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Abstract - Linear Quadratic Regulator (LQR) is an optimal multivariable feedback control approach that 

minimizes the excursion in state trajectories of a system while requiring minimum controller effort. The behaviour 

of a LQR controller is determined by two parameters: state and control weighting matrices. These two matrices are 

main design parameters to be selected by designer and greatly influence the success of the LQR controller synthesis. 

However, it is not a trivial task to decide these two matrices. The classic approaches such as trial-and-error, 

Bryson’s method, and pole placement are labour-intensive, time consuming and do not guarantee the expected 

performance. Furthermore, these techniques only aim to minimize the quadratic performance index and do not 

consider other control objectives such as minimizing the overshoot, rise time, settling time, and steady state error. In 

this paper, for the first time, we apply quantum particle swarm optimization (QPSO) algorithm to automatically and 

optimally adjust weighting matrices. QPSO is an extension of conventional PSO algorithm, in which particles obey 

the quantum mechanics rather than Newtonian mechanics. We applied the proposed approach to stabilize an 

inverted pendulum system. The results suggest that QPSO-based LQR outperforms LQR tuned by trial-and-error, 

genetic algorithm and conventional PSO methods in terms of rising time, settling time and quadratic performance 

index. Also, it is competitive with mentioned approaches in terms of maximum overshoot percentage and steady-

state error. 

 

Keywords: Linear quadratic regulator, quantum particle swarm optimization. 

 

 

1. Introduction 
        Optimal control theory refers to controller design paradigms that force the target process to satisfy 

the physical constraints and optimize predetermined performance criteria, concurrently. The evolution of 

optimal control theory has led to the emergence of linear quadratic regulator (LQR) which is an optimal 

multivariable feedback control approach that minimizes the excursion in state trajectories of a system 

while requiring minimum controller effort, and improves stability performance. In other words, applying 

LQR approach to a controllable linear time-invariant (LTI) system results in a set of optimal feedback 

gains that minimize a quadratic criterion and stabilize the system (Lewis, 1986).  LQR has been widely 

exploited in various applications such as but not limited to missile guidance, flight control, control of 

autonomous ground vehicles, active car suspension, ABS break system, power converters, and optimal 

tuning of PID controllers. 

        LQR minimizes a quadratic cost function (i.e. performance index) that contains two penalty 

matrices: state weighting matrix (Q) and control weighting matrix (R). These two parameters are main 

design parameters to be selected by designer, and greatly influence the behaviour of the LQR controller. 

However, it is not a trivial task to decide these two matrices. The problem of selecting weighting matrices 

has been investigated by various methods. In general, weighting matrices are determined by a trial-and-

error method in which an expert adjusts the weighting matrices intuitively, and then refines them 

iteratively to obtain a satisfying performance. The trial-and-error method is not feasible for high 

dimensional systems and even for simpler systems is a labour-intensive and time consuming approach. 

Bryson’s method (Johnson and Grimble, 1987) is another iterative method. In this technique, initially, 

state and feedback variables are normalized with respect to their largest permissible, and utilized to 

initialize the weighting matrices. Then, similar to trial-and-error method, the weighting matrices are 
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gradually refined to approach the minimum index value. Pole placement is another popular technique for 

determining the weighting matrices (Saif, 1989). However, in pole placement technique, the weighting 

matrices are based on the given poles, and thus cannot guarantee the performance and constraints of the 

system. Although other approaches such as utilizing asymptotic modal properties (Harvey and Stein, 

2003), and expressing the system as an explicit function of the weighting matrix elements (Tyler and 

Tuteur, 1962) are proposed, they suffer from the similar deficiencies.   

        The classic approaches are labour-intensive, time consuming and do not guarantee the expected 

performance. Furthermore, these techniques only aim to minimize the quadratic performance index and 

do not consider other control objectives such as minimizing the overshoot, rise time, settling time, and 

steady state error. In order to enhance the accuracy, design process and performance of the system, and 

mitigate the drawbacks of classic techniques, computational intelligence paradigms have been exploited. 

Among them, as far as the authors’ knowledge is concerned, genetic algorithm (GA) which mimics the 

biological natural selection process, is the most frequently applied algorithm. Although GA is well-

founded and indicates high exploration capability, it suffers from two pitfalls: low exploitation and 

convergence speed. On the other hand, particle swarm optimization (PSO) algorithm, a swarm 

intelligence based technique inspired by social interactions of flocking birds, is able to reach the globally 

optimal solution within a few iterations. It has experimentally shown that the PSO is scalable and its 

processing time grows at a linear rate with respect to the size of the problem (Akay, 2013). 

        In this paper, for the first time, we apply quantum PSO (QPSO) meta-heuristic technique proposed 

by Sun et al. (2004) to optimally adjust weighting matrices. QPSO is an extension of conventional PSO 

algorithm, in which particles obey the quantum mechanics rather than Newtonian mechanics. We applied 

the proposed algorithm to stabilize an inverted pendulum (IP) system. The results suggest that QPSO-

based LQR outperforms LQR tuned by trial-and-error, GA and classic PSO methods in terms of rising 

time, settling time and quadratic performance index. Also, in terms of maximum overshoot percentage 

and steady-state error, it is competitive with mentioned approaches. 

        The paper is organized as follows: in section 2 an overview of related works is presented. In section 

3, we describe the characteristics of a general LQR. In section 4, we investigate the QPSO algorithm and 

then present our proposed technique in section 5. In section 6, we discuss the evaluations and 

experimental results. Finally, section 7 concludes the paper. 

 

2. Related Works 
        During the last two decades, some computational intelligence techniques such as artificial immune 

systems (AIS) (Ramaswamy, 2007), artificial bee colony (ABC) (Changhao and Duan, 2013), ant colony 

optimization (ACO) (Ali et al. 2008), genetic algorithm (GA) (Wongsathan and Sirima, 2008), 

probabilistic differential evolution (PDE) (Liouane et al. 2012), memetic algorithm (MA) (Zhang et al. 

2011), imperialist competitive algorithm (ICA) (Rakhshani, 2012), artificial neural networks (ANN) 

(Wiklendt et al. 2009), and fuzzy logic (Taoa et al. 2010) have been employed to enhance the 

performance of LQR controllers. As far as the authors’ knowledge is concerned, GA is the most frequent 

biologically inspired algorithm applied for adjusting LQR weighting matrices.  

       Superiority of PSO over GA in finding optimal weighting matrices of LQR controller has been 

shown in some studies (Ghoreishi and Nekoui, 2012; Chen and Sung, 2012). Hamidi (2012) applied PSO, 

GA and error-and-trial methods to adjust the LQR weighting matrices which, in turn, is applied to control 

an aircraft landing flare system. He concluded that PSO-based LQR is more efficient and robust 

compared to other methods. Vardhana et al. (2009) compared ordinary LQR, LQR with prescribed degree 

of stability (LQRPDS) and PSO-based LQR for controlling distribution static compensator, and showed 

that PSO-based LQR gives the best performance under different operating conditions over the other two 

controller design techniques. Solihin et al. (2010) proposed a method for determining weighting matrices 

by applying PSO with pole region constraint for controlling a flexible-link manipulator. Selamat and 

Bilong (2013) suggested that PSO-based LQR controller produces better result compared to trial-and-

error approach for the active suspension system. Rakhshani (2012) applied conventional LQR, PSO-based 

LQR, adaptive weighted PSO (AWPSO)-based LQR and ICA-based LQR for optimal load frequency 
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control, and concluded that AWPSO-based LQR outperforms other approaches in terms of settling time 

and maximum overshoot. Guoping et al. (2010) proposed an optimal real-time LQR controller based on 

PSO for the control of an IP system. Amini et al. (2013) devised wavelet PSO-based LQR technique and 

applied it for optimal structural control. HaiBin and ChangHao (2013) introduced a PSO-based LQR 

controller for stabilizing the pendulum-like oscillation and showed that it enhances the micro-aerial 

vehicles' surveillance performance. Karanki et al. (2010) concluded that PSO-based state feedback 

controller, unlike the trial-and-error approach, does not have sub-optimal performance in the case of 

partial state feedback. More studies on PSO-based LQR can be found in (Khan et al. 2011; Solihin and 

Akmeliawati, 2009; Tsaia et al. 2013; Xiong and Wan, 2010; Yu and Huang, 2008; Yuan et al. 2009). It is 

noteworthy that as far as the authors’ knowledge is concerned, it is for the first time that quantum PSO 

technique is being applied for tuning LQR controller. 

 

3. Optimal LQR Controller 
        For a controllable LTI system with a space state model shown in Eq. (1): 

 

 ̇( )    ( )    ( ) 
 ( )    ( )    ( ) 

(1) 

 

        Where x(t), y(t) and u(t) are n, r, and m dimensional state, output, and control vectors, respectively, 

LQR approach constructs a linear state feedback law (i.e. control law) as Eq. (2): 

 

  ( )     ( ) (2) 

 

        The control law indicated in Eq. (2) minimizes the quadratic performance index shown in Eq. (3). 

The performance index consists of state and control energies. 
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        Where        is the symmetric, positive semi-definite state weighting (i.e. state penalty) matrix, 

and         is the symmetric, positive definite control weighting (i.e. control penalty) matrix. In Eq. 

(2), K is the control gain matrix given by Eq. (4). 

 

         (4) 

 

        Where P is the unique symmetric, positive semi-definite solution to the algebraic Riccati equation as 

depicted in Eq. (5). 

 

                    (5) 

 

 Using the control law depicted in Eq. (2) guarantees to maintain the output as close as possible to the 

desired output with minimum control energy. 

 

4. Quantum Particle Swarm Optimization 
        PSO algorithm introduced by Eberhart and Kennedy (1995) is a swarm intelligence based meta-

heuristic approach inspired by the individual and social behaviour of the flocking birds. PSO algorithm 

consists of population of candidate solutions called particles. Each particle is characterized by its position 

and velocity vectors, and follows its trajectory towards the global optimum based on Newtonian 
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mechanics. In a D-dimensional space, position and velocity vectors of the ith particle are depicted in Eq. 

(6). Also, the rules governing the particle’s trajectory are depicted Eq. (7) and (8), respectively. 
 

 ⃗ ( )  [   ( )    ( )      ( ) ]
   ⃗ ( )  [   ( )    ( )      ( ) ]

  (6) 
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        Where x and v are position and velocity vectors, respectively. w is inertia utilized to enhance the 

convergence speed and balance between exploitation and exploration. φ1 and φ2 are two positive 

parameters known as personal and social cognitive factors, respectively. xpbi is the best personal position 

that ith particle have seen so far, and xg is the position of the best particle seen so far in the swarm history. 

It has been shown that if the upper limits of cognitive parameters are selected properly, the position of the 

ith particle converges to position p computed as Eq. (9). Position p can be interpreted as the centre of 

gravity towards which particles are careen while their kinetic energy declines. 
 

   (                ) (       ) (9) 
 

        Sun et al. (2004) proposed a novel version of PSO algorithm in which particles obey the quantum 

mechanics rather than Newtonian mechanics. In this approach, the quantum state of a particle is expressed 

by a wave function based on Schrodinger’s uncertainty principle. Also, the trajectory of a particle is 

modelled using quantum Delta potential well model. In this model, it is assumed that a particle moves in a 

Delta potential well in search space, of which the centre is point p calculated by Eq. (9). In order to 

compute the fitness of an individual particle, its exact position is needed. However, in quantum model, 

only the probability density function of the position is available. To address this issue, Monte Carlo 

method is applied to simulate the measurement process from wave function. Finally, particles’ estimated 

position vector is governed by Eq. (10).  
 

       
          (

 
 ⁄ )

 
 

(10) 

 

u is a random number between 0 and 1, and g is a control parameter greater than ln√2. 

 

5. Proposed Method 
        The schematic of our proposed method is shown in Figure 1. We apply QPSO algorithm to 

automatically and optimally adjust the LQR weighting matrices. Similar to practical applications, we 

define the Q=diag[Q1,Q2,…,Qn] and R=diag[R1,R2,…,Rm] as diagonal matrices to alleviate the curse of 

dimensionality problem (n and m are dimensions of state and control vectors, respectively). We consider 

the concatenation of Q and R matrices as our individual particle representation as depicted in Eq. (11). 
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Fig. 1. The schematic of proposed method for tuning LQR using QPSO algorithm. 

 

        In order to evaluate a particle’s fitness value, we employ a hybrid time domain criterion. In addition 

to minimizing the quadratic performance index depicted in Eq. (3), an optimal controller should minimize 

overshoot, rise time, settling time and steady-state error as well. Furthermore, according to the definition, 

Q and R matrices must be positive. Thus, those particles with negative values in their position vector are 

not feasible solutions. To address this issue, we add a penalty value to those individuals to weaken their 

fitness. Finally, we integrate mentioned elements in a weighted cost function to get the overall cost of a 

specific configuration of Q and R matrices as depicted in Eq. (12).   

 

          ( )         (      )    (     )           (12) 

 

        Where fi is the cost function of particle i, log10(J) is the normalized quadratic performance index 

depicted in Eq. (3), k is number of negative values in ith particle, p is penalty value for negative values, 

OS is overshoot percentage, Ess is steady-state error, Ts is settling time, Tr is rise time, and λ1, λ2, λ3 and λ4 

are corresponding weights. We propose our QPSO-based LQR tuning algorithm as Eq. (13). 
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6. Experimental Results 
        In order to evaluate our proposed method, we employed it to design a LQR controller which in turn, 

is applied to stabilize a 2-DOF IP system. A 2-DOF IP system consists of a pendulum mounted on a 

movable cart which is restricted to linear motion. The control objective is to maintain the unstable 

equilibrium position by moving the cart along a horizontal track. The pendulum initially starts in an 

upright position. A schematic of a 2-DOF IP system is shown in Figure 2. 

 

 
Fig. 2. Inverted pendulum-cart system. 

 

        The state space representation of the IP system shown in Figure 2 derived by Lagrange's equation 

and linearized using Taylor series expansion is depicted in Eq. (14).  
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(14) 

        In order to evaluate the performance of our proposed method and compare its results with existing 

approaches, we stabilized the IP system by using our approach, trial-and-error method, GA, and ordinary 

PSO algorithm. We set the mass of cart to 0.5kg, mass of pendulum to 0.2kg, length of pendulum to 0.6m, 

and gravitational acceleration to 9.81ms
-2

. For GA, PSO and QDPSO techniques, we set the population 

size to 20 and the iteration numbers to 100. Also, we set all the weights of cost function (λ1, λ2, λ3 and λ4) 

to 0.25 (i.e. equal weights for all elements). The penalty value is set to 5. For GA algorithm, the crossover 

and mutation probabilities are set to 0.7 and 0.1, respectively, and tournament method is utilized for 

selection process. For PSO algorithm, the social, individual and inertia weights are set to 2, 2, and 0.5, 

respectively. Finally, for QPSO algorithm the parameter g is set to 1.5ln√2. The simulation results are 

shown in Table 1. 
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Table 1. Results of stabilizing a 2-DOF IP system by trial-and-error, GA, PSO and QDPSO methods. 

 

Applied method Elements of control objective 

Ess OS Tr Ts J 

Trial-and-error 0 23 % 0.46 s 2.09 s 26000 

GA 0 85 % 0.54 s 1.19 s 22000 

PSO 0 89 % 0.48 s 1.11s 21600 

QPSO 0 89 % 0.43 s 1.02 s 20500 

 

Results indicate that none of the four methods have steady-state error. Also, it is shown that trial-and-

error method has the least overshoot percentage, whereas PSO and QPSO have the largest overshoot 

percentage. Although high overshoot percentage is not satisfactory, it indicates that PSO and QPSO 

respond faster than other two methods. Furthermore, QPSO has the smallest rising and settling times in 

comparison with other methods. In other words, QPSO-based LQR responds to the input and stabilizes 

the system faster than other three methods. Finally, the results show that QPSO leads to smallest 

performance index value and control effort. All in all, the results suggest that our proposed method 

outperforms other techniques in terms of rising time, settling time and quadratic performance index. Also, 

it is competitive in terms of maximum overshoot percentage and steady-state error. 

 
7. Conclusion 

In this paper, for the first time, we applied quantum particle swarm optimization for automatic and 

optimal tuning of weighting matrices of a general linear quadratic regulator. We applied the proposed 

method to stabilize a 2-DOF inverted pendulum system and compared the results with trial-and-error, 

genetic algorithm and particle swarm optimization methods. The results suggest that our proposed method 

outperforms other techniques in terms of rising time, settling time and quadratic performance index. Also, 

it is competitive in terms of maximum overshoot percentage and steady-state error. As future works, we 

are planning to extend the proposed approach in two direction. First, we will enhance the utilized 

weighted cost function to a multi-objective cost function to acquire a set of optimal solutions rather than 

one. Second, we will enhance the online learning by embedding parallel processing techniques. 
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