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Abstract 

In the realm of multi-agent systems, migration refers to the ability 

of an agent to transfer itself from one embodiment such as a 

graphical avatar into different embodiments such as a robotic 

android. Embodied agents usually function in a dynamic, 

uncertain, and uncontrolled environment, and exploiting them is a 

chaotic and error-prone task which demands high-level behavioral 

controllers to be able to adapt to failure at lower levels of the 

system. The conditions in which space robotic systems such as 

spacecraft and rovers operate, inspire by necessity, the 

development of robust and adaptive control software. In this 

paper, we propose a generic architecture for migrating and 

autonomous agents inspired by onboard autonomy which enables 

the developers to tailor the agent’s embodiment by defining a set 

of feasible actions and perceptions associated with the new body. 

Evaluation results suggest that the architecture supports migration 

by performing consistent deliberative and reactive behaviors. 

CR Categories: I.2.0 [Artificial Intelligence]: General–Cognitive 

simulation; I.2.11 [Artificial Intelligence]: Distributed Artificial 

Intelligence–Intelligent agents; I.2.4 [Artificial Intelligence]: 

Problem Solving, Control Methods, and Search–Plan execution, 

formation, and generation; Scheduling; I.2.9 [Artificial 

Intelligence]: Robotics– Autonomous vehicles; 

Keywords: Migrating Agents, Intelligent Virtual Agents, 

Autonomous Systems, Cognitive Architectures. 

1 Introduction 

Embodied intelligence is a prominent topic in multi-agent systems 

and refers to a coupled mind-body loop in which high level 

deliberative processes working with symbolic representation of 

the world within the mind decide the behavior of the agent based 

on a collection of physical or virtual sensors and actuators within 

the body. Mostly, embodied intelligence follows a dualist 

perspective which decomposes the agent to a mind and a body. 

Mind as an abstract layer provides the agent with cognitive 

functionalities. It receives perceptions from the body, makes 

decisions, and sends the decisions in terms of abstract actions to 

the body. The body as an embodied layer performs the received 

actions within the environment and provides the mind with 

perceptions acquired from its sensors. Continues interaction 

between mind and body forms a closed perception-cognition-

action loop. However, embodied cognition strongly suggests that 

in humans, mind and body are coupled and cannot be separated. A 

few agent architectures challenge the strict separation between 

mind and body [Ribeiro et al. 2013]. As an example, embodied 

cognition model embeds a secondary control loop, subconscious 

mind, into the body layer [Vala et al. 2012]. Furthermore, in 

situated agents, embodiment is considered as a situational 

coupling between an agent and its environment [Steels and Brooks 

1993]. 

Embodied agents have been extensively investigated in both 

physical world as robots and in virtual environments as intelligent 

virtual agents (IVA). These embodiments have been progressed 

later by embedding social context and human interactions to the 

social robotics [Fong et al. 2002] and embodied conversational 

agents (ECA) [Hassani et al. 2013 (b)], respectively. Regardless 

of uncanny valley effect [Mori 2012], believability is an important 

characteristic of an embodied agent in the social context and can 

be augmented by surface realization and intelligent behavior. 

Although advances in computer graphics have led to realistic 

surface realization in animated agents, yet physical constraints 

and limitation on robotic systems necessitates much more 

scientific effort. In terms of intelligent behavior, generally the 

embodied agents’ behavior is monotonous due to its scripted 

nature. Intelligent behavior emerges from cognitive characteristics 

such as recognition, decision making, perception, situation 

assessment, prediction, problem solving, planning, reasoning, 

belief maintenance, execution, interaction and communication, 

reflection, and learning [Langley et al. 2009]. 

In robotics literature, embodied agents can be classified into 

cognitive, behavioral and hybrid agents [Siegwart et al. 2011]. 

Wooldridge [2002] categorized intelligent agents to logic-based, 

reactive, belief-desire-intention (BDI) and layered agents. Logic-

based agents exploit symbolic logic deductions and cannot handle 

uncertainties. Cognitive agents such as BDI provide deliberative 

decision making capabilities for long temporal horizons. 

However, they cannot react to the situations which need 

immediate responses. Furthermore, knowledge representation is a 

main challenge in these architectures. Reactive agents (i.e. 

behavior-based agents in robotics literature) couple the control 

and decision making mechanisms to the current local sensory 

information to provide real-time reactions. Although this approach 

minimizes the complexity of the representational structures and 

provides quick responses to dynamic environments, it is not 

scalable and suffers from the lack of reasoning capabilities and 

task-oriented behaviors. Hybrid agents have a layered structure. 

Layers function in different abstraction and operational frequency 

levels, and thus let the agent to combine reactive and deliberative 

behaviors. Russell and Norving [2010] utilized the notation of 

rational agents and categorized them into simple reflex, model-

based reflex, goal-based, and utility-based agents. 

A new paradigm in embodied agents that is introduced recently is 

migrating agents. Migration refers to the ability of an abstract 

 

 * kaveh.hassani@uottawa.ca 

 † wslee@uottawa.ca 



   

entity to morph from one embodiment into a different 

embodiment and control the new body, accordingly. A more 

specific definition of migration is introduced based on social 

companions regardless of the body they reside in. In this 

definition, the intrinsic problem of migration is how to preserve 

the identity of one companion inhabiting different embodiments 

from the user perspective [Arent and Kreczmer 2013], or basically 

find out what exactly migrates. In order to answer this 

fundamental question Kriegel et al. [2011] define the companion’s 

identity as those features that persist and make it unique and 

recognizable from the user’s perspective. These features include a 

set of goals, a set of emotional reaction rules, the companion’s 

action tendencies, emotional thresholds and decay rates for each 

of the emotions types, the set of definitions of responses to orders 

from the mind and competencies styles of action, and 

functionalities parameters. Migrating companions requires by 

necessity sufficient level of abstraction, modularity, flexible 

definition of identity, and multiple platforms. 

Embodied agents usually function in a dynamic, uncertain, and 

uncontrolled environment, and exploiting them is a chaotic and 

error-prone task which demands high-level behavioral controllers 

to be able to adapt to failure at lower levels of the system (e.g. 

when a navigation system fails to direct a walking agent to a 

desired waypoint). The conditions, in which space robotic systems 

such as satellites, spacecraft and rovers operate, inspire by 

necessity, the development of robust and adaptive control 

software. These autonomous systems which have been 

successfully employed by NASA and ESA can achieve mission 

goals and handle unpredicted situations, autonomously [Hassani 

and Lee 2013]. Challenges of developing agent architectures for 

onboard autonomy in space missions are driven by four major 

characteristics of the spacecraft as follows. First, the spacecraft 

must perform autonomous operations for long periods of time 

without human guidance. Second, the performed operations must 

guarantee success, given tight deadlines and resource constraints. 

Third, due to high cost of the spacecraft, its operations require 

high reliability. Fourth, spacecraft operation involves concurrent 

activities among a set of tightly coupled subsystems [Muscettola 

et al. 1998].  

In this paper, we define migrating agents in more general sense. 

We define a migrating agent as an agent that is able to move its 

mind and mind-body interface among different embodiments and 

for that purpose only requires high level knowledge of actions and 

perceptions that new body is able to perform and percept, 

respectively. Thus, our goal is to design a generic autonomous 

architecture that can reside in different bodies without requiring 

customization. To do so, we propose a generic embodied agent 

architecture inspired by remote agent (RA) (i.e. developed by 

NASA to autonomously control the DS-1 spacecraft as part of 

New Millennium Deep Space Mission-1 to flyby an asteroid) 

[Muscettola et al. 1998] and intelligent distributed execution 

architecture (IDEA) [Muscettola et al. 2002] agent architectures. 

Furthermore, we utilize a fuzzy ontology as the agent’s 

knowledge representation scheme. Adopting RA and IDEA 

architectures reinforces the architecture by a reliable and 

intelligent platform that has already proven to be successful in 

complex inter-planetary missions. Moreover, embedded fuzzy 

ontology lets the agent to acquire knowledge from environmental 

uncertainties and construct a proper belief model. Furthermore, 

the embodiment of the proposed architecture can be tailored by 

defining set of possible actions and perceptions associated with 

the new body.  

The paper is organized as follows: in section 2 an overview of 

related works is presented. In section 3, we describe our proposed 

architecture. In section 4, experimental results and evaluations are 

discussed. Finally, section 5 concludes the paper. 

2 Related Work 

Migrating agents have been investigated in literature in the 

context of social companions and human-robot interactions. In 

this context, agent’s high level characteristics such as its emotions 

and behaviors, and its low level identities such as its voice transfer 

among different embodiments in a way that users can recognize 

the agent in different embodiments. The CMION architecture 

designed for the migrating companions of the LIREC project is an 

open source architecture for coordinating the sensors and effectors 

of such an agent with its mind. The architecture is designed to 

work with virtual graphical agents, including those on mobile 

devices, as well as robots. The ultimate goal of LIREC project is 

to move beyond the novelty effect of both social robots and ECAs 

towards social companions that can play an acceptable long term 

role. It is reported that user studies suggest the success of this 

architecture [Kriegel et al. 2011; Aylett et al. 2013]. Sarah is a 

LIREC-based companion that can be embodied in a robot, on a 

large graphical screen or in a handheld device. [Segura et al. 2012]. 

In [Gomes et al. 2011] an artificial pet with two robotic and graphical 

embodiments is proposed. In both embodiments behavior is driven by 

needs that are used to maintain coherence and motivate user 

interaction. In [Arent and Kreczmer 2013] indirect migration as a type 

of migration that lets the user to recognize the identity of companion 

in the new embodiment is introduced. It refers to the migration that 

goes through a third embodiment that has common components with 

the previous two. The user studies suggest that user can properly 

recognize the identity of this companion with a certain level of 

confidence, in some context.  

In order to design a body-independent generic architecture, one 

should investigate cognitive architectures which specify the 

underlying infrastructure for an intelligent system [Langley et al. 

2009]. Several well-known cognitive architectures have been 

introduced in the literature during the last decades. Soar [Laird et 

al. 1987] is a rule-based cognitive architecture that formulates the 

tasks as attempts to achieve goals. ACT-R [Anderson et al. 2004] 

cognitive framework emphasizes human psychological 

verisimilitude. ICARUS [Langley and Choi 2006] model designed 

for embodied agents emphasizes perception and action over 

abstract problem solving. SASE [Weng 2004] is based on Markov 

decision processes and utilizes the concept of autonomous mental 

development. PRODIGY [Carbonell et al. 1991], DUAL 

[Kokinov 1994] and Polyscheme [Cassimatis and Nicholas 2002] 

are other examples of cognitive architectures. Probably, BDI [Rao 

and Georgeff 1995] is the most representative model of cognitive 

agents. It triggers behaviors driven by conceptual models of 

intentions and goals in complex dynamic scenarios. BBSOAA 

[Liu and Lu 2006] is an extension of BDI architecture that 

enhances the knowledge representation and inference capabilities, 

and is suitable for simulating virtual humans. Although BDI-

inspired architectures such as IRMA [Bratman et al. 1998] support 

long term behaviors, their current implementations are whether 

hardware-based or logic-based. More information regarding 

cognitive architectures can be found in [Langley et al. 2009]. 

A few agent architectures concern with software engineering 

issues. As an instance, CAA [Kim 2005] is a generic object-

oriented architecture that supports context-sensitive behaviors. 

Moreover, some research works emphasize on machine learning 



   

techniques to enhance the robustness. Reinforcement learning for 

behavioral animation [Conde et al. 2003] and FALCON-X [Kang 

and Tan 2013], an IVA learning architecture that utilizes self-

organizing neural model are examples of these studies. OML 

[Wibner 2012] is an agent architecture for virtual environments 

equipped with neural network-based learning mechanism. In this 

model, a sensory neuron represents an object, and a motor neuron 

represents an action. An alternative paradigm for developing 

graphical agents is to employ a middleware to integrate existing 

multi-agent systems such as 2APL [Dastani 2008], GOAL 

[Hindriks 2009], Jadex [Pokahr et al. 2005] and Jason [Bordini et 

al. 2007] with existing game engines. This systematic approach 

benefits from reusability and rapid prototyping characteristics. As 

an example, CIGA [Oijen et al. 2012] is a middleware that 

amalgamates an arbitrary multi-agent system with a game engine 

by employing domain ontology. 

A few IVA architectures, similar to behavioral robotic 

frameworks, investigate the behavioral organization and action 

selection. SAIBA [Kopp 2006] is a popular framework that 

defines a pipeline for abstract behavior generation. It consists of 

intent planner, behavior planner and behavior realizer. Thalamus 

[Ribeiro et al. 2012] framework adds a perceptual loop to SAIBA 

to let the embodied agent to perform continuous interaction. 

AATP [Edward et al. 2009] is a coupled planning and execution 

architecture for action selection in cognitive IVAs. Neural-

dynamic architecture [Sandamirskaya et al. 2011] utilizes a 

dynamic neural field to describe and learn the behavioral state of 

the system, which in turn, enables the agent to select the 

appropriate action sequence regarding its environment. 

Ultimately, layered architectures (i.e. hybrid models) perform 

deliberative and reactive operations, simultaneously. 

COGNITIVA [Spinola and Ricardo 2012] is a reactive-

deliberative agent architecture that consists of reactive, 

deliberative and social layers. In those situations that there is no 

time for planning, the reactive layer reacts to the situation. 

Otherwise, the architecture generates goals, plans sequence of 

actions to reach those goals, schedules the actions, and executes 

them. Hybrid architectures are widely utilized in space robotic 

systems as well [Hassani and Lee 2013 (a)]. RA [Muscettola et al. 

1998] is a hybrid architecture tested on deep space-1. It is 

designed to provide reliable autonomy for extended periods. 

IDEA [Muscettola et al. 2002] is a multi-agent architecture that 

supports distributed autonomy by separating the layers of 

architecture to independent agents. IDEA has been successfully 

evaluated on K9 rover. MDS [Horvath et al. 2006] is a hybrid 

software framework that emphasizes state estimation and control 

whereas TITAN [Horvath et al. 2006] emphasizes model-based 

programming. LAAS [Alami et al. 1998] and Claraty [Nesnas et 

al. 2006] are other examples of hybrid architectures utilized in 

space missions. The modern space systems including satellite 

systems (e.g. EO-1 and Techsat-21) and interplanetary missions 

(e.g. DS-1) exploit hybrid architectures.  We adopt RA and IDEA 

frameworks to design a generic architecture for autonomous 

virtual agents with migrating capabilities that consistently 

supports deliberative and reactive behaviors. 

RA [Muscettola et al. 1998], shown in Figure 1, provides the 

spacecraft with onboard autonomy and is developed as a hybrid 

platform with three operational layers including deliberative 

planner-scheduler (PS), reactive executive, and mode 

identification and recovery system (MIR).  

 

 

Figure 1: The Architecture of Remote Agent [Muscettola et al. 

1998] 

PS determines the optimal execution sequence of actions in a way 

that spacecraft can reach its predefined mission goals. Also, it 

schedules the start time of the actions. Reactive executive receives 

scheduled actions from PS, and decomposes them to sub-actions 

understandable by flight software. Flight software is an interface 

between RA and spacecraft hardware, and consists of collection of 

software packages such as motor controllers managed by RA. 

Moreover, executive monitors the execution process to detect the 

inconsistencies in plans. MIR consists of mode identification (MI) 

and mode recovery (MR) units. MI transfers the low-level sensor 

data to high-level perceptions and provides its upper levels with 

the current system configuration. Ultimately, MR provides the 

system with error detection and recovery services. 

IDEA, illustrated in Figure 2, is an agent-oriented architecture for 

distributed autonomy. Contrary to RA in which each layer has its 

internal concept representation, IDEA employs a unique concept 

representation for cooperating agents. The IDEA virtual machine 

is the core of the IDEA agent. It provides the deliberative and 

reactive planning and execution by employing reactive planner, 

plan database and plan runner. The employed components are 

similar to their counterpart components in RA architecture.  

 

Figure 2: The Architecture of IDEA [Muscettola et al. 2002] 



   

Structurally, the IDEA virtual machine integrates the 

planner/scheduler and reactive executive layers of the RA 

architecture. The communication wrapper provides and manages 

the communicational channels among the IDEA agents. The 

Model component shared between virtual machine and 

communication wrapper, sets the formal communication protocols 

among the agents. Each agent can control other agents or be 

controlled by them. In former case, the agent sends its goals in 

formal format to the agents that are being controlled and waits for 

their feedbacks, whereas in latter case, the agent receives the goals 

from controlling agents, plans and executes proper actions, and 

sends the execution feedback to the controlling agent. 

3 Autonomous Migrating Agents 

Schematic of our proposed architecture is shown in Figure 3. It 

consists of two layers including cognitive and executive layers. 

Furthermore, it utilizes a middleware as an interface between 

abstract agent and its embodied counterpart animated by a game 

engine. In this architecture, the components are placed in their 

corresponding layers regarding their operational frequency and 

abstraction level. The cognitive layer is responsible for providing 

cognitive functionalities whereas the executive layer is 

responsible for executing the decisions made by cognitive layer 

and providing the cognitive layer with high level feedbacks. 

Cognitive layer functions in low frequency and high level 

knowledge representation, and plans for long temporal horizons 

whereas executive layer functions in high frequency and deals 

with the current situations in a reactive and soft real-time manner. 

3.1 Cognitive Layer 

Cognitive layer provides the agent with autonomy, and consists of 

three components including mission manager (MM), planning-

scheduling (PS) and knowledgebase (KB). MM contains the 

agent’s goals and feasible actions. It consists of three sub-units 

including goal automaton, goal generator, and action database. 

Goal automaton keeps a network of predefined goals, and is 

defined as a DFA (deterministic finite automaton) A=<Q,Σ,σ,q,F> 

where Q denotes a set of goals, Σ is the evaluation signal 

indicating whether the current goal has been achieved, σ is the 

transition function (i.e. σ:Q×Σ→Q) which determines the priority 

of goals, qϵQ determines the initial goal, and F⊆Q is the set of 

final goals. Structurally, goal automaton is a graph whose nodes 

present the goals, and edges determine the satisfaction criteria of 

corresponding goals. Goal generator functions as the transition 

function of the goal network. In each time step, it evaluates 

current goal and received perceptions in order to determine 

whether the current goal is satisfied. If so, it transforms the goal 

state to a new goal within the goal automaton, and sends the new 

goal to PS, so that it can plan new sequence of actions. In case 

that the goal generator detects the current goal is not satisfied, it 

keeps the current goal as mission objective. Concerning the 

physical constraints of controlled system, there is a limited set of 

valid actions that agent can execute. These feasible actions are 

stored in action database. An action is a high-level abstract 

activity that encapsulates a few low-level sub-actions and consists 

of, some preconditions and effects, estimated execution duration, 

set of sub-actions, and their execution timeline. This abstraction 

scheme dramatically reduces the complexity of planning and 

scheduling processes. Preconditions determine the constraints on 

state variables which must be satisfied in order to an action can be 

executed. Effects determine how the execution of an action affects 

the state variables. Planner relies on information regarding 

preconditions and effects of actions to determine the optimal 

sequence of actions. 

PS plays a crucial role in the proposed architecture. It consists of 

three sub-units including deliberative planner, scheduler and plan 

database. Deliberative planner decides serial or parallel sequences 

of actions fetched from action database for long temporal horizons 

to reach the mission objectives in an optimal trajectory based on 

the perceptions received from executive layer, goals fetched from 

mission manager, and required information by actions from 

knowledgebase. It utilizes a backtracking algorithm with pruning 

strategy to find the best sequence of actions that achieve the 

current goal. The backtracking algorithm constructs a valid and 

optimal sequence based on information regarding the effects and 

preconditions of the actions. It is noteworthy that pruning strategy 

reduces both spatial and temporal complexities, significantly. As 

soon as deliberative planner completes the planning process, it 

sends the action sequence to scheduler, which in turn, determines 

the start time of the sequence. Estimated execution time of each 

action is computed using regression techniques. Using this 

information, scheduler assigns a start time to each action within 

the sequence. Then, the planned and scheduled action sequence is 

inserted into the plan database. In each time step, this temporal 

database retrieves actions regarding their start time and sends 

them to the executive layer, which in turn, executes them.

 

Figure 3: The proposed autonomous architecture for migrating agents 



   

KB component as a profound memory provides the agent with 

knowledge acquired from perception sequence. Essentially, a 

knowledgebase consists of a set of sentences that claim something 

about the world, an updating mechanism, and a knowledge 

extraction engine [Russell Norving 2010]. Our KB consists of two 

sub-modules: fuzzy ontology and search engine. Fuzzy ontology 

represents the concepts, objects, features and their relations based 

on the agent’s perceptional history. The ontology can be 

constructed either in design-time to keep the built-in knowledge, 

or in run-time to automatically capture the knowledge, or in a 

hybrid manner. It utilizes a maintainer as an updating mechanism 

that receives current perceptions from the executive layer and 

compares them with the knowledge represented in the ontology. 

Based on this comparison, it may decide to insert new concepts, 

objects or relations, update them, or even prune the ontology to 

omit the redundancies or inconsistencies. It is noteworthy that 

extending the ontology with fuzzy theory enables the agent to 

model both internal and external uncertainties. We utilize the 

fuzzy ontology proposed in [Hassani et al. 2013 (a)] to design the 

agent’s knowledgebase. Search engine receives queries from PS 

and searches the ontology by applying iterative first depth search. 

Then, it returns the resultant knowledge to PS. 

3.2  Executive Layer 

Executive layer executes the decisions made by cognitive layer, 

monitors the execution process, and provides the cognitive layer 

with high-level feedbacks. As illustrated in Figure 1, this layer 

consists of two main components including state identification 

and estimation unit, and smart executive. The first component, 

state identification and estimation unit is responsible for providing 

the framework with perceptions and estimations. It receives the 

sensory data from the game engine interface and maps it to the 

formal knowledge representation used by cognitive and executive 

layers. In other words, it converts data acquired from agent’s 

virtual or physical sensors to the perceptions cognoscible by the 

agent. In order to complete this task, it utilizes Kalman filters for 

data assimilation and fuzzifiers for data conceptualization. 

Moreover, it can exploit variety of software libraries to perform 

specialized data processing activities such as automatic speech 

recognition, image processing, etc. Therefore, state identification 

and estimation unit enables the agent to deal with a variety of 

sensory data acquired from different sensory channels.  

Smart executive is responsible for executing sequences of planned 

actions within plan database, and monitoring the execution 

process in order to prevent inconsistencies. It consists of two sub-

components including decomposer and reactive planner. 

Decomposer fetches the scheduled action sequences from the plan 

database, assigns a software thread to each of the retrieved 

actions, and starts the threads according to the schedule. Using 

this approach, agent can perform parallel plan execution. As 

aforementioned, each action is an abstract activity that embodies a 

set of low-level activities (i.e. sub-actions). In the beginning of 

execution of an action, it invokes its corresponding sub-actions 

according to a predefined timeline. This timeline is a built-in 

knowledge defined by system experts. Execution of each sub-

action results in an activity in embodied layer (i.e. agent’s avatar). 

Thus, using this hierarchal scheme, abstract decisions are mapped 

to physical manipulations and actuations within the virtual 

environment. Furthermore, decomposer can employ specialized 

software libraries to provide the actions with required facilities 

such as text-to-speech engine. Additionally, decomposer monitors 

the execution to prevent inconsistencies. It compares the current 

states of the system with the expected states predicted by state 

estimation, and in case of any irregularities, it halts the 

inconsistent thread and sends a signal to the reactive planner so 

that it can take a proper action to eliminate the inconsistency. It is 

noteworthy that this architecture can be tailored to different 

embodiments by defining associated actions and perceptions with 

target body in action database and state identification and 

estimation components, respectively. 

4 Experimental Results 

Reliability of our proposed architecture is partially supported by 

evaluation results of its predecessors operating in inter-planetary 

missions. However, for further evaluations, we design a discrete 

event-based 2D world-- the interplanetary world. In this virtual 

world, we define four planets including Earth, Saturn, Neptune, 

and Jupiter. Also, we define four observatory satellites orbiting 

these planets with different velocities. These satellites orbit the 

planets either in a circular or an elliptic orbit. Moreover, two non-

stationary asteroids with linear trajectory are embedded in the 

world. Ultimately, we created a robot avatar to serve as the 

embodiment of the proposed architecture.  

The robot starts from a fixed position called origin and then non-

periodically receives sequences of mission goals. The sequence 

contains some goal and their deadlines. Each goal consists of a 

source and destination satellites, and states that robot should pick 

up a payload from source satellite and transfer it to the destination 

satellite while satisfying the deadline and avoiding the asteroids 

and planets. The robot deliberatively plans and schedules for a 

complete sequence and executes the plans for whole mission. 

However, due to stochastic trajectories of asteroids and noise in 

satellite orbits, it utilizes its reactive planner to tweak the plans in 

real-time. The robot picks up the payload by setting a rendezvous 

with the source satellite and then moves to the destination satellite 

and sets another rendezvous with that satellite to deliver the 

payload. It is noteworthy that due to noisy estimations of 

satellite’s trajectory and stochastic dynamics of asteroids, the 

world provides proper characteristics for evaluating both reactive 

and deliberative behaviors. A sample scene of the simulation is 

shown in Figure 4. The received mission goals containing 

information about source and destination satellites, and the 

temporal deadlines are displayed on mission panel on the left side 

of the simulations. The main simulation panel shows the 

dynamics of satellites, asteroids and the robot in soft real time. 

The agent and environment are implemented in C#.Net 

programming language. 

The agent’s knowledgebase contains the fixed positions of the 

planets, and the equations of dynamics of the position of asteroids 

and satellites. State identification and estimation unit monitors the 

trajectories computed based on these equations and in case of 

inconsistency due to random noise in the environment, it informs 

the reactive planner to correct the trajectory based on estimations 

from state identification and estimation unit. Thus, by defining a 

set of state variables, the proposed architecture can have an 

internal model of the universe it is operating in. It is noteworthy 

that by utilizing machine learning techniques that are devised for 

learning hidden variables such as EM algorithm, it is possible to 

omit the need for defining the state variables directly and let the 

agent itself to extract those variables. Moreover, regression and 

interpolation techniques can be utilized to learn the trajectories of 

dynamic objects within the world. Ultimately, agent can learn the 

optimal policies by exploiting reinforcement learning paradigms.    



   

 

Figure 4: A sample scene of simulation environment

Three actions are explicitly defined in action database. These 

actions include setting rendezvous, moving payload, and avoiding 

asteroids and are shown in Table 1, 2, and 3, respectively. In these 

tables, preconditions, effects and sub-actions of each 

aforementioned action is elaborated.  

Using these three feasible actions, cognitive layer is able to plan 

and schedule series of actions that can satisfy the mission 

constraints. We define two virtual sensors to provide the required 

perceptions. One is the position sensor that indicates the current 

position of the robot. The other one is a virtual vision sensor with 

a specified sight radius that lets the robot to sense its 

surroundings. Using these three actions and two perceptions, the 

proposed agent architecture is able to adapt to the simulated 

environment.  

Table 1: Action of setting rendezvous 

Action identifier: SetRendezvous(Satellite) 

Preconditions: 

            Position: close to orbit 

Effects: 

           Change in payload 

Estimated execution time: T_Rendezvous 

Sub-Actions: 

           Status: Moving 

           Point←EstimatePoint(Satellite)            

           MoveTo (Point) 

           Stop () 

           Status: Fixed 

Table 2: Action of moving payload 

Action identifier: MovePayload(Satellite src, Satellite des) 

Preconditions: 

           Mission: Available 

          Deadline not passed 

Effects: 

           Change in position 

Estimated execution time: #Steps 

Sub-Actions: 

           Status: Moving            

           Find Path (src,des) 

           Move () 

           Status: Idle 

Table 3: Action of avoiding asteroids 

Action identifier: AvoidAsteroid() 

Preconditions:     

            Asteroid in sight 

Effects:                

            Change in direction 

Estimated execution time: T_changeDirection 

Sub-Actions: 

           If (Collision is estimated) 

                Status: Moving 

                ChangeDirection()            

                RefinePlans () 

           Status: Moving 



   

We run the simulations for 1000 times. In each simulation, the 

length of a mission sequences is selected by a random uniform 

distribution in the range of [5,25]. Also, the randomness of the 

environment (i.e. noise in estimating the trajectory of satellites 

and asteroids) is set to the range of [0,1] with the step size of 0.05. 

The first step in evaluating the proposed architecture is to validate 

the coordination and interactions among different units. To do so, 

we utilize timing diagrams to analyze the activation and 

deactivation of units in response to different scenarios. A sample 

timing diagram of the simulations is shown in Figure 5 in which 

vertical axis indicates the components (i.e. FO: fuzzy ontology, 

SE: search engine, PS: planner-scheduler, RP: reactive planner, 

MM: mission manager, SIE: state identification and estimation, 

DE: decomposer). As shown in Figure 5, components function in 

different frequencies. As an instance, because deliberative planner 

and scheduler unit belongs to a layer with more high-level 

activities in comparison with state identification and estimation 

unit, it has lower activation and deactivation frequency. Different 

timing diagrams from different scenarios suggest that there are 

proper interactions among the units.  

In Figure 6, average deliberative and reactive behaviors of the 

agent in response to different length of mission sequences is 

illustrated. In this diagram, the environmental randomness is set to 

0.3. As shown, the average number of activation of deliberative 

and reactive planners are proportional to the length of mission 

sequence. It is noteworthy that in an environment without any 

randomness, average number of deliberative planning for each 

mission sequence regardless of its length will be one (i.e. 

deliberative planner will plan only once for each mission 

sequence), and the average number of activations of reactive 

planner will be zero. On the other hand, as shown in Figure 6, 

with the randomness degree of 0.3 (i.e. 30% noise), number of 

unpredicted situations increases proportional to the length of 

mission sequence. However as depicted, the agent is able to 

deliberate and react, properly. Figure 7 illustrates the average 

number of reactions of reactive planner in order to avoid the 

asteroids and modify the predicted rendezvous coordinates. In this 

scenario, the mission length is set to four and the robot has to 

meet all the satellites. As it is shown, with the randomness of 0.5, 

the reactive planner reacts approximately twice which statistically 

is valid. Moreover, as depicted in Figure 7, average number of 

reactive rendezvous modifications tends to grow faster than 

average number of obstacle avoidance. This is because robot has 

to meet all the satellites, whereas due to existence of only two 

asteroids, robot may never see an asteroid on its path. Thus, there 

is always more chance that robot has to modify its rendezvous 

coordination in comparison with avoiding the asteroids. 

As a conclusion, evaluation results suggest that the agent is able to 

perform both deliberative and reactive behaviors in a way that it 

can reach the mission goals. Also, the results suggest that the 

combination of deliberative and reactive behaviors is 

approximately optimal. 

 

Figure 5: A sample timing diagram of the simulations 

 

Figure 6: Reactive and deliberative behaviors of the agent 



   

 

Figure 7: Reactive behavior of the agent 

5 Conclusion 

In the terminology of multi-agent systems, migrating refers to the 

ability of an agent to morph from one embodiment to another. In 

this paper, we introduced a generic architecture for developing 

autonomous migrating agents inspired by RA and IDEA agent 

architectures that are utilized in inter-planetary space missions for 

providing onboard autonomy. Our proposed architecture provides 

the agent with concurrent deliberative and reactive behaviors. The 

proposed framework lets the developers to tailor the embodiment 

by defining set of possible actions and perceptions associated with 

the new body. Furthermore, the proposed architecture equips the 

agent with necessary components for autonomy such as fuzzy 

knowledgebase and smart executive. In order to validate our 

proposed architecture, we implemented a discrete event simulated 

world. The evaluation results suggest that the architecture is valid 

and consistent, and is able to handle deliberative and reactive 

functionalities, simultaneously. Moreover, it can properly support 

the required parallelism among the processes. Ultimately, the 

simulations suggest that by defining a concise set of feasible 

actions, perceptions and state variables that agent can perform, 

percept and represent required knowledge, respectively, agent can 

move along different embodiments. 

Currently, we are considering four directions for extending this 

research. The first direction is to utilize a mechanical embodiment 

beside the graphical one. In order to do that, we are planning to 

utilize a simple humanoid robot to perform the same tasks as its 

avatar counterpart does. Furthermore, we are planning to apply 

our agent architecture to a complex game scenario and investigate 

it is capability in playing the game autonomously. The third 

direction in this research is to perform a comprehensive user 

studies regarding the identity morphing of the proposed 

architecture. Ultimately, we are planning to exploit online 

machine learning approaches such as EM algorithm for learning 

hidden state variables, regression and interpolation techniques for 

learning the trajectories of dynamic objects within the world, 

reinforcement learning techniques for learning the optimal 

policies, and self-organizing neuro-fuzzy approaches for learning 

the ontology automatically from perception sequence. Using these 

learning schemes renders the need for expert’s knowledge 

obsolete. 
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