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Abstract 

The MPEG-4 standard specifies feature 
points and a set of facial animation 
parameters (FAPs) associated with the neutral 
face model. Given motion vectors of MPEG-
4 feature points (FPs), it is the developer’s 
freedom to implement facial animation, 
meaning motion vectors for surface points of 
the 3D facial mesh. Our goal is to produce 
natural-looking animation vectors for all 
surface points by specified MPEG-4 FP 
motions. We make use of an existing 
expressive animation database of limited size 
and we propose a novel approach which uses 
Genetic Algorithms (GA) in interpolation and 
extension of the given expression data. 
Firstly, we construct the expression bank 
based on the available animation data. Then 
given sparse motion vectors of the FPs, we 
utilize GA to implicitly assign weights to 
examples in the bank and thus produce 
realistic optimized result after GA evolution. 
After introducing our initial GA approach, we 
present our improvements on producing 
natural-looking novel expressions by 
decomposing the face into several regions. 
The resulting animation has the same quality 
as the original animation data. Moreover, it 
covers a wider expression space after learning 
examples in the bank via GA. 
 
Keywords: Facial animation, MPEG-4, 
FAPs, Genetic Algorithms, Interpolation 

1. Introduction 

Producing realistic facial animation is a 
challenging task for researchers in the 
computer animation field. Since the 
pioneering work of Parke ( [1] and  [2]), many 
different approaches have been proposed for 
producing facial expressions. Commonly, 
facial animation is more easily controllable 
with a set of feature points rather than all 
surface points. Here facial feature points are 
the prominent points on the face that capture 
the distinguished features of the face. The 
assumption is that the motions of feature 
points are capable of carrying enough 
information to drive all surface points for 
producing animation.   
 
In 1999, MPEG (Moving Picture Experts 
Group) developed the ISO/IEC standard 
called MPEG-4. Pandzic and Forchheimer  [3] 
give a very detailed introduction and 
discussion on MPEG-4 facial animation. 
MPEG-4 specifies a neutral face model, a 
number of feature points (FPs) on this neutral 
face as reference points and a set of facial 
animation parameters (FAPs), each 
corresponding to the specific facial action 
deforming a face model in its neutral status. 
FAPs specify the motions of the FPs. Given 
motion vectors of the FPs, it is the 
developer’s freedom to implement motions 
for all surface points of the neutral face 



model. Many approaches have been proposed 
to implement it. Noh et al.  [4] use Radial 
Basis Functions (RBF) to create facial 
animation based on movements of control 
points. Kshirsagar et al.  [5] compute regions 
influenced by each of the control points and 
the corresponding weight for deformation for 
all the vertices in the influence region. Then 
from the displacement of the FPs, they 
calculate the actual displacements for all 
vertices of the facial mesh. More recently 
Garchery et al.  [6] also compute facial 
deformation using MPEG-4 FPs only. The 
aforementioned techniques belong to the 
category of feature-based approaches, which 
calculate motions for all vertices of the face 
mesh based on FP movements. However, it is 
difficult to animate the face in a purely 
geometrical way to produce cheek 
deformation and sophisticated wrinkles.  
 
On the other hand, facial animation can be 
driven by motion vectors of all surface points 
of the neutral model. From this point of view, 
it is a surface-based approach. Usually, it 
produces more sophisticated and expressive 
facial expressions than the purely geometrical 
approach for surface deformation. Noh and 
Neumann  [7] present the expression cloning 
system that maps motions of all surface 
points from a source to a target model. L. 
Zhang et al  [8] use a capture system which 
employs synchronized video cameras and 
structured light projectors to record videos of 
a moving face. Then they propose an 
approach that goes from video sequences to 
high-resolution animated face models. The 
resulting 3D meshes illustrate very high-
quality facial animation and in addition the 
meshes are consistently parameterized. With 
this expressive animation data available, it 
would be very beneficial to make use of the 
data and interpolation is probably the most 
suitable animation technique for this case. 
Given a set of key facial expressions from 
existing animation database, a blend shape 
model can be constructed by considering 
every facial expression as a linear 
combination of key expressions. By varying 
the weights of the linear combination, a wide 
range of facial expressions can thus be 
produced. 
 

There are many researches on interpolation 
for producing facial expression. Kouadio et 
al.  [9] minimize the Euclidean distance 
between corresponding points and markers to 
obtain a linear combination of the basic 
expressions. Chuang and Bregler  [10] 
produce facial animation with a combination 
of motion capture data. Weights for 
interpolation are calculated based on the least 
square solution.  Chai et al.  [11] find the K 
closest examples in the motion capture 
database and then linearly interpolate the 
corresponding examples. Pyun et al.  [12] 
evaluate the weights for key models with 
cardinal basis functions, which consist of 
linear and radial basis functions. This allows 
them to obtain the output model by blending 
key models with those weights. Joshi et al. 
 [13] propose an automatic, physically-
motivated segmentation that learns the 
controls and parameters from blend shapes.  
 
Our previous paper  [14] shows how to 
perform expression cloning for a detailed 
surface from one person to another with 
laser-scanned faces. Our focus here is on 
producing various expressions for one subject 
using a surface-based approach for high 
quality as well as using a set of feature points 
for easy control. The input of our system is 
3D motion vectors for MPEG-4 FPs of the 
neutral face model. In this paper we produce 
facial expressions by interpolating and 
extending expression models in the 
expression bank. We propose a novel 
approach to find the interpolation weights 
implicitly via Genetic Algorithms (GA). GA 
is inspired by the process of natural evolution 
 [15]. Essentially, GA’s problem solving 
approach is to evaluate possible solutions at 
each generation, and then the offspring 
solution is generated to update the population 
pool. Given the evaluation function, the fitter 
individuals are encouraged to survive and 
contribute more to the population. As a result, 
the optimal solution progressively improves 
during the process of evolution.  
 
This paper consists of six sections. In section 
2, we construct the expression bank and 
define the feature points for the neutral face 
model. Our GA approach is proposed in 
section 3 and then we show experiment 
results in section 4. Section 5 explains our 



enhancements for the initial GA system. 
Finally we conclude our paper in section 6.  

2. Preparation 

Ekman and Keltner  [16] propose six basic 
emotional facial expressions (joy, anger, fear, 
disgust, sadness and surprise).  However, in 
the real world, the human face is capable of 
generating far more expressions than the 
basic ones. Many recent researches (for 
example,  [17] and  [18]) explore the methods 
to generate facial expressions for a continuum 
of pure and mixed emotions of varying 
intensity. 
 
In this paper, we aim to produce diverse 
expressions via GA with the transition of the 
predefined emotional facial expressions in the 
expression bank.  The desired emotional 
expressions are specified by motion vectors 
for the FPs. Then by our GA approach, we 
deform the surface with the motions for all 
the surface points by learning the examples in 
the bank.   
 

Figure 1 : Dominant expression models  
  
Our first step is to construct the expression 
bank containing several key expressions. In 
this paper, we make use of the existing 
animation data produced by L. Zhang et al 
 [8]. Their attractive animation result can be 
found in  [19]. There are a total of 384 
animated models. They all share the same 
vertices and structures (23K vertices and 46K 
triangles) and there are six dominant 
emotional expressions (Figure 1) and others 
are intermediate expressions. We select 30 
key models (including 6 dominant 
expressions) from their animation data to 
construct our expression bank. Given a set of 
expression models in the expression bank, the 
interpolated expression model E can be 
expressed as: 
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where wi is the weight assigned to the specific 
expression face Ei in the expression bank, and 
n is the number of expression models in the 
bank. Based on the expression bank, a wide 
range of facial animation can be produced by 
varying wi.  
 
 

 
(a) (b) 

Figure 2: (a) MPEG-4 feature point set; (b) 
Feature points defined in our system. 
 
For defining FP positions in the neutral face 
model, we respect the MPEG-4 standard. 
MPEG-4 defines a total of 84 FPs (Figure 
2a). The feature point set we defined (Figure 
2b), which includes 56 FPs,  is the subset of 
MPEG-4 feature point set. We exclude some 
MPEG-4 FPs which are in the areas of the 
tongue, tooth, ear and hair because our 
expression models in the expression bank do 
not include those parts. We also exclude 
some FPs where they are too close to each 
other. (E.g. some points in the eye area).   
 

 
Figure 3: (a) Expression model from  [19]; 
(b) RBF global deformation driven by FP 
motions.  

 
Given the motion vectors of MPEG-4 FPs, 
our goal is to produce natural-looking 
animation vectors for all the surface points. 
Originally, we plan to achieve this goal by 
RBF which is similar to the approach 



proposed by Noh et al.  [4]. We use motion 
vectors of FPs in the animated model (Figure 
3a) to globally deform the neutral face model 
by our RBF library. Our previous work  [14] 
successfully uses our RBF library to globally 
adapt the generic model to a laser-scanned 
face. However, for this case, our experiment 
result is not good (Figure 3b). First, the 
global shape is not correct because of a lack 
of FPs in the face outlines. In  [14], we 
defined more feature points. The FP 
definition is very critical for result. Second, 
even if we adjust FP definition now and apply 
RBF locally, the global shape is correct, the 
skin deformation on the cheeks, however, 
will not be natural as it creates less folding 
than natural expression. So we decide to 
investigate a novel method to produce 
expressions based on surface points.    

3. Our GA approach 

Because GA is good at solving complex 
optimization problems, its use has become 
more and more popular in the computer 
graphics and computer animation fields. For 
example, Tohka  [20] presents the approach 
that applies GA to optimization of 
deformable surface meshes; Bui et al.  [21] 
use GA to adjust feature points on a target 
face to minimize the difference between the 
surface of the morphed face and the target 
face.  
 

 
Figure 4: Our GA structure 
 

In this section, we aim to find the optimized 
weights in order to interpolate expression 
models in the expression bank. The basic 
structure of our GA approach is listed in 
Figure 4. The population of expression faces 
is initialized with the previously constructed 
expression bank. The population size for our 

GA is 30. The population size remains 
constant during our overall GA process.  
 
In each generation, we randomly select 3 
expression faces from the population. If we 
evaluate 2 expressions at a time, the GA 
process will converge more slowly. By using 
number 3, we will get rid of bad genes in the 
expression bank faster. On the other hand, we 
could evaluate more than 3 faces and update 
more faces in each generation. GA will 
converge faster. However it may lead to the 
local maximum solution. Therefore we decide 
to evaluate 3 expression faces at a time. Now 
we need to design the fitness function to 
evaluate randomly selected three expressions 
in the bank. The purpose of the evaluation is 
to determine how well the specific expression 
matches the system input (i.e. 3D motions for 
FPs).  
 
 

Figure 5: Illustration for explaining fitness 
function. 
 
Suppose that there are a total of M feature 
points with non-zero motion vectors in the 
system input where 0≤M≤56 because totally 
we define 56 feature points in our system. 
First, let us have a look at any FP with non-
zero motion vector (Figure 5). Suppose that 
the target vector is the FP motion vector 
which is specified in the input requirement 
and the candidate vector is the vector for that 
FP in the selected expression face. Obviously, 
the candidate vector in Figure 5(a) is more 
qualified than that in Figure 5(b) according to 
the input requirement. It is better to have a 
smaller angle θ value between those two 
vectors. The angle θ can be expressed in 
terms of the target vector Va and the 
candidate vector Vb : 
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It hints that it is better to have a larger value 
of cosθ for each feature point. We can sum up 
all cosθ values for all FPs with a non-zero 
motion vector in the input requirement. Then 
we normalize the total sum with the M value 
(Because the maximum total sum is: M*cos00 
= M). Our fitness value F can thus be given 
by  
 

1
cos

M

i
i

F
M

θ
==
∑

 

 
where M is the number of FPs with a non-
zero target motion vector. The best value F 
that can be achieved is 1. However, 1 is just 
the ideal value. Our aim is to produce optimal 
value which is as close to 1 as possible. The 
closer the value is to 1, the greater the 
similarity between the target expression 
according to the input requirement and the 
output expression.     
 
We use our fitness function to evaluate the 
three previously selected expression faces. 
The individual with the worst fitness value in 
this tournament is not allowed to survive in 
the next generation. We remove it from the 
population and replace it with the offspring of 
two winners. There are various crossover 
strategies to produce offspring from parents. 
The crossover operator plays a central role in 
GA  [22]. The simplest crossover we used is 
called Midpoint crossover where the 
offspring lies exactly on the middle of two 
parents. Suppose P1 and P2 are the parents, the 
offspring is expressed as: 
 

Offspring = 0.5*P1 + 0.5*P2 

 

 
In Line crossover (a.k.a. Flat crossover), the 
offspring, which is located in a random 
position between the parents (P1 and P2), is 
given by: 
 

Offspring = t * P1 + (1-t) *P2    
 
where 0≤t≤1. BLX-α crossover is the 
extension of Line crossover. The offspring 

can be calculated based on the parents (P1 
and P2) in the following way:  
 

∆ = α (P2-P1);   
Offspring = t*(P1 – ∆) + (1-t)*(P2 + ∆)   
 

where 0≤ α ≤1 and 0≤t≤1. Line crossover is 
the special case of BLX- α crossover when 
t=0.5, and Midpoint crossover is also the 
special case of Line crossover when α=0 and 
t=0.5. Each of these three crossovers is 
capable of generating offspring from previous 
two winners in the tournament and thus 
leading to the optimal solution finally. We 
will discuss more on experiments with these 
3 crossovers in section 4. 
 
However, we need one more step to adjust 
the offspring. Previously, in the fitness 
function, we only consider vector directions 
of FPs. Now we need to adjust FP vector 
lengths of the offspring to meet the 
requirement. We sum up motion vector 
lengths for FPs in the system input. Also we 
sum up vector lengths for the corresponding 
FPs in the offspring. Then we use the scale 
factor between those two values to adjust the 
motion vectors for all surface points of the 
offspring.  
 
We need to mention that if we evaluate vector 
directions and lengths simultaneously in our 
evaluation function, we may fall in the 
dilemma to decide which of the following 
two cases is better:  a) better directions but 
worse lengths; b) worse directions but better 
lengths. By treating vector direction and 
length separately as we proposed, we ensure 
that we won't be in such a dilemma.  
 
Finally, the offspring is used to replace the 
worst individual in the previous tournament. 
The original population now comes to the 
next generation. We iterate such process 
again and again until N generations are 
processed. It is our GA termination condition. 
According to our experience, N=70 is chosen 
for the current system. It is decided by the 
population size and our strategy to refine the 
population. How the population converges to 
the optimized solution can be visualized in 
Figure 6b where X-axis denotes the 
generation number and Y-axis shows the 
fitness value for the generated offspring. We 



keep track of the best individual over all 
generations in the whole GA process. When 

GA process meets our termination condition, 

 
Figure 6: (a) Original model from  [19] but is not the expression model in our expression bank; (b) 
Sample experiment result by using Line crossover; (c) The output of our GA system.  
 

the best individual expression face so far is 
returned as our GA system output (Figure 
6c).  We extract the motion vectors for FPs in 
Figure 6a and use it to get motions for all 
surface points by learning the examples in the 
bank via GA. Our system output Figure 6c is 
quite similar to the expression in Figure 6a.   
 
Essentially, in our GA approach, the 
interpolation weights are assigned to each 
expression model in the expression bank 
implicitly over the generations. The 
expressions which are less relative to our 
input requirement are assigned less weights. 
The genes from the good expressions are 
assigned more weights and are accumulated 
to contribute to our final output.  

4. GA experiments 

There are a total of 384 animated models in 
the original data  [19]. Each of the models is 
made of about 23K vertices and 46K 
triangles. We have tested our system with 20 
randomly picked models which are not in our 
expression bank but from their data  [19]. We 
only use 3D motion vectors for FPs for those 

models to drive our system. Our test goal is to 
see whether we can produce the similar 
animation vectors for all the surface points as 
the original data. The experiments are done 
on a 2.60 GHz AMD Opteron PC with 2.0 
GB of RAM. The GA is terminated when 70 
generations are evaluated. The computation 
time is about 40 seconds.   
 

 
Avg. of Avg. 
Best Fitness 

Value 
Avg. of STD

BLX-0.2 0.962 0.0068 
Midpoint 0.960 0.0057 

Line 0.970 0.0075  
Table 1: GA system experiments with various 
crossovers 
 
In our experiments, we have tried various 
crossovers with those randomly picked 
models. For each crossover, we run our GA 
system 10 times for each model. The 
experiment results are shown in Table 1. 
Avg. of Avg. Best Fitness Value stands for 
the average of the average best fitness value. 
Avg. of STD is the average standard 
deviation for that crossover. For the BLX-α 
crossover operator, we tested parameter α 



with various values: 0.1, 0.2, 0.3, 0.4 and 0.5. 
According to our experiment experience, we 
choose α = 0.2 for its better performance over 
others. The performances of three crossovers 
(Midpoint, Line and BLX- α) do not vary too 
much. No crossover dominates the others. 
Usually, the ideal operator depends on the 
model itself. We assume experiment results 
are distributed normally. By the property of 
the standard deviation, two standard 
deviations away from the average account for 
roughly 95% of the data. We can get the 
approximate performance range for each 
crossover from Table 1. Compared with 
Midpoint crossover (0.949 ~ 0.971) and 
BLX-0.2 crossover (0.948~ 0.976), Line 
crossover (0.955 ~ 0.985) performs a little bit 
better.  
 
We would like to mention that our GA 
system terminates when 70 generations are 
generated. If we permit more generations in 
the evolution process, BLX- α may perform 
better because BLX- α is trying to explore the 
solution space in a wider way. However, the 
computation time will increase if we process 
more generations. The choice of the 
crossover operator is a compromise between 
accuracy and convergence speed.  
 

5. Enhancements for facial 
expression 

After testing our initial GA system, we have 
also made several improvements on it. Firstly 
in order to produce facial expressions of 
various intensities, we use emphasize level 
parameter c to control our system input. The 
input FP motion vectors are multiplied by the 
value c before starting the GA process.  
Figure 7 shows different final GA system 
outputs by varying parameter c. 
 

 
Figure 7: Emphasize level control parameter 
c. (a) c = 0.7; (b) c = 1.0; (c) c=1.4. 
 

 
 

Figure 8: The face is decomposed into two 
regions.  
 
 
One more improvement we made is to split 
the face into two parts: left and right faces 
(Figure 8). Two sub-regions overlap each 
other. It offers the possibility of producing 
asymmetric expression which makes the 
resulting facial expressions more natural. We 
apply GA for left and right FPs separately. 
Then we combine left and right face results 
together to produce a synthesized facial 
expression. However, special treatment is 
needed in the joint part where artefacts may 
appear. One possible solution is to apply a 3D 
smoothing filter for each point on the joint 
part (i.e. average motion vectors of the 
surrounding points). It works fine when the 
left and right face expressions do not differ 
too much. When the difference between the 
left and right faces is big, we will have 
unnatural expression result. Kouadio et al.  [9] 
mention that points surrounding the borders 
should be included in both regions, and their 
new positions in each half expression are 
weighted accordingly.  



Figure 9: The strategy to remove the artefacts 
around the joint part for two sub-region 
decomposition.  
 
Inspired by this idea, we propose the 
following sophisticated technique to tackle 
this issue (Figure 9). The left and right faces 
overlap each other around the central line. 
We design the intermediate region which 
blends the left and right face animation 
vectors with our distance-related weight 
assigning function. The formula for 
calculating the animation vector teIntermedia

iV  
for the ith point in the intermediate region is 
given as: 
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where di is the distance of that point to the 
border line; D is the width of the intermediate 
region;  Left

iV is the motion vector for that 

point in the left face region and Right
iV is that 

in the right face region. The left and right 
faces overlap each other in the intermediate 
region. They both contribute to the 
intermediate region. With our distance-
related weight assigning function, there are 
no artefacts around the border lines. Figure 
10 shows our asymmetric expression results 
by dividing the face into left and right 
regions.  

Figure 10: Asymmetric expression results by 
dividing the face into left and right regions.  
 
 
Further improvement to our system is to 
decompose the face into more regions. Many 
researches ( [9],  [10],  [13],  [23],  [24] and 
 [25]) split the face into several regions for 
better control of animation. Commonly, they 
divide the face region from two to ten sub-
regions. We divide the face into four sub-
regions (Figure 11). Firstly, we partition the 
face into left and right faces. Then for each 
half face, we divide it further into upper and 

lower parts. Each quarter region is controlled 
by the corresponding FP sub-group. Given 
3D motion vectors for FPs in the system 
input, we decompose it into four sub-goals. 
We apply GA to search solutions in the 
expression bank with four sub-goals 
separately. Then we combine four optimized 
sub-solutions together to produce the 
synthesized facial expression. Similarly, the 
previously described technique for removing 
the artefacts in the joint parts is also applied.     
 

 
Figure 11: The face is decomposed into 
four regions.   
 

 
For the ground truth models we tested in the 
previous section, we conduct experiments 
with Line crossover for 10 randomly selected 
models. Using our initial GA system, we 
have the average best fitness value 0.960.  By 
decomposing the face into two regions, our 
average best fitness value is 0.972. The 
computation time increases from 40 seconds 
to two minutes on our previously mentioned 
PC. With the four sub-region scheme, we 
have the value 0.981. The computation time 
is about five minutes. It shows that, by 
dividing the face into several regions, we can 
improve results by finding several optimal 
sub-solutions via GA. However the 
computation time increases, it is the trade-off 
between accuracy and speed.  
 



 
 
Figure 12: Facial expression results via GA 
(front view).  

 
 
Figure 13: Different views of facial 
expressions results. 
 
Using the above techniques, we are capable 
of producing more natural-looking novel 
expressions. Figure 12 and Figure 13 show 
our facial expression results produced after 
making the aforementioned improvements to 
our initial GA system. We use GA to learn 
examples from our expression bank given the 
sparse FP motions. A wider range of novel 
expressions can thus be produced from the 
existing database of the limited size.     

6. Conclusion 

In this paper we have presented the novel 
approach which uses GA in interpolation and 
extension of existing expressive animation 
data. Given sparse 3D motion vectors for   
FPs, we utilize GA to implicitly assign 
weights to examples in the expression bank 
and thus produce a realistic optimized result 
after GA evolution. After introducing our 
initial GA system, we present our 
improvements on producing very natural-

looking expressions by decomposing a face 
into several regions. The resulting animation 
has the same quality as the original animation 
data. Moreover, it covers a wider expression 
space after learning examples in the bank via 
GA. 
 
In our future research, we would like to use a 
motion capture device to capture facial 
motions with sparse markers. After that, we 
plan to use the captured data to produce 
animation by learning the existing animation 
data via GA. Then we can compare the 
ground truth (i.e. video-taped facial 
movements during motion capture session) 
with the reconstructed expressions.   
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