
Facial Expression via Genetic Algorithms

Lijia Zhu and Won-Sook Lee

School of Information Technology and Engineering, University of Ottawa

800 King Edward Ave., Ottawa, Ontario, K1N 6N5, Canada

{lzhu058, wslee}@uottawa.ca

Abstract

The MPEG-4 standard specifies feature
points and a set of facial animation
parameters (FAPs) associated with the neutral
face model. Given motion vectors of MPEG-
4 feature points (FPs), it is the developer’s
freedom to implement facial animation,
meaning motion vectors for surface points of
the 3D facial mesh. Our goal is to produce
natural-looking animation vectors for all
surface points by specified MPEG-4 FP
motions. We make use of an existing
expressive animation database of limited size
and we propose a novel approach which uses
Genetic Algorithms (GA) in interpolation and
extension of the given expression data.
Firstly, we construct the expression bank
based on the available animation data. Then
given sparse motion vectors of the FPs, we
utilize GA to implicitly assign weights to
examples in the bank and thus produce
realistic optimized result after GA evolution.
After introducing our initial GA approach, we
present our improvements on producing
natural-looking novel expressions by
decomposing the face into several regions.
The resulting animation has the same quality
as the original animation data. Moreover, it
covers a wider expression space after learning
examples in the bank via GA.

Keywords: Facial animation, MPEG-4,
FAPs, Genetic Algorithms, Interpolation

1. Introduction

Producing realistic facial animation is a
challenging task for researchers in the
computer animation field. Since the
pioneering work of Parke ([1] and [2]), many
different approaches have been proposed for
producing facial expressions. Commonly,
facial animation is more easily controllable
with a set of feature points rather than all
surface points. Here facial feature points are
the prominent points on the face that capture
the distinguished features of the face. The
assumption is that the motions of feature
points are capable of carrying enough
information to drive all surface points for
producing animation.

In 1999, MPEG (Moving Picture Experts
Group) developed the ISO/IEC standard
called MPEG-4. Pandzic and Forchheimer [3]
give a very detailed introduction and
discussion on MPEG-4 facial animation.
MPEG-4 specifies a neutral face model, a
number of feature points (FPs) on this neutral
face as reference points and a set of facial
animation parameters (FAPs), each
corresponding to the specific facial action
deforming a face model in its neutral status.
FAPs specify the motions of the FPs. Given
motion vectors of the FPs, it is the
developer’s freedom to implement motions
for all surface points of the neutral face

model. Many approaches have been proposed
to implement it. Noh et al. [4] use Radial
Basis Functions (RBF) to create facial
animation based on movements of control
points. Kshirsagar et al. [5] compute regions
influenced by each of the control points and
the corresponding weight for deformation for
all the vertices in the influence region. Then
from the displacement of the FPs, they
calculate the actual displacements for all
vertices of the facial mesh. More recently
Garchery et al. [6] also compute facial
deformation using MPEG-4 FPs only. The
aforementioned techniques belong to the
category of feature-based approaches, which
calculate motions for all vertices of the face
mesh based on FP movements. However, it is
difficult to animate the face in a purely
geometrical way to produce cheek
deformation and sophisticated wrinkles.

On the other hand, facial animation can be
driven by motion vectors of all surface points
of the neutral model. From this point of view,
it is a surface-based approach. Usually, it
produces more sophisticated and expressive
facial expressions than the purely geometrical
approach for surface deformation. Noh and
Neumann [7] present the expression cloning
system that maps motions of all surface
points from a source to a target model. L.
Zhang et al [8] use a capture system which
employs synchronized video cameras and
structured light projectors to record videos of
a moving face. Then they propose an
approach that goes from video sequences to
high-resolution animated face models. The
resulting 3D meshes illustrate very high-
quality facial animation and in addition the
meshes are consistently parameterized. With
this expressive animation data available, it
would be very beneficial to make use of the
data and interpolation is probably the most
suitable animation technique for this case.
Given a set of key facial expressions from
existing animation database, a blend shape
model can be constructed by considering
every facial expression as a linear
combination of key expressions. By varying
the weights of the linear combination, a wide
range of facial expressions can thus be
produced.

There are many researches on interpolation
for producing facial expression. Kouadio et
al. [9] minimize the Euclidean distance
between corresponding points and markers to
obtain a linear combination of the basic
expressions. Chuang and Bregler [10]
produce facial animation with a combination
of motion capture data. Weights for
interpolation are calculated based on the least
square solution. Chai et al. [11] find the K
closest examples in the motion capture
database and then linearly interpolate the
corresponding examples. Pyun et al. [12]
evaluate the weights for key models with
cardinal basis functions, which consist of
linear and radial basis functions. This allows
them to obtain the output model by blending
key models with those weights. Joshi et al.
 [13] propose an automatic, physically-
motivated segmentation that learns the
controls and parameters from blend shapes.

Our previous paper [14] shows how to
perform expression cloning for a detailed
surface from one person to another with
laser-scanned faces. Our focus here is on
producing various expressions for one subject
using a surface-based approach for high
quality as well as using a set of feature points
for easy control. The input of our system is
3D motion vectors for MPEG-4 FPs of the
neutral face model. In this paper we produce
facial expressions by interpolating and
extending expression models in the
expression bank. We propose a novel
approach to find the interpolation weights
implicitly via Genetic Algorithms (GA). GA
is inspired by the process of natural evolution
 [15]. Essentially, GA’s problem solving
approach is to evaluate possible solutions at
each generation, and then the offspring
solution is generated to update the population
pool. Given the evaluation function, the fitter
individuals are encouraged to survive and
contribute more to the population. As a result,
the optimal solution progressively improves
during the process of evolution.

This paper consists of six sections. In section
2, we construct the expression bank and
define the feature points for the neutral face
model. Our GA approach is proposed in
section 3 and then we show experiment
results in section 4. Section 5 explains our

enhancements for the initial GA system.
Finally we conclude our paper in section 6.

2. Preparation

Ekman and Keltner [16] propose six basic
emotional facial expressions (joy, anger, fear,
disgust, sadness and surprise). However, in
the real world, the human face is capable of
generating far more expressions than the
basic ones. Many recent researches (for
example, [17] and [18]) explore the methods
to generate facial expressions for a continuum
of pure and mixed emotions of varying
intensity.

In this paper, we aim to produce diverse
expressions via GA with the transition of the
predefined emotional facial expressions in the
expression bank. The desired emotional
expressions are specified by motion vectors
for the FPs. Then by our GA approach, we
deform the surface with the motions for all
the surface points by learning the examples in
the bank.

Figure 1 : Dominant expression models

Our first step is to construct the expression
bank containing several key expressions. In
this paper, we make use of the existing
animation data produced by L. Zhang et al
 [8]. Their attractive animation result can be
found in [19]. There are a total of 384
animated models. They all share the same
vertices and structures (23K vertices and 46K
triangles) and there are six dominant
emotional expressions (Figure 1) and others
are intermediate expressions. We select 30
key models (including 6 dominant
expressions) from their animation data to
construct our expression bank. Given a set of
expression models in the expression bank, the
interpolated expression model E can be
expressed as:

∑
=

=
n

i
iiEwE

1

where wi is the weight assigned to the specific
expression face Ei in the expression bank, and
n is the number of expression models in the
bank. Based on the expression bank, a wide
range of facial animation can be produced by
varying wi.

(a) (b)

Figure 2: (a) MPEG-4 feature point set; (b)
Feature points defined in our system.

For defining FP positions in the neutral face
model, we respect the MPEG-4 standard.
MPEG-4 defines a total of 84 FPs (Figure
2a). The feature point set we defined (Figure
2b), which includes 56 FPs, is the subset of
MPEG-4 feature point set. We exclude some
MPEG-4 FPs which are in the areas of the
tongue, tooth, ear and hair because our
expression models in the expression bank do
not include those parts. We also exclude
some FPs where they are too close to each
other. (E.g. some points in the eye area).

Figure 3: (a) Expression model from [19];
(b) RBF global deformation driven by FP
motions.

Given the motion vectors of MPEG-4 FPs,
our goal is to produce natural-looking
animation vectors for all the surface points.
Originally, we plan to achieve this goal by
RBF which is similar to the approach

proposed by Noh et al. [4]. We use motion
vectors of FPs in the animated model (Figure
3a) to globally deform the neutral face model
by our RBF library. Our previous work [14]
successfully uses our RBF library to globally
adapt the generic model to a laser-scanned
face. However, for this case, our experiment
result is not good (Figure 3b). First, the
global shape is not correct because of a lack
of FPs in the face outlines. In [14], we
defined more feature points. The FP
definition is very critical for result. Second,
even if we adjust FP definition now and apply
RBF locally, the global shape is correct, the
skin deformation on the cheeks, however,
will not be natural as it creates less folding
than natural expression. So we decide to
investigate a novel method to produce
expressions based on surface points.

3. Our GA approach

Because GA is good at solving complex
optimization problems, its use has become
more and more popular in the computer
graphics and computer animation fields. For
example, Tohka [20] presents the approach
that applies GA to optimization of
deformable surface meshes; Bui et al. [21]
use GA to adjust feature points on a target
face to minimize the difference between the
surface of the morphed face and the target
face.

Figure 4: Our GA structure

In this section, we aim to find the optimized
weights in order to interpolate expression
models in the expression bank. The basic
structure of our GA approach is listed in
Figure 4. The population of expression faces
is initialized with the previously constructed
expression bank. The population size for our

GA is 30. The population size remains
constant during our overall GA process.

In each generation, we randomly select 3
expression faces from the population. If we
evaluate 2 expressions at a time, the GA
process will converge more slowly. By using
number 3, we will get rid of bad genes in the
expression bank faster. On the other hand, we
could evaluate more than 3 faces and update
more faces in each generation. GA will
converge faster. However it may lead to the
local maximum solution. Therefore we decide
to evaluate 3 expression faces at a time. Now
we need to design the fitness function to
evaluate randomly selected three expressions
in the bank. The purpose of the evaluation is
to determine how well the specific expression
matches the system input (i.e. 3D motions for
FPs).

Figure 5: Illustration for explaining fitness
function.

Suppose that there are a total of M feature
points with non-zero motion vectors in the
system input where 0≤M≤56 because totally
we define 56 feature points in our system.
First, let us have a look at any FP with non-
zero motion vector (Figure 5). Suppose that
the target vector is the FP motion vector
which is specified in the input requirement
and the candidate vector is the vector for that
FP in the selected expression face. Obviously,
the candidate vector in Figure 5(a) is more
qualified than that in Figure 5(b) according to
the input requirement. It is better to have a
smaller angle θ value between those two
vectors. The angle θ can be expressed in
terms of the target vector Va and the
candidate vector Vb :

cos
| | | |

a b

a b

V V
V V

θ •
=

∗

It hints that it is better to have a larger value
of cosθ for each feature point. We can sum up
all cosθ values for all FPs with a non-zero
motion vector in the input requirement. Then
we normalize the total sum with the M value
(Because the maximum total sum is: M*cos00
= M). Our fitness value F can thus be given
by

1
cos

M

i
i

F
M

θ
==
∑

where M is the number of FPs with a non-
zero target motion vector. The best value F
that can be achieved is 1. However, 1 is just
the ideal value. Our aim is to produce optimal
value which is as close to 1 as possible. The
closer the value is to 1, the greater the
similarity between the target expression
according to the input requirement and the
output expression.

We use our fitness function to evaluate the
three previously selected expression faces.
The individual with the worst fitness value in
this tournament is not allowed to survive in
the next generation. We remove it from the
population and replace it with the offspring of
two winners. There are various crossover
strategies to produce offspring from parents.
The crossover operator plays a central role in
GA [22]. The simplest crossover we used is
called Midpoint crossover where the
offspring lies exactly on the middle of two
parents. Suppose P1 and P2 are the parents, the
offspring is expressed as:

Offspring = 0.5*P1 + 0.5*P2

In Line crossover (a.k.a. Flat crossover), the
offspring, which is located in a random
position between the parents (P1 and P2), is
given by:

Offspring = t * P1 + (1-t) *P2

where 0≤t≤1. BLX-α crossover is the
extension of Line crossover. The offspring

can be calculated based on the parents (P1
and P2) in the following way:

∆ = α (P2-P1);
Offspring = t*(P1 – ∆) + (1-t)*(P2 + ∆)

where 0≤ α ≤1 and 0≤t≤1. Line crossover is
the special case of BLX- α crossover when
t=0.5, and Midpoint crossover is also the
special case of Line crossover when α=0 and
t=0.5. Each of these three crossovers is
capable of generating offspring from previous
two winners in the tournament and thus
leading to the optimal solution finally. We
will discuss more on experiments with these
3 crossovers in section 4.

However, we need one more step to adjust
the offspring. Previously, in the fitness
function, we only consider vector directions
of FPs. Now we need to adjust FP vector
lengths of the offspring to meet the
requirement. We sum up motion vector
lengths for FPs in the system input. Also we
sum up vector lengths for the corresponding
FPs in the offspring. Then we use the scale
factor between those two values to adjust the
motion vectors for all surface points of the
offspring.

We need to mention that if we evaluate vector
directions and lengths simultaneously in our
evaluation function, we may fall in the
dilemma to decide which of the following
two cases is better: a) better directions but
worse lengths; b) worse directions but better
lengths. By treating vector direction and
length separately as we proposed, we ensure
that we won't be in such a dilemma.

Finally, the offspring is used to replace the
worst individual in the previous tournament.
The original population now comes to the
next generation. We iterate such process
again and again until N generations are
processed. It is our GA termination condition.
According to our experience, N=70 is chosen
for the current system. It is decided by the
population size and our strategy to refine the
population. How the population converges to
the optimized solution can be visualized in
Figure 6b where X-axis denotes the
generation number and Y-axis shows the
fitness value for the generated offspring. We

keep track of the best individual over all
generations in the whole GA process. When

GA process meets our termination condition,

Figure 6: (a) Original model from [19] but is not the expression model in our expression bank; (b)
Sample experiment result by using Line crossover; (c) The output of our GA system.

the best individual expression face so far is
returned as our GA system output (Figure
6c). We extract the motion vectors for FPs in
Figure 6a and use it to get motions for all
surface points by learning the examples in the
bank via GA. Our system output Figure 6c is
quite similar to the expression in Figure 6a.

Essentially, in our GA approach, the
interpolation weights are assigned to each
expression model in the expression bank
implicitly over the generations. The
expressions which are less relative to our
input requirement are assigned less weights.
The genes from the good expressions are
assigned more weights and are accumulated
to contribute to our final output.

4. GA experiments

There are a total of 384 animated models in
the original data [19]. Each of the models is
made of about 23K vertices and 46K
triangles. We have tested our system with 20
randomly picked models which are not in our
expression bank but from their data [19]. We
only use 3D motion vectors for FPs for those

models to drive our system. Our test goal is to
see whether we can produce the similar
animation vectors for all the surface points as
the original data. The experiments are done
on a 2.60 GHz AMD Opteron PC with 2.0
GB of RAM. The GA is terminated when 70
generations are evaluated. The computation
time is about 40 seconds.

Avg. of Avg.
Best Fitness

Value
Avg. of STD

BLX-0.2 0.962 0.0068
Midpoint 0.960 0.0057

Line 0.970 0.0075
Table 1: GA system experiments with various
crossovers

In our experiments, we have tried various
crossovers with those randomly picked
models. For each crossover, we run our GA
system 10 times for each model. The
experiment results are shown in Table 1.
Avg. of Avg. Best Fitness Value stands for
the average of the average best fitness value.
Avg. of STD is the average standard
deviation for that crossover. For the BLX-α
crossover operator, we tested parameter α

with various values: 0.1, 0.2, 0.3, 0.4 and 0.5.
According to our experiment experience, we
choose α = 0.2 for its better performance over
others. The performances of three crossovers
(Midpoint, Line and BLX- α) do not vary too
much. No crossover dominates the others.
Usually, the ideal operator depends on the
model itself. We assume experiment results
are distributed normally. By the property of
the standard deviation, two standard
deviations away from the average account for
roughly 95% of the data. We can get the
approximate performance range for each
crossover from Table 1. Compared with
Midpoint crossover (0.949 ~ 0.971) and
BLX-0.2 crossover (0.948~ 0.976), Line
crossover (0.955 ~ 0.985) performs a little bit
better.

We would like to mention that our GA
system terminates when 70 generations are
generated. If we permit more generations in
the evolution process, BLX- α may perform
better because BLX- α is trying to explore the
solution space in a wider way. However, the
computation time will increase if we process
more generations. The choice of the
crossover operator is a compromise between
accuracy and convergence speed.

5. Enhancements for facial
expression

After testing our initial GA system, we have
also made several improvements on it. Firstly
in order to produce facial expressions of
various intensities, we use emphasize level
parameter c to control our system input. The
input FP motion vectors are multiplied by the
value c before starting the GA process.
Figure 7 shows different final GA system
outputs by varying parameter c.

Figure 7: Emphasize level control parameter
c. (a) c = 0.7; (b) c = 1.0; (c) c=1.4.

Figure 8: The face is decomposed into two
regions.

One more improvement we made is to split
the face into two parts: left and right faces
(Figure 8). Two sub-regions overlap each
other. It offers the possibility of producing
asymmetric expression which makes the
resulting facial expressions more natural. We
apply GA for left and right FPs separately.
Then we combine left and right face results
together to produce a synthesized facial
expression. However, special treatment is
needed in the joint part where artefacts may
appear. One possible solution is to apply a 3D
smoothing filter for each point on the joint
part (i.e. average motion vectors of the
surrounding points). It works fine when the
left and right face expressions do not differ
too much. When the difference between the
left and right faces is big, we will have
unnatural expression result. Kouadio et al. [9]
mention that points surrounding the borders
should be included in both regions, and their
new positions in each half expression are
weighted accordingly.

Figure 9: The strategy to remove the artefacts
around the joint part for two sub-region
decomposition.

Inspired by this idea, we propose the
following sophisticated technique to tackle
this issue (Figure 9). The left and right faces
overlap each other around the central line.
We design the intermediate region which
blends the left and right face animation
vectors with our distance-related weight
assigning function. The formula for
calculating the animation vector teIntermedia

iV
for the ith point in the intermediate region is
given as:

Left
i

Right
i

teIntermedia
i V

D
diV

D
diV **)1(+−=

where di is the distance of that point to the
border line; D is the width of the intermediate
region; Left

iV is the motion vector for that

point in the left face region and Right
iV is that

in the right face region. The left and right
faces overlap each other in the intermediate
region. They both contribute to the
intermediate region. With our distance-
related weight assigning function, there are
no artefacts around the border lines. Figure
10 shows our asymmetric expression results
by dividing the face into left and right
regions.

Figure 10: Asymmetric expression results by
dividing the face into left and right regions.

Further improvement to our system is to
decompose the face into more regions. Many
researches ([9], [10], [13], [23], [24] and
 [25]) split the face into several regions for
better control of animation. Commonly, they
divide the face region from two to ten sub-
regions. We divide the face into four sub-
regions (Figure 11). Firstly, we partition the
face into left and right faces. Then for each
half face, we divide it further into upper and

lower parts. Each quarter region is controlled
by the corresponding FP sub-group. Given
3D motion vectors for FPs in the system
input, we decompose it into four sub-goals.
We apply GA to search solutions in the
expression bank with four sub-goals
separately. Then we combine four optimized
sub-solutions together to produce the
synthesized facial expression. Similarly, the
previously described technique for removing
the artefacts in the joint parts is also applied.

Figure 11: The face is decomposed into
four regions.

For the ground truth models we tested in the
previous section, we conduct experiments
with Line crossover for 10 randomly selected
models. Using our initial GA system, we
have the average best fitness value 0.960. By
decomposing the face into two regions, our
average best fitness value is 0.972. The
computation time increases from 40 seconds
to two minutes on our previously mentioned
PC. With the four sub-region scheme, we
have the value 0.981. The computation time
is about five minutes. It shows that, by
dividing the face into several regions, we can
improve results by finding several optimal
sub-solutions via GA. However the
computation time increases, it is the trade-off
between accuracy and speed.

Figure 12: Facial expression results via GA
(front view).

Figure 13: Different views of facial
expressions results.

Using the above techniques, we are capable
of producing more natural-looking novel
expressions. Figure 12 and Figure 13 show
our facial expression results produced after
making the aforementioned improvements to
our initial GA system. We use GA to learn
examples from our expression bank given the
sparse FP motions. A wider range of novel
expressions can thus be produced from the
existing database of the limited size.

6. Conclusion

In this paper we have presented the novel
approach which uses GA in interpolation and
extension of existing expressive animation
data. Given sparse 3D motion vectors for
FPs, we utilize GA to implicitly assign
weights to examples in the expression bank
and thus produce a realistic optimized result
after GA evolution. After introducing our
initial GA system, we present our
improvements on producing very natural-

looking expressions by decomposing a face
into several regions. The resulting animation
has the same quality as the original animation
data. Moreover, it covers a wider expression
space after learning examples in the bank via
GA.

In our future research, we would like to use a
motion capture device to capture facial
motions with sparse markers. After that, we
plan to use the captured data to produce
animation by learning the existing animation
data via GA. Then we can compare the
ground truth (i.e. video-taped facial
movements during motion capture session)
with the reconstructed expressions.

Acknowledgements

We would like to thank Li Zhang and Steven
M. Seitz in the Graphics and Imaging
Laboratory of the University of Washington
for allowing us to use their face animation
data. We are also grateful to Andrew Soon
for proof reading this document.

References

[1] F. I. Parke. Computer generated
animation of faces. Proceedings of the
ACM annual conference. Boston,
Massachusetts, United States, 1972, pages
451 – 457.

[2] F. I. Parke. A parametric model for
human faces. PhD Thesis, University of
Utah, Department of Computer Science,
1974.

[3] I. Pandzic and R. Forchheimer. MPEG-4
facial animation: the standard,
implementation and applications. Wiley,
2002.

[4] J.Y. Noh, D. Fidaeo and U. Neumann.
Animated deformations with radial basis
functions. Proc. ACM symposium on
virtual reality software and technology,
Seoul, Korea, 2000, pages 166-174.

[5] S. Kshirsagar, S. Garchery, and N.
Magnenat-Thalmann. Feature point based
mesh deformation applied to MPEG-4

facial animation. In Deformable Avatars.
Norwell, MA: Kluwer, 2001, pages 24–30.

[6] S. Garchery, A. Egges and N. Magnenat-
Thalmann. Fast facial animation design
for emotional virtual humans. Measuring
Behaviour，Wageningen, NL, September
2005.

[7] J. Y. Noh and U. Neumann. Expression
cloning. Proceedings of the 28th annual
conference on Computer graphics and
interactive techniques. Aug. 2001, pages
277-288.

[8] L. Zhang, N. Snavely, B. Curless, and
S.M. Seitz. Spacetime faces: high-
resolution capture for modeling and
animation. In ACM SIGGRAPH
Proceedings, Los Angeles, CA, Aug.
2004.

[9] C. Kouadio , P. Poulin and P. Lachapelle.
Real-time facial animation based upon a
bank of 3D facial expressions.
Proceedings of the Computer Animation.
page128, June 08-10, 1998.

[10] E. Chuang and C. Bregler.
Performance driven facial animation
using blendshape interpolation. Standford
University Computer Science Technical
Report. CSTR-2002-02, Apr. 2002.

[11] J. Chai , J. Xiao and J. Hodgins.
Vision-based control of 3D facial
animation. Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on
Computer animation. July 26-27, 2003,
San Diego, California.

[12] H. Pyun , Y. Kim , W. Chae , H. W.
Kang and S. Y. Shin. An example-based
approach for facial expression cloning.
Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, San Diego,
California, July 2003, pages 167 - 176.

[13] P. Joshi , W. C. Tien , M. Desbrun
and F. Pighin. Learning controls for blend
shape based realistic facial animation.
Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation. July 26-27, 2003,
San Diego, California.

[14] L. Zhu and W.-S. Lee. Modeling and
Animating for the Dense Laser-scanned
Face in the Low Resolution Level. The
17th IASTED International Conference
on MODELLING AND SIMULATION

2006. May 24-26,2006. Montreal, Quebec,
Canada

[15] David E. Goldberg. Genetic
algorithms in search, optimization, and
machine learning. Addison-Wesley. MA,
1989.

[16] P. Ekman and D. Keltner. Universal
facial expressions of emotion: An old
controversy and new findings. In U.
Segerstrale & P. Molnar (Eds.) Nonverbal
communication: Where nature meets
culture. pages. 27-46. Mahwah, NJ:
Lawrence Erlbaum Associates. 1997.

[17] N. Tsapatsoulis, A. Raouzaiou, S.
Kollias, R. Cowie and E. Douglas-Cowie,
Emotion Recognition and Synthesis based
on MPEG-4 FAPs. In MPEG-4 Facial
Animation: the standard, implementation
and applications. Pages 141-167. I.
Pandzic and R. Forchheimer (eds), John
Wiley & Sons, UK, 2002.

[18] I. Albrecht, M. Schröder, J. Haber
and H. Seidel. Mixed feelings:
expression of non-basic emotions in a
muscle-based talking head. Virtual
Reality (Special Issue "Language, Speech
and Gesture for VR") pages 201-212.
August 2005.

[19] Spacetime Faces.
http://grail.cs.washington.edu/software-
data/stfaces/index.html. Date of access:
Apr. 2006.

[20] J. Tohka. Global optimization of
deformable surface meshes based on
genetic algorithms. In Proc. of 11th
International Conference on Image
Analysis and Processing, ICIAP01, pages
459 - 464, 2001.

[21] T.D. Bui, M. Poel, D. Heylen and A.
Nijholt. Automatic face morphing for
transferring facial animation, Proc. 6th
IASTED International Conference on
Computers, Graphics and Imaging.
Honolulu, Hawaii, USA, August 2003,
pages 19-23.

[22] F. Herrera, M. Lozano and J.
Verdegay. Tackling real-coded genetic
algorithms: operators and tools for the
behaviour analysis. Artificial Intelligence
Review 12 (1998) pages 265 - 319.

[23] T.D. Bui, D. Heylen, M. Poel and A.
Nijholt. Exporting vector muscles for
facial animation. Smart Graphics 2003:
pages 251-260.

[24] Q. Zhang , Z. Liu, B. Guo and H.
Shum. Geometry-driven photorealistic
facial expression synthesis. Proceedings
of the 2003 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation. July 26-27, 2003,
San Diego, California.

[25] D. Fidaleo and U. Neumann.
Analysis of co-articulation regions for
performance driven facial animation.
Journal of Computer Animation and
Virtual Worlds, 2004,15: pages 15-26.

