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Abstract— Femoro-Acetabular Impingement (FAI) is a hip 
joint disease which affects and impairs the range of hip motion 
during performing activities of daily living, jogging, walking, or 
climbing stairs due to bony abnormalities of the joint. In this 
research we introduce a motion simulation and visualization 
system which helps surgeons to analyze range of hip motions as 
well as to have a better communication with patients. We 
evaluate the maximum motion that the joint can achieve from its 
bony structure if the muscle and other connective tissues are 
perfectly trained. These goals are achieved by presenting three 
dimensional (3D) visualizations of motions envelopes by 
examining maximum possible rotation of the digital hip bones 
through computer-based simulation. Our computer-based 
simulation system estimates, analyzes and visualizes the 
maximum hip range of motion (ROM) for the constructed 3D 
bone models (femur and pelvis) that are extracted from Magnetic 
Resonance Images (MRI) after segmenting the bones. These tasks 
are accomplished first by calculating Hip Joint Center (HJC) 
which is center of rotation of femoral head followed by 
simulating hip motions with examining impingement between the 
femur and the acetabulum using a collision detection system. Six 
primary plane motions (flexion/extension, abduction/adduction 
and internal/external rotation) as well as various combinations of 
these motions and six successive movements are simulated and 
analyzed along with 3D visualization of estimated range of these 
motions. Our system by 3D visualization of motions envelopes 
will provide a platform to understand quicker and better the 
effect of bony morphology of the hip joint on the possible ROM. 

Keywords— MRI; hip joint; femoro-acetabular impingement; 
range of motion 

I.  INTRODUCTION  

A massive amount of factors including biochemical, 
genetic, and common morphological abnormalities may lead to 
early Hip Osteoarthritis (OA) [1] [2] [3] especially in young 
and active patients such as ballet dancers and athletes. FAI is 
characterized as an anatomical morphology of the acetabulum 
and the proximal femur which causes abnormal contact at the 
hip joint and limits the joint rotation [4] [5]. In general, two 
types of FAI can be distinguished, pincer and cam FAI. The 
pincer FAI is characterized by overcoverage of femoral head 
by acetabulum [3] , or acetabulum retroversion [15]. In 
contrast, the cam FAI is caused by osseous bump deformity on 
the femoral head–neck junction [2] [3]. Often, there is a 
combination of both, with one type being predominant. 
Consequently, FAI impairs hip joint and leads limitation of 

movement and declines ROM [7] [8]. ROM is defined as the 
permitted motion of the hip joint and it is obtained from 
impingement-free motions. A numbers of anatomical (e.g. 
gender, age and ethnicity) and training-related (activity level) 
factors affect the maximum possible ROM [9]. For example, 
hip rotation degrees decrease with increasing age[9]. Some 
investigation show that some extreme movements increase load 
and consequently stress in the joint [6].  Indeed, sporting 
activities that require repetitive and extreme movements (e.g. 
dancers, gymnasts and hockey players) cause degeneration of 
labrum and frequent impingement between bones. Bones rub 
against each other causing stiffness and pain. In order to 
diagnose FAI, different clinical evaluations of the hip joint are 
employed before any operation, which includes physical hip 
examinations, MRI or computed tomography (CT) 
examinations and morphological analysis of bony structures 
[9]. Clinical hip examinations [20] [7] are mainly aimed to 
localize pain and determine joint ROM. During the 
examinations, different hip rotational movements are executed, 
for instance, internal rotation degree for flexed and adducted 
hip in a patient with positive “impingement test” is assessed. 
On the other hand, surgical operation of hip joint involves soft 
tissues and osseous repairs with the purpose of improvement in 
the clearness for hip motion. Since the hip operation can be 
highly invasive, it is essential that surgeon has an effective 
vision about the range of joint motion before operation to know 
exactly about the surgery strategy and minimize the risk of 
miss-operation. 

A typical way of motion study is based on markers 
placement and motion capturing systems in real-life. However, 
it has disadvantages of being dependent and sensitive to the 
markers placement, skin cloth artifacts and size of the markers. 
In addition, it requires a specialized experimental room setting 
for motion capture and it is difficult and painful to obtain 
maximal motions. Thereby, a versatile markerless simulation 
of hip joint kinematics and ROM improves accuracy and 
efficiency of the system. Furthermore, it is difficult to isolate 
the effect of bone outlines out of anatomical factors such as 
muscles, tendon and other connective tissues which are merged 
in motion capture in real-life. Also various factors such as 
warm up and stretching exercise affect the acquired motion 
capture data resulting greater ROM. Therefore, we are 
motivated to develop a computer-assisted simulation system to 
digitally simulate and analyze maximum hip rotational 
movements from only bony morphologies of provided hip MRI 
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