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Abstract� In this paper we proposed a new framework for 
obtaining the spongy and cortical bones from the MRI data. The 
method focuses on the accurate extraction of the edges of the 
target tissues, which is the main drawback of the previous works. 
This framework first limits the searching area for the bone voxels 
from the whole data to a small strip around the edges of the 
cortical and spongy bones then applies a very accurate 
segmentation on the searching area using the newly developed 
deformable kernel Fuzzy C-Means (DKFCM) algorithm, which is 
proposed in this paper. Comparing the results of this work with 
previous segmentation methods on a testing dataset consisting of 
10,485,760 voxels demonstrates the superiority of the proposed 
method especially on the edges of the spongy and cortical bone. 
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I. INTRODUCTION  

Magnetic resonance imaging (MRI) is currently a useful 
method for exploring the body organs. MRI gives us a 3D 
image of the body's internal organs, which can be used for 3D 
modeling of the organs after segmentation. 3D modeling of the 
organs has various applications like surgery assistance [14], 
diagnosing the cartilage degradation [7, 11] and diagnosing the 
musculoskeletal disorders in a specific patient [2] like the 
Femoroacetabular impingement (FAI) [21]. 

Segmenting the MRI data and extracting the target tissue is 
the first step for exploiting the MRI data. Manual segmentation 
of the MRI is very time consuming and expensive for one 
patient. On the other hand due to the inherent noise and 
intensity overlapping, automatic segmentation of the MRI data 
is a challenging issue. Robustness against the noise, correct 
detection of the tissues and accurate segmentation of the edges 
of each tissue are the most challenging tasks for any MRI 
segmentation method.  

The goal of this work is developing a new framework to 
extract the cortical and spongy bone very accurately from the 
MRI data with minimal interaction from the human. The 
results of this work can be used in the modeling of bones in a 
specific patient for detecting the skeletal disorders and 
structural analysis of the cortical and spongy bones in 
patients[20]. For this purpose, we proposed a framework that 

limits the segmentation area from the whole slice to a strip 
around the contour of the bone. As a result, most of the non-
bone pixels which have overlap with the bone pixels are 
omitted. For increasing the segmentation accuracy on the edges 
of the bone, we proposed the DKFCM method. In this method 
by deforming a 3 dimensional kernel around the main pixel, 
which specifies the neighboring pixels, in an iterative mode the 
quality of the segmentation on the edges is improved. 

The paper is organized in five sections. In section 2 we 
explore the previous works and their ability for segmenting the 
bone tissues. In section 3 the proposed method is explained. 
Section 4 explains the results of comparing the proposed 
method with previous works and section 5 is the conclusion. 

II. RELATED WORKS 

  So far some different methods have been utilized for 
segmenting the MRI data. Deformable models [6, 8, 19], 
Markov Random Field [17, 1], graph cut [12], neural network 
[9, 10] and Fuzzy C-Means (FCM) [5, 13, 15] are some of 
these methods. However, there are few methods which are 
designed specifically for segmenting the bone. To address this 
problem, H. Kang et al. [3] proposed a framework for 
considering the expert knowledge about the placement of 
different tissues in segmenting the MRI of thigh to muscle, 
adipose tissue, spongy bone and cortical bone. Implementing 
this method and testing it with our dataset at section 4 for 
extracting the cortical and spongy bones showed that although 
this method could correct many of the miss-segmented parts in 
comparison with the segmentation by the FCM but the results 
still contain some miss-classified parts of the other tissues and 
the result of the segmentation on the edges is not accurate. 

 Benjamin Gilles et al. [6] made use of simplex meshes 
discrete model for musculoskeletal MRI segmentation. This 
method doesn't have the miss-classification problem on the 
main body of the tissues but it is still not accurate on the edges 
and it can't separate the cortical bone from the spongy bone.          

FCM is another clustering method, which was proposed by 
J. C. Bezdek [16] and proves to be efficient in image 
segmentation. FCM works with updating the center of each 
cluster and membership function in an iterative process. Center 
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of each cluster, vi, is the central value of the cluster i and the 
membership function, wik, is the degree of membership of the 
pixel k to cluster i. The iteration ends when the change in the 
membership function in two successive iterations 
pre-specified number. The main drawback of this method is 
that it only considers the intensity of the pixels for clustering 
them. To address this deficiency, some methods [4, 5
added the spatial information to the objective fun
FCM. So, the cluster of each pixel is decided based on the 
main pixel and the neighboring pixels around it. This extension 
of FCM, which is known as spatial FCM or SFCM, improves 
the robustness of the FCM against the noise however it doesn't 
improve the segmentation result on the edges of the tissues. 
The other problem is the miss-classification of some parts 
the main body of one tissue as another tissue because of the 
intensity overlapping between the pixels in different
our method the miss-classification problem on the main body 
of tissues is resolved and the result of segmentation 
edges is improved. 

III. THE FRAMEWORK FOR OBTAINING THE SPONGY AN

CORTICAL BONE 

A. Selecting the bone parts at the seed slice 

The segmentation process begins from the seed slice
continues until the segmentation of whole of the slices
seed slice can be selected from any of the slices in the Sagittal, 
Axial or Coronal views that contain a part of each of the bones 
in the MRI data. If a slice with all of the bone parts doesn't 
exist, we need to choose more than one seed slice to have all of 
the bone parts. The program can choose the seed slices based 
on the expert knowledge from the body regions.

The block diagram of the segmentation at the seed slice
shown  in Fig. 1. The  very  first  step  is  separating 

Fig. 1. The block diagram of the segmentation process at the seed slice
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The block diagram of the segmentation process at the seed slice 

from the other tissues. This is not an
just need to have separate islands. A two dimensional slice of 
the hip joint is shown in Fig. 2 (a)
tissue is bonded with the cortical bone. Due to the lower
intensity of the cortical bone in comparison 
muscle and adipose tissues, it's possible to isolate the spongy 
bone from other tissues, using gradient. For this purpose, first 
we apply canny edge detection on 
connected edges and then deducting 
deducting the edges for increasing the robustness of the 
framework to the noise, (noise can pierce through some parts 
of the edges and connect the spongy bone to some pixels of the 
muscle or adipose tissue) the GSFCM
detecting the spongy bones and making
segmented image. The result of the pre
shown in Fig. 2 (b). Next step is a very small interaction from 
the operator. For this purpose the pre
provided to the operator and the operator should click on the 
bone parts. This interaction, at the worse condition doesn�t take 
more than 5 seconds. Fig. 2 (c) shows the places of clicks by 
the operator. As we will explain at the part c of this section, 
clicking on the bone parts on the seed slice is enough for 
segmenting whole of the successive slices and the operator 
doesn't need to do anything on the other slices.

B. Proposed deformable Kernel Fuzzy C

For an accurate segmentation of the tissues on the edges 
newly developed DKFCM method is proposed in this paper. 
The core of this method is a generalized spatial FCM method. 
As it's explained in section 2, at the spatial FCM the cluster of 
each pixel is determined based on the main pixel and it's 
neighboring  pixels.  In  DKFCM  the 

  

                           (a)                                      

(c) 
Fig. 2.  (a) The original slice, (b) The pre
operator, (c) places of clicks by the operator 
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(b) The pre-segmented slice provided to the 
 



bounded in a 3 dimensional deformable kernel around the main 
voxel. The method begins with initializing the first searching 
area and neighboring kernel at the block diagram of Fig. 1, 
continues by deforming the neighboring kernel and adjusting 
the searching area in an iterative mode based on the 
segmentation obtained at the previous iteration and ends when 
the result of segmentation converges and satisfies the stop 
condition. 

As explained, the first step is initializing the searching area 
and the neighboring kernel. The initialized kernel is a 3×3×3 
cube as shown in Fig. 3 (a). The initialized searching area is a 
strip around the chosen bone parts on the current, the next and 
the previous slices. The width of this strip is equal to the 
maximum width of the cortical bone at the MRI dataset plus 
five. After initialization, the searching area is segmented with 
the GSFCM method using the initialized neighboring kernel. 
GSFCM, which is proposed by Huynh Van Lung et al. [4], is a 
generalized version of the spatial FCM. This method considers 
the cluster of the neighboring pixels in addition to their 
distance from the central pixel. For this purpose, the function 
Pik is defined as follows 

P୧୩ = σ g(u୧୨) ൬σ ୢమ൫୶ౡ,୶ౠ൯ୢమሺ୶ౡ,୶ౢሻౡ୪ୀ ൰ିଵౡ୨ୀ 

Where, Nk is the set of the neighborhood pixels around the 
central pixel k, which in our method we confine it to our 
deformable 3D kernel, uij is the membership value of the 
neighboring pixel j to cluster i and d() shows the distance 
between the pixels. Function Pik is then used to calculate the 
membership function (wik) and the center of cluster (vi) as 
follows. The clustering happens by updating the vi and wik in 
an iterative process same as the process which is explained for 
FCM in section 2.  

w୧୩ =  ൫ୢమሺ୶ౡ,୴ሻ(ౡ)൯ భౣషభσ ൫ୢమ൫୶ౡ,୴ౠ൯(ౠౡ)൯ భౣషభౙౠసభ ൩ିଵ
v୧ = σ ୵ౡౣ୶ౡౡసభσ ୵ౡౣౡసభ 

After segmenting the searching area with the initialized 
searching area and kernel and obtaining the cortical and spongy 
bone an iterative process begins for minimizing the 
segmentation error on the edges of the bone. At each of the 
iterations we change the searching area and the kernel in 3 
dimensions, based on the obtained contour of the bone at the 
previous iteration and then, repeat the segmentation process. 
The iteration continues until the stop condition is fulfilled. 
Equations 4 and 5 show the stop condition. 

                       σ d൫SI୬ሺ୰ሻ − SI୬ሺ୰ିଵሻ൯୬౨ < ɛ
d൫SI୬ሺ୰ሻ − SI୬ሺ୰ିଵሻ൯ = ቐ1           SI୬ሺ୰ሻ − SI୬ሺ୰ିଵሻ ≠ 0 0           SI୬ሺ୰ሻ − SI୬ሺ୰ିଵሻ = 0 �

 

(a) 

 

(b) 

Fig. 3.  (a) The deformable kernel at the first iteration, (b), The deformed 
kernel at the second iteration 

Where, Nr is the set of searching area pixels at the current 
iteration. SI is the segmented searching area, r shows the 
current iteration and r-1 shows the last iteration. ɛL is a natural 
number defined by the user. 

Fig. 3 shows the reforming process of the kernel Fig. 3 (a) 
shows the kernel at the first segmentation iteration and Fig. 3 
(b) shows the kernel at the second iteration. The kernel is 
reformed to adapt itself with the position of the cortical bone in 
the current, next and previous slices.  

The kernel is made of three movable blocks and the new 
distance between the position of the middle and top blocks and 
also the middle and bottom blocks in x and y coordinates are 
calculated by (6) and (7) respectively. 

               d୧୨୶ =  σ B୷[൫f୨୷ + l୨୷൯ −  ൫f୧୷ + l୧୷൯]ଵ୷ୀିଵ 

d୧୨୷ =  σ B୶[൫f୨୶ + l୨୶൯ −  ሺf୧୶ + l୧୶ሻ]ଵ୶ୀିଵ 

dij is the distance between the blocks at layers i and j. y is 
the row number in the block. For the main voxel the row 
number is zero for the voxels located under and above the main 
voxel the row number is assumed -1 and +1 respectively. By is 
the weight of each row. Fiy and liy are the first and last voxels 
of the cortical bone, which are located at the row y of the layer 
i. 

For changing the searching area we simply considered the 
width of the cortical bone at the previous iteration. The new 
searching area is from the (width/2) pixels inside the cortical 
bone to (width/2) pixels outside it. 

C. Back and forward propagation of the searching area 

After the convergence of the algorithm in one slice and 
finding the spongy and cortical bone regions, an automatic 
back and forward propagation for finding the bone regions in 
the back and forward slices begins. The idea is that, because of 
the small distance between the slices, there is not a big change 
in the contour of the bone in successive slices. So having the 



boundaries of the bone  in one slice will help us to na
down our searching area for the bone in the back and forward 
slices from the whole image to just a strip around the current 
contour of the bone. In Fig. 4 a part of the bone 
slice is marked, the definite spongy bone area 
is bounded with the blue dashed line and the searching area 
the next slice is the area between the red and blue dashed lines
In our dataset, which consists of 160 slices in the coronal view,
the initialized searching area at the next slice is 
pixels outside the current contour of the bone and 3 pixels plus 
the width of the cortical bone inside it. After
definite spongy bone area and the initialized searching area at 
the next slice the process continues by applying DKFCM
the searching area of the next slice. The segmentation process 
continues until the segmentation of the last slice.

IV. EXPERIMENTAL RESULT

Because of the high rate of noise and intensity overlapping, 
neither the FCM nor the GSFCM have acceptable 
segmentation results on our dataset (the accuracy of the FCM 
and GSFCM are both less than 70%). So, we decided to 
implement the method proposed by H. Kang et al.
compare its results with our method. This method provides a 
framework for segmenting the MRI data of thigh to spongy 
bone, cortical bone, muscle and fat using the expert knowledge 
about the relative position of the tissues and FCM together. 
Because of the proven superiority of the GSFCM to FCM, 
implemented this method with FCM (as it was proposed 
originally in the paper) and with GSFCM. The segmentation 
results of two different slices using the method proposed in
the method proposed by [3] improved with GSFCM and the 
proposed method are shown in Fig. 5. For comparing the 
results of the proposed method and the method proposed by [3]
on the edges two close views from the extracted spongy bone 
at the femur's head and acetabulum meeting point is shown in 
Fig. 6. The edges of the femur's head, acetabulum and the 
acetabular notch are clear in Fig. 6 (b). The results
show the superiority of the proposed method. 

For the evaluation purposes, a testing dataset of 
256×256×160 MRI data of hip joint (10,485,760 voxels
prepared and the results of segmentation are compared with the 
ground truth. The accuracy is defined as the ratio of the 
number of truly segmented voxels of a specific tissue to the 
total number of the voxels of that tissue. The performance 
comparison results are shown in table I. 

Fig. 4. The definite spongy bone and the searching areas
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bone at the current 
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definite spongy bone area and the initialized searching area at 
the next slice the process continues by applying DKFCM on 
the searching area of the next slice. The segmentation process 
continues until the segmentation of the last slice. 
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Fig. 5. The results of segmentation on two slices
improved by GSFCM, (c) The proposed framework

The results show the superiority of the proposed method in 
any case. However the proposed method 
the edges in comparison with the overall result
important because the good extraction
important factor in MRI segmentation and most of the
available segmentation methods have problem with 

For a better evaluation, the false positive and negative are 
also calculated on the edges. As it's shown in table II, the false 
positive and negative are almost equal for the proposed method 
while for the method proposed by [3] the false positi
bigger, which indicates that there are some parts of the other 
tissues, which are segmented as the bone. This proves the 
superiority of the proposed method in this case which 
resulted from the accurate bounding of 
the edges of the bone at the proposed framework

                       (a)                                

Fig. 6. Extracted spongy bone at the femur head and acetabulum meeting 
point by (a) Ref [3] improved by GSFCM, (b) The proposed framework

 

 

 

 

The results of segmentation on two slices (a) Ref [3], (b) Ref [3] 
improved by GSFCM, (c) The proposed framework 
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Extracted spongy bone at the femur head and acetabulum meeting 
point by (a) Ref [3] improved by GSFCM, (b) The proposed framework 



TABLE I.  COMPARING THE ACCURACY OF SEGMENTATION IN THE 
PROPOSED FRAMEWORK WITH REF[3] AND REF [3] IMPROVED WITH THE 

GSFCM 

Region Ref [3] Ref [3] with GSFCM 
Proposed 
Method 

Spongy and Cortical 83.1% 86.7% 97.2% 

Spongy Bone 90.2% 92.9% 99.3% 

Cortical Bone 67.8% 72.3% 90.4% 

Edges 
(Spongy +cortical) 

70.4% 73.1% 92.3% 

TABLE II.  COMPARING THE FALSE POSITIVE AND FALSE NEGATIVE IN 
THE PROPOSED FRAMEWORK WITH REF[3] AND REF [3] IMPROVED WITH THE 

GSFCM 

Region and Error Ref [3] 
Ref [3] with 

GSFCM 
Proposed 
Method 

Edges (FP) 19.4% 18.2% 3.6% 

Edges(FN) 10.2% 8.7% 4.1% 

 

V. CONCLUSION 

A new framework for obtaining the bone from the MRI 
data and segmenting it to the spongy and cortical bone is 
proposed. The DKFCM method, which is proposed in this 
paper and used in the framework, resulted to an accurate 
segmentation of the bone and demonstrates superiority over the 
previous works especially on the edges, which is the main 
shortcoming of the existing methods. The accuracy of this 
method on the edges demonstrates the potential of this method 
for obtaining the other tissues of the body like the muscle and 
adipose tissues from the MRI data, which can be considered in 
future works.     
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