The input moai model with a convex corner hole; (b)
polygonal presentation, the hole patch is colored in red; (c)
lt

son with the aforementioned algorithms, as shown in Fig.
method to the fandisk model with holes at the same locati
el in Fig. 10 that reproduced from paper [19]. Indeed,
s three typical kinds of holes that have sharp features need
one feature line passing over, one hole with two feature li
at the corner. The results of our hole filling technique

63

harp
ature

ieve
our

ined
ture

ults
oles
hem
Fig.
le is
for

dent

Our
Flat

 13,
ions
the

d to
ines
are

64 H.T.-M. Ngo and W

shown in Fig. 13: the sha
reconstructed consistently w
result with the hole highligh
by our system, the patches a
mesh model. The sharp fea
nicely using our method com

 (a)

Fig. 9. Applied our algorithm:
sharp edge; (b) Our hole fillin
points at the hole area; (c) Our
the hole area

 (a)

Fig. 10. Applied the algorithm
(b) The result obtained by usin
in paper [19] (reproduced from

 (a) (b

Fig. 11. Applied the hole fillin
mesh model with a convex cor
(c) A original mesh model with
model in (c) (reproduced from

.-S. Lee

arp edges are recovered aesthetically; the corner shape
with the original shape. Fig. 13(b) shows the final hole fill
hted in green. Fig. 13(c) shows the hole filling result obtai
are stitched to the input mesh as the hole areas to get the f
atures at the concave corner hole in Fig. 12 are recove
mparing to the result shown in Fig. 11(b).

 (b) (c)

: (a) The input stripped fan disk model with a hole on the con
g result without the user intervention to correct the detected c
r hole filling result where the detected crest points are correcte

 (b) (c)

ms in papers [12] and [19]: (a) The input mesh model with 3 ho
ng method in paper [12]; (c) The result obtained by using met

m paper [19]))

b) (c) (d)

ng algorithm in paper [5] to the holes at the corners: (a) A orig
rner hole; (b) The result after filling the hole in the model in
h a concave corner hole; (d) The result after filling the hole in

m paper [5])

e is
ling
ined
final
ered

nvex
crest
ed at

oles;
thod

ginal
(a);

n the

 (a)

Fig. 12. Our algorithm results:
(b) Our final hole filling resul
(d) Flat shaded render of the fi

 (a)

Fig. 13. Applied our algorithm
model with 3 kinds of holes;
patches; (c) Flat shaded render

The experiments show th
holes at the corners. The me
more consistent with the
techniques.

5 Discussion

Certainly, fully automated
method that requires user
complexity of the hole, a f
with complex geometries.
methods to improve curren
robust and effective.

Most of the feature sensi
of the vertices around the h

Feature-First Hole Filling Strategy for 3D Meshes

 (b) (c)

 (a) The input stripped fandisk model with a concave corner h
lt with polygonal presentation, the hole patch is colored in gre
inal result model

 (b) (c)

m to a moai model with 3 types of holes: (a) The original m
(b) The final result obtained by our system with the highligh
r of the final mesh result

hat our method can produce excellent results for filling
esh quality of the patches could be improved to make th

e original mesh quality by applying mesh refinem

methods for hole filling have several advantages ove
intervention. However, from the point of view of

fully automated method may not work correctly for ho
 Our research aims to combine manual and autom
t hole-filling methods, making this process more versat

itive hole-filling methods rely significantly on the norm
hole areas to decide whether or not there exist fine featu

65

hole;
een;

mesh
hted

the
hem

ment

er a
the

oles
matic

tile,

mals
ures.

66 H.T.-M. Ngo and W.-S. Lee

This makes those methods sensitive to the mesh quality, e.g. the point density, the
shapes of triangles and the point distribution. In our algorithm, since the feature
curves are interpolated from the salient information detected in the mesh model, user
intervention allows to correct the detected crest line information. This enables the
whole algorithm to produce the final results quite independently from the quality of
the input mesh model.

The core idea of our algorithm using the salient information to recover the sharp
feature is simple but effective. Among the existing techniques that have attempted to
reconstruct fine features of the original mesh at the hole areas, our hole filling
techniques is different since the fine features are taken as the first subjects to
reconstruct, which eventually drive the feature-definite surface filling process. Our
results show the effectiveness of our method in filling the hole and preserving
aesthetically the sharp edges.

The accuracy of our method depends to a great extent on the accuracy of the crest
line detection method. We expect that improvements in crest line detection will
produce a higher quality results from a fully automatic procedure based on our
approach. In our implementation, all of the salient and polygonal-based information
of the input mesh model are extracted and stored in our designed data structures in the
loading phase then further computation is limited to areas near holes. This makes the
algorithm efficient to run on large models.

Our system improves the visual quality of the results with respect to previous
approaches and provides real-time user interaction. On the other hand, it strongly
relies on crest line detection, and therefore it is very sensitive to changes in this
geometrical feature. Our system is able to recover efficiently the sharp features,
especially when the feature curves or the profile of the sharp edges are close to the
cubic splines. However, if the profile of the sharp edges in the input mesh is more
complex than cubic splines, the results may not be necessarily accurate and may even
be far from the real geometry.

Further mesh refinement and fairing methods may be used to improve the quality
of the generated patch meshes. By doing this, the point density and triangle shape in
the patch mesh will be more consistent with the input mesh.

Our feature-first strategy can be easily applied to edge-area inpainting. As an
example in many movies, actors/actresses use wire techniques to perform certain
actions (e.g. flying, jumping) and the wire needs to remove as a post-processing. After
deleting pixels corresponding to wire in the image, a conventional method is to fill
the gap with surrounding pixel by smoothing. However this does not guarantee the
sharp edges to be revived. Our feature-first strategy can be applied here, first by
detecting sharp features and then do the filling process by smoothing and then
overlaying the features on top of it.

6 Conclusions

We have presented a novel technique for filling holes in 3D triangulated mesh models
which is able to recover efficiently the sharp features of the original geometry,
producing plausible results which are consistent with the geometry of the original

 Feature-First Hole Filling Strategy for 3D Meshes 67

mesh models. For each input mesh, our system identifies its holes and crest line
information. Then it uses this information to interpolate the feature curves at the hole
areas. These curves then geometrically segment complex holes into simple
approximately planar holes, called sub-holes. The patch meshes that are used to fill
those sub-holes are generated by using planar triangulation algorithm for the point set
at the hole boundaries. Then these patch meshes are mapped back to the 3D space and
stitched to the original model at the hole areas to achieve the final result. The user is
able to interact with our system through correcting the crest lines, adjusting the
feature points defined by the crest lines and the hole boundaries, pairing the feature
points or specifying the corner hole locations. The adjustment of the location of the
crest lines by users results in modification in the shape of the patch mesh which is
later stitched to the original model, as holes are filled using different geometric
information. To validate our approach, we have tested our technique on different
mesh models with many possible cases, and the results show that our methods
effectively reconstruct the sharp features. Most approaches for hole filling in literature
do not reconstruct these fine details due to the interpolation schemes used. We
overcome this limitation by including additional information on the object shape in
areas of high curvature and by some limited user intervention.

References

1. Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Edge-Sharpener: Recovering
Sharp Features in Triangulations of Non-adaptively Re-meshed Surfaces. In: Proceedings
of the First Eurographics Symposium Geometry Processing (SGP 2003), pp. 63–72.
Eurographics Association, Aire-la-Ville (2003)

2. Barequet, G., Kumar, S.: Repairing CAD Models. In: Proceedings of the 8th Conference
on Visualization 1997, pp. 363–371. IEEE Computer Society Press, Los Alamitos (1997)

3. Barequet, G., Dickerson, M., Eppstein, D.: On triangulating three-dimensional polygons.
Journal Computational Geometry: Theory and Applications 10(3), 155–170 (1998)

4. Chen, C.-Y., Cheng, K.-Y.: A sharpness-dependent filter for recovering sharp features in
repaired 3D mesh models. IEEE Transactions on Visualization and Computer
Graphics 14(1), 200–212 (2008)

5. Chen, C.-Y., Cheng, K.-Y., Liao, H.Y.M.: A Sharpness Dependent Approach to 3D
Polygon Mesh Hole Filling. In: Proceedings of Annual Conference European Association
on Computer Graphics (Eurographics 2005), Short Presentations, pp. 13–16 (2005)

6. Chew, P.L.: Guaranteed-Quality Triangular Meshes. Technical report 89-983, Department
of Computer Science. Cornell University, Ithaca, NY (1989)

7. Chui, C.K., Lai, M.-J.: Filling Polygonal Holes Using C1 Cubic Triangular Spline Patches.
Journal of Computer Aided Geometric Design 17(4), 297–307 (2000)

8. Dunlop, R.: Introduction to Catmull-Rom Splines. Technical articles, Microsoft DirectX
MVP (2005), http://www.mvps.org/directx/articles/catmull/

9. He, X.J., Chen, Y.H.: A Haptics-guided Hole-filling System Based on Triangular Mesh.
Computer Aided Design and Application 3(6), 711–718 (2006)

10. Jun, Y.: A Piecewise Hole Filling Algorithm in Reverse Engineering. Computer-Aided
Design 37(2), 263–270 (2005)

68 H.T.-M. Ngo and W.-S. Lee

11. Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.-P.: Feature Sensitive Surface
Extraction from Volume Data. In: Proceedings of the 28th Annual Conference on
Computer Graphics and Interative Techniques (SIGGRAPH 2001), pp. 57–66. ACM, New
York (2001)

12. Liepa, P.: Filling holes in Meshes. In: Proceedings of the 2003 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, pp. 200–205. Eurographics
Association, Aire-la-Ville (2003)

13. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level Partition of Unity
Implicits. Journal of ACM Transaction on Graphics (TOG) - Proceedings of ACM
SIGGRAPH 2003 22(3), 463–470 (2003)

14. Podolak, P., Rusinkiewicz, S.: Atomic Volumes for Mesh Completion. In: Proceedings of
the 3rd Eurographics Symposium on Geometry Processing, Eurographics Association
Aire-la-Ville, Switzeland (2005)

15. Sharf, A., Alexa, M., Cohen-Or, D.: Context-based Surface Completion. Journal of ACM
Transactions on Graphics – Proceedings of ACM SIGGRAPH 2004 23(3) (2004)

16. Yoshizawa, S., Belyaev, A.G., Seidel, H.-P.: Fast and Robust Detection of Crest Lines on
Meshes. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling,
pp. 227–232. ACM, New York (2005)

17. Yoshizawa, S., Belyaev, A., Yokota, H., Seidel, H.-P.: Fast and Faithful Geometric
Algorithm for Detecting Crest Lines on Meshes. In: Proceedings of the 15th Pacific
Conference on Graphics Applications, pp. 231–237. Computer Society, Washington, DC
(2007)

18. Zhao, W., Gao, S., Lin, H.: A Robust Hole-Filling Algorithm for Triangular Mesh. Journal
of the Visual Computer: International Journal of Computer Graphics 23(12), 987–997
(2007)

19. Zhao, M., Ma, L., Mao, Z., Li, Z.: Feature Sensitive Hole Filling with Crest Lines. In: Jiao,
L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4222, pp. 660–
663. Springer, Heidelberg (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

