
Chapter 5

RTSR Software Tool

5.1 RTSR Overview

Based on the algorithms for the requirement-based regression test reduction using

dependence analysis described in Chapter 3 and Chapter 4, a tool called Regression Test

Suite Reduction (RTSR) has been developed as a part of the Test Suite

Reduction/Generation software tool (TSRG) [17], which is implemented in Sun Solaris

Sparc 5.8 using C++ and Java 2 Platform.

RTSR is built to reduce the number of regression test cases in a given test suite by

employing interaction patterns computed for each test case. For each elementary

modification, during traversal of a test case, three interaction patterns are computed: (1)

affecting interaction pattern, (2) affected interaction pattern, and (3) side-effect

interaction pattern. If the same interaction pattern of a certain type is computed for two

different test cases for an elementary modification, these test cases are considered

equivalent, wrt the elementary modification and the interaction pattern. A test case is

included in the reduced regression test suite if at least one of its interaction patterns does

not exist for any of the test cases in the reduced regression test suite. Figure 5.1 shows the

structure of the RTSR tool.

 75

Parser

Internal Data
Structure of
EFSM (RO)

Internal Data
Structure of
MOD (M)

Construction of RM Construction of SO

RM SO

Construction of SM

SM

Construction of Interaction
Patterns

Construction of RRTS IP file (.rip)

Reduced Regression
Test Suite (.rr.rts)

RTS input file
(.ts) TUT

RTS

EFSM input file
(.efsm)

MOD input file
(.mod)

RTSR Program

Figure 5.1 Structure of RTSR

The RTSR performs the following tasks:

Phase 1: Construction of SDG SO and modified EFSM RM

Phase 2: Construction of modified SDG SM

Phase 3: Generation of Interaction Patterns

Phase 4: Construction of Reduced Regression Test Suite RRTS

 76

 The details of the implementations of these phases are presented in Section 5.4.

Section 5.2 gives the input file formats of RTSR, and Section 5.3 gives the output file

formats of RTSR.

It must be noted that the EFSM parser was developed by Tuong Nguyen to yield

internal data structures EFSM RO and MOD M [28]. The construction of SDG SO was

implemented by Gao Yan based on the algorithm for generating static dependence graph

from an EFSM in [9].

5.2 Input File Formats

As shown in Figure 5.1, RTSR requires three input files: EFSM input file, MOD input

file, and RTS input file. The EFSM input file is a file that represents an EFSM model,

which is given the “.efsm” extension; the MOD input file is a file that represents a set of

elementary modifications, which is given the “.mod” extension; and the RTS input file is

a file that represents a test suite, which is given the “.ts” extension.

In this thesis, the EFSM input file is defined formally below using the Backus-Naur

Form (BNF) [28]. Note that although some constructs of SDL such as set, reset,

procedure are included in this definition, they are not considered in our work.

Table 5.1 BNF Definition of an EFSM Input File

 <efsm> ::=

 efsmId

 numStates startStateIndex exitStateIndex

 <transitions>

<transitions> ::=

 77

 <transition> | <transitions> <transition>

<transition> ::=

 transition transitionId

 sourceStateIndex destinationStateIndex

 <requirement>

<requirement> ::=

 [<input>]

 [<enablingPredicate>]

 /

 [<actions>]

<actions> ::=

 <action> | <actions> <action>

<action> ::=

 <output> | <assignment> | <set> | <reset> | <procedureCall>

<input> ::=

 inputId ([<parameters>])

<output> ::=

 outputId ([<parameters>])

<enablingPredicate> ::=

 <variableIds> [/* BooleanExpression */]

<assignment> ::=

 <variableId> := <expression>

<set> ::=

 78

 set (constant , timerId)

<reset> ::=

 reset (timerId)

procedureCall ::=

 procedure (procedureId (<variableIds> [; <variableIds>])) { <pbrDefs> }

<parameters> ::=

 <parameter> {, <parameter>}*

<parameter> ::=

 <variableId> | constant

<variableIds> ::=

 <variableId> {, <variableId>}*

<pbrDefs> ::=

 <pbrDef> | <pbrDefs> <pbrDef>

<pbrDef> ::=

 <variableId> := <expression> ;

<expression> ::=

 function (<variableIds>) | constant

<variableId> ::= id

 The “.efsm” file for the EFSM of the simplified ATM system in Figure 2.1 is given in

Appendix A.6.

The MOD input file is a set of elementary modifications where each elementary

modification is represented by a modification type and the modified transition. A

 79

modification type is either an addition or a deletion. The MOD input file is defined

formally below in BNF:

Table 5.2 BNF Definition of a MOD Input File

<mod> ::=

 <modTransitions>

<modTransitions> ::=

 <modTransition> | <modTransitions> <modTransition>

<modTransition> ::=

 mtransition mType transitionId

/* mType (addition = 0, deletion = 1, unknown = 2) */

 sourceStateIndex destinationStateIndex

 <requirement>

<requirement> ::=

 [<input>]

 [<enablingPredicate>]

 /
 [<actions>]

<actions> ::=

 <action> | <actions> <action>

<action> ::=

 <output> | <assignment> | <set> | <reset> | <procedureCall>

<input> ::=

 inputId ([<parameters>])

<output> ::=

 outputId ([<parameters>])

 80

<enablingPredicate> ::=

 <variableIds> [/* booleanExpression */]

<assignment> ::=

 <variableId> := <expression>

<set> ::=

 set (constant , timerId)

<reset> ::=

 reset (timerId)

procedureCall ::=

 procedure (procedureId (<variableIds> [; <variableIds>])) { <pbrDefs> }

<parameters> ::=

 <parameter> {, <parameter>}*

<parameter> ::=

 <variableId> | constant

<variableIds> ::=

 <variableId> {, <variableId>}*

<pbrDefs> ::=

 <pbrDef> | <pbrDefs> <pbrDef>

<pbrDef> ::=

 <variableId> := <expression> ;

<expression> ::=

 function (<variableIds>) | constant

<variableId> ::=

 id

 81

 An example “.mod” file for the EFSM of the simplified ATM system in Figure 2.1 is

given in Appendix A.7.

The RTS input file consists of a set of transitions under test, each of which is the

transition related to an elementary modification and a collection of regression test cases.

A test case is a complete sequence of transitions that starts at the start state and ends at

the exit state of the EFSM. The RTS input file is defined formally below in BNF [28]:

Table 5.3 BNF Definition of a TS Input File

 <ts> ::=

 efsmId <tuts> <tests>

<tuts> ::=

 <tut> | <tuts> <tut>

<tut> ::=

 transitionId

<tests> ::=

 <test> | <tests> <test>

<test> ::=

 test testId <transitionSeq>

<transitionSeq> ::=

 transitionId | <transitionSeq> transitioned

 An example “.ts” file for the EFSM of the simplified ATM system in Figure 2.1 is

given in Appendix A.8.

 82

5.3 Output File Formats

RTSR generates two output files: a Reduced RTS output file and an IP output file. The

Reduced RTS file is a file that represents the reduced regression test suite where

redundant test cases have been eliminated. A Reduced RTS file is given the “.rr.ts”

extension and has the same format as the original RTS file.

The IP file is a file that represents a set of interaction patterns wrt each tut. Each

interaction pattern indicates a group of equivalent test cases that result in it. The test cases

are referred to by their test id. The extension of the IP output file is “.rip”. The IP output

file is defined formally below in BNF:

Table 5.4 BNF Definition of an IP Output File

<ip> ::=

 efsmId <tut> <ips>

<tut> ::=

 transitionId

<ips> ::=

 <ip> | <ips> <ip>

<ip> ::=

 <ipType> ipId [<testIds>] <nodes>

<ipType> ::=

 ip_affecting | ip_affected | ip_sideEffect

<testIds> ::=

 testId | <testIds> testId

<nodes> ::=

 83

 <node> | <nodes> <node>

<node> ::=

 node nodeIndex <label> [<adjacencySet>]

<label> ::=

 transitionId

<adjacencySet> ::=

 <reverseSet> | <nonreverseSet>

<reverseSet> ::=

 <reverse> | <reverseSet> <reverse>

<reverse> ::=

 inc sourceIndex <dependencyType>

<nonreverseSet> ::=

 <nonreverse> | <nonreverseSet> <nonreverse>

<nonreverse> ::=

 out destinationIndex <dependencyType>

<dependencyTye> ::=

 dat | ctl | activation | affectingGhostDat | affectedGhostDat | ghostActivation

It is noted that an IP output file distinguishes three types of interaction patterns

according to the ipType, i.e. “ip_affecting”, “ip_affected”, and “ip_sideEffect” that

denote affecting interaction pattern, affected interaction pattern, and side-effect

interaction pattern, respectively. The prefix of ipId “R” denotes that the three types of

interaction patterns are generated for regression testing. An example “.rip” file for the

EFSM of the simplified ATM system in Figure 2.1 is given in Appendix A.9.

 84

5.4 RTSR Tool

RTSR uses EFSM model dependence analysis to reduce regression test suites. We

assume that interactions between EFSM transitions are represented as EFSM

dependencies between transitions. If the same interaction pattern of a certain type is

computed for two different test cases for an elementary modification, these test cases are

considered equivalent, wrt the elementary modification and the interaction pattern. A test

case is included in the reduced test suite if at least one of its interaction patterns does not

exist for any of the test cases in the reduced test suite [19]. RTSR can be broken down

into four phases as mentioned in Section 5.1.

Phase 1: Construction of SDG SO and Modified EFSM RM

Given two input files, EFSM file and MOD file, RTSR concatenates the EFSM file

and MOD file, then analyzes the concatenated file by lexical parser, and forms the EFSM

and MOD internal data structures RO and M, respectively. The SDG SO of the original

EFSM RO can be built using EFSM internal data structure. The modified EFSM RM can

be built using RO and M, which are described in Chapter 3. For example, from the EFSM

input file given in Appendix A.6 and the MOD input file given in Appendix A.7, we can

construct SO and RM. Parts of SO and RM are shown in Table 5.5 and Table 5.6,

respectively. Table 5.5 represents the dependencies existing from transition T1 to

transition T2. Table 5.6 represents the modified EFSM with added transition T9 between

state S2 and S3.

Table 5.5 An Example of Dependencies from T1 to T2

EFSM id: ATM_System

Original Static Dependency Graph (SDG):

 85

 Source node index: 0, Label: T1

 Destination node index: 1, Label: T2

 Number of edges: 3

 List of edges: DType(Data=0,Control=1,CUse=2,PUse=3)

 (Variable, DType, OOrder in def, OOrder in use)

 (pin,0,2,3)

 (attempts,0,3,2)

 (attempts,0,3,5)

Table 5.6 An Example Internal Data Structure of Modified EFSM with Added Transition T9

EFSM id: ATM_System

Label: T9, Internal index: 8

Source state: 2

Destination state: 3

List of variables & occurrences: OType(Def=0,CUse=1,PUse=2)

(OType,Var,TLabel,OOrder)

(1,b,T9,1)

Number of components: 2

List of components:

AType(INPUT=0,OUTPUT=1,ASSIGN=2,SET=3,RESET=4,PRED=5,PROC=6)

Index,Id,AType,List(OType,Var,TLabel,OOrder)

0,Balance,0

1,Print,1,(1,b,T9,1)

 86

Phase 2: Construction of Modified SDG SM

In this phase, we have SO, RM, and M, and can construct the SDG SM of modified

EFSM. The detailed algorithm for constructing SM is described in Chapter 3. A part of SM

which represents the dependencies existing from transition T1 to transition T9 of the

EFSM of the simplified ATM system in Figure 2.1 is shown in Table 5.7.

Table 5.7: An Example of Internal Data Structure of SM

Source node index: 0, Label: T1

 Destination node index: 8, Label: T9

 MType(ADD=0,DEL=1,REP=2,MUK=3): 3

 Related edge: N/A

 Number of edges: 1

 List of edges: DType(Data=0,Control=1,CUse=2,PUse=3,

 AFFNGDA=4,AFFEDDA=5,AD=6,AFFNGGAD=7,AFFEDGAD=8,

 GAD=9,AFFNGCO=10,AFFEDCO=11,DUK=12)

 (Variable, DType, OOrder in def, OOrder in use)

 (b,4,1,1)

Phase 3: Generation of Interaction Patterns

In this phase, we have SM. In order to generate interaction patterns, an RTS input file

is required. As stated previously, an RTS input file, “.ts” consists of a set of elementary

modifications, which is represented by a set of transitions under test (TUT) and a

collection of regression test cases (RTS) where each regression test case (rts) is a

transition sequence starting at the start state and ending at the exit state of the

corresponding EFSM. RTSR extracts TUT and RTS. For each tut, RTSR obtains RTStut

 87

which is the subset of RTS associated with a tut. For each rts in RTStut, three interaction

patterns are computed: affecting interaction pattern, affected interaction pattern, and side-

effect interaction pattern. The detailed algorithm for generating interaction patterns is

described in Chapter 4.

Phase 4: Construction of Reduced Regression Test Suite RRTS

In this phase, a Reduced RTS output file, “.rr.ts” and an IP output file, “.rip” are

constructed. For each elementary modification, we use Pattern1Set, pattern2Set, and

Pattern3Set to store three types of interaction patterns. From Phase 3, for each test case,

we obtained three interaction patterns, namely Pattern1, Pattern2, and Pattern3, which

will be used to reduce the original test suite. If there exists an interaction pattern that is

not in the Pattern1Set, Pattern2Set, or Pattern3Set, we insert this test case into the

reduced regression test suite. RTSR reports the reduced regression test suite in an output

file with “.rr.ts” extension. For each elementary modification, RTSR also identifies sets

of equivalent test cases wrt a certain type of interaction pattern, and report it in an IP

output file with “.rip” extension. For example, consider the addition of transition T9 to

the EFSM of the simplified ATM system (Figure 2.1). The tut is T9 that represents an

elementary modification of adding transition T9. Suppose the regression test suite

contains the following two tests:

Test_1 = T1, T4, T9, T7, T5, T7, T9, T7, T8, and

Test_2 = T1, T2, T4, T9, T7, T5, T7, T9, T7, T8,

A part of RRTS for Test_1 and Test_2 is shown in Table 5.8. A part of IP output file

shown in Table 5.9 represents the case that for transition under test T9, Test_1 and

Test_2 are equivalent wrt the affecting interaction pattern.

 88

Table 5.8: An Example of Reduced Regression Test Suite in RRTS File (.rr.ts file)

ATM_System

T9

test Test_1 T1, T4, T9, T7, T5, T7, T9, T7, T8

Table 5.9: An Example of Affecting Interaction Pattern for T9 in IP Output File (.rip file)

ATM_System

T9

ip_affecting RT9_0 Test_1 Test_2

node 0 T1

node 1 T4

inc 0 dat

node 2 T5

inc 1 ctl

inc 0 dat

node 3 T9

inc 2 dat

inc 1 ctl

inc 0 dat

5.5 Application of RTSR to an Example

We have applied RTSR developed in this thesis to the simplified ATM system of Figure

2.1. The requirements of the simplified ATM system are described in English in

 89

Appendix A.1 [28]. The EFSM model for the simplified ATM system is presented in

Appendix A.2.

Consider adding a balance inquiry transaction to the simplified ATM system, and

deleting the deposit transaction from the simplified ATM system. The added balance

inquiry transaction is represented by transition T9 and the deleted deposit transaction is

represented by transition T6. The modified EFSM model of the simplified ATM system

with added balance transaction and deleted deposit transaction is shown in Appendix A.3.

From the modified EFSM model, the regression test suite is derived and represented in

Appendix A.4.

RTSR accepts three inputs files: an EFSM input file (shown in Appendix A.6), a

MOD input file (shown in Appendix A.7), and an RTS input file (shown in Appendix

A.4). The RTS input file is constructed manually according to the IPO2-df-Chains

coverage criteria [37].

After applying RTSR, the interaction patterns for T9 and T6dummy with the

equivalent test cases wrt a certain interaction pattern are shown in Table 5.10 and Table

5.11, respectively.

Table 5.10 The Interaction Patterns and the Equivalent Test Cases wrt a Certain Interaction Pattern

for T9

Number of
Interaction

Patterns

Interaction Pattern Equivalent Test Cases wrt a Certain Interaction
Pattern (specified by test ids)

1 Affecting Interaction
pattern #1

Test_2, Test_3, Test_5, Test_6

2 Affecting Interaction
pattern #2

Test_7, Test_10, Test_13, Test_46, Test_49,
Test_61, Test_64, Test_76, Test_79, Test_91,
Test_92

3 Affecting Interaction
Pattern #3

Test_8, Test_9, Test_11, Test_12, Test_14,
Test_15

 90

4 Affecting Interaction
Pattern #4

Test_17, Test_18, Test_20, Test_21, Test_22,
Test_23, Test_24, Test_25, Test_26, Test_27,
Test_28, Test_29, Test_30, Test_32, Test_33,
Test_35, Test_36, Test_37, Test_38, Test_39,
Test_40, Test_41, Test_42, Test_43, Test_44,
Test_45

5 Affecting Interaction
Pattern #5

Test_47, Test_48, Test_50, Test_51, Test_52,
Test_53, Test_54, Test_55, Test_56, Test_57,
Test_58, Test_59, Test_60, Test_62, Test_63,
Test_65, Test_66, Test_67, Test_68, Test_69,
Test_70, Test_71, Test_72, Test_73, Test_74,
Test_75, Test_77, Test_78, Test_80, Test_81,
Test_82, Test_83, Test_84, Test_85, Test_86,
Test_87, Test_88, Test_89, Test_90

6 Affected Interaction
Pattern #1

Test_2, Test_3, Test_5, Test_6, Test_7, Test_8,
Test_9, Test_10, Test_11, Test_12, Test_13,
Test_14, Test_15, Test_17, Test_18, Test_20,
Test_21, Test_22, Test_23, Test_24, Test_25,
Test_26, Test_27, Test_28, Test_29, Test_30,
Test_32, Test_33, Test_35, Test_36, Test_37,
Test_38, Test_39, Test_40, Test_41, Test_42,
Test_43, Test_44, Test_45, Test_46, Test_47,
Test_48, Test_49, Test_50, Test_51, Test_52,
Test_53, Test_54, Test_55, Test_56, Test_57,
Test_58, Test_59, Test_60, Test_61, Test_62,
Test_63, Test_64, Test_65, Test_66, Test_67,
Test_68, Test_69, Test_70, Test_71, Test_72,
Test_73, Test_74, Test_75, Test_76, Test_77,
Test_78, Test_79, Test_80, Test_81, Test_82,
Test_83, Test_84, Test_85, Test_86, Test_87,
Test_88, Test_89, Test_90, Test_91, Test_92

7 Side-effect
Interaction Pattern #1

Test_7, Test_8, Test_9, Test_10, Test_11,
Test_12, Test_13, Test_14, Test_15, Test_46,
Test_47, Test_48, Test_49, Test_50, Test_51,
Test_52, Test_53, Test_54, Test_55, Test_56,
Test_57, Test_58, Test_59, Test_60, Test_61,
Test_62, Test_63, Test_64, Test_65, Test_66,
Test_67, Test_68, Test_69, Test_70, Test_71,
Test_72, Test_73, Test_74, Test_75, Test_76,
Test_77, Test_78, Test_79, Test_80, Test_81,
Test_82, Test_83, Test_84, Test_85, Test_86,
Test_87, Test_88, Test_89, Test_90, Test_91,
Test_92

 91

Table 5.11 The Interaction Patterns and the Equivalent Test Cases wrt a Certain Interaction Pattern
for T6dummy

Number of
Interaction

Patterns

Interaction Pattern Equivalent Test Cases wrt a Certain Interaction
Pattern (specified by test ids)

1 Affecting Interaction
Pattern #1

Test_3, Test_12

2 Affecting Interaction
Pattern #2

Test_4, Test_5, Test_7, Test_8, Test_13, Test_14,
Test_31, Test_32, Test_37, Test_38, Test_46,
Test_47, Test_52, Test_53, Test_76, Test_77,
Test_82, Test_83, Test_92

3 Affecting Interaction
pattern #3

Test_6, Test_9, Test_15

4 Affecting Interaction
pattern #4

Test_18, Test_19, Test_20, Test_21, Test_24,
Test_25, Test_26, Test_27, Test_28, Test_29,
Test_30, Test_63, Test_64, Test_65, Test_66,
Test_69, Test_70, Test_71, Test_72, Test_73,
Test_74, Test_75

5 Affecting Interaction
pattern #5

Test_33, Test_34, Test_35, Test_36, Test_39,
Test_40, Test_41, Test_42, Test_43, Test_44,
Test_45, Test_48, Test_49, Test_50, Test_51,
Test_54, Test_55, Test_56, Test_57, Test_58,
Test_59, Test_60, Test_78, Test_79, Test_80,
Test_81, Test_84, Test_85, Test_86, Test_87,
Test_88, Test_89, Test_90

6 Affected Interaction
Pattern #1

Test_3, Test_12, Test_18, Test_24, Test_63,
Test_69, Test_92

7 Affected Interaction
Pattern #2

Test_4, Test_13,

8 Affected Interaction
Pattern #3

Test_5, Test_14

9 Affected Interaction
Pattern #4

Test_6, Test_8, Test_9, Test_15

10 Affected Interaction
Pattern #5

Test_7

11 Affected Interaction
Pattern #6

Test_19, Test_31, Test_34, Test_64, Test_76,
Test_79

12 Affected Interaction
Pattern #7

Test_20, Test_28, Test_29, Test_32, Test_35,
Test_37, Test_38, Test_43, Test_44, Test_65,
Test_73, Test_74, Test_77, Test_80, Test_82,
Test_83, Test_88, Test_89

13 Affected Interaction
Pattern #8

Test_21, Test_25, Test_26, Test_27, Test_30,
Test_33, Test_36, Test_39, Test_40, Test_41,
Test_42, Test_45, Test_47, Test_48, Test_50,
Test_51, Test_52, Test_53, Test_54, Test_55,

 92

Test_56, Test_57, Test_58, Test_59, Test_60,
Test_66, Test_70, Test_71, Test_72, Test_75,
Test_78, Test_81, Test_84, Test_85, Test_86,
Test_87, Test_90

14 Affected Interaction
Pattern #9

Test_46, Test_49

The results of regression test suite reduction for T9 and T6dummy are shown in Table

5.12.

Let

 # RTS denote the number of regression test cases in a test suite,

 # RRTS denote the number of test cases in a reduced regression test suite, and

 % denote the percentage of reduction

Table 5.12 Regression Test Suite Reduction of the Simplified ATM System

TUT #RTS #RRTS %
T9 86 5 94

T6dummy 79 11 86

The results of the above example show that RTSR can be used to reduce the size of

the regression test suite successfully and significantly. For example, for the simplified

ATM system wrt the elementary modifications T6 and T9, a reduction of 86% to 94% is

achieved.

Our example also shows that when applying regression test suite reduction based on

the EFSM dependence analysis, the size of the reduced regression test suite is bounded

by the number of possible interaction patterns associated with modifications.

For example, in the simplified ATM system, the possible number of affecting

interaction pattern, affected interaction pattern, and side-effect interaction pattern wrt T9

are shown in Table 5.13, and the possible number of affecting interaction pattern,

 93

affected interaction pattern, and side-effect interaction pattern wrt T6dummy are shown

in Table 5.14.

Table 5.13 Possible Number of Interaction Patterns wrt T9

Number of Affecting
Interaction Patterns

Number of Affected
Interaction Patterns

Number of Side-effect
Interaction Patterns

5 1 1

Table 5.14 Possible Number of Interaction Patterns wrt T6dummy

Number of Affecting
Interaction Patterns

Number of Affected
Interaction Patterns

Number of Side-effect
Interaction Patterns

5 9 0

Interaction patterns are used to reduce the original test suite. For each elementary

modification, three interaction patterns are computed during traversal of a test case. A

test case is included in the reduced test suite if at least one of its interaction patterns does

not exist for any of the tests in the reduced test suite. Therefore, the minimum size of the

reduced test suite wrt T9 is equal to 5, and the minimum size of the reduced test suite wrt

T6dummy is equal to 9. In the other words, the number of possible interaction patterns

designates the minimum size of the reduced regression test suite regardless of the test

strategy used in the regression test suite generation.

In the next chapter, we present our conclusions, with a summary of contributions and

directions for future research.

 94

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1
	Introduction
	Background
	Contributions of the Thesis
	Organization of the Thesis

	�
	Chapter 2
	Formal Description Languages, Test Construction Methods, and
	2.1 EFSM
	Figure 2.1 An EFSM Model for a Simplified ATM System [19]

	2.2 Test Construction Methods
	2.2.1 Control Flow Oriented Test Selection Criteria
	2.2.2 Data Flow Oriented Test Selection Criteria
	2.2.2.1 Data Flow Related Concepts
	Figure 2.2 Flow Graph Generated from the EFSM of the Simplif
	Table 2.1 def sets and c-use sets in Figure 2.2
	Table 2.2 p-use sets in Figure 2.2
	Table 2.3 Def-use Associations in Figure 2.1

	2.2.2.2 Data Flow Oriented Test Selection Criteria
	Table 2.4 Some Data Flow Oriented Test Selection Criteria
	Figure 2.3 Relationships Among Test Selection Criteria

	2.3 Regression Testing Techniques
	2.3.1 Requirement-Based Regression Testing Strategies
	Figure 2.4 EFSM Model of a Simplified ATM System with Added
	Figure 2.5 EFSM Model of a Simplified ATM System with Delete

	2.3.2 Requirement-Based Regression Test Suite Reduction Tech

	Chapter 3
	Dependence Analysis in the EFSM Model
	Data Dependence
	Figure 3.1 Data Dependence
	Figure 3.2 Data Dependence in the Example EFSM in Figure 2.1

	Control Dependence
	Figure 3.3 Post-Dominance
	Figure 3.4 Control Dependence
	Figure 3.5 Control Dependence in the Example EFSM in Figure

	Static Dependence Graph
	Figure 3.6 Static Dependence Graph (SDG) for the Example EFS

	3.4 Algorithm for Generating the SDG of the Modified EFSM
	3.4.1 Algorithm for Affecting Data Dependence
	Figure 3.7 Affecting Data Dependence
	3.4.2 Algorithm for Affecting Control Dependence
	Figure 3.8 Affecting Control Dependence

	3.4.3 Algorithm for Affected Data Dependence
	Figure 3.9 Affected Data Dependence

	3.4.4 Algorithm for Affected Control Dependence
	Figure 3.10 Affected Control Dependence

	3.4.5 Algorithm for Activation Dependence
	Figure 3.11 Activation Dependence

	3.4.6 Algorithm for Affecting Ghost Data Dependence
	Figure 3.12 Affecting Ghost Data Dependence

	3.4.7 Algorithm for Affected Ghost Data Dependence
	Figure 3.13 Affected Ghost Data Dependence

	3.4.8 Algorithm for Ghost Activation Dependence
	Figure 3.14 Ghost Activation Dependence

	3.5 SDG of the Simplified ATM System with Modified Transacti
	Figure 3.15 EFSM Model of the Simplified ATM System with Add
	Figure 3.16 SDG of the Simplified ATM System with Modified T

	Chapter 4
	Dependence Analysis for Regression Test Suite Reduction
	4.1 Testing the Addition of a Transition
	Figure 4.1(a) Sub-SDG
	of Test_1 with Added Transition
	T9 Marked in Bold
	Figure 4.1(b) Sub-SDG
	of Test_2 with Added Transition
	T9 Marked in Bold
	Figure 4.2 The Affecting Interaction Pattern for Test_1 and
	Figure 4.3 The Affected Interaction Pattern for Test_1 and T
	Figure 4.4 The Side-Effect Interaction Pattern for Test_1 an

	4.2 Testing the Deletion of a Transition
	Figure 4.5(a) Sub-SDG
	of Test_1 with Deleted Transition
	T6 Marked in Dashed Cycle
	Figure 4.5(b) Sub-SDG
	of Test_2 with Deleted Transition
	T6 Marked in Dashed Cycle
	Figure 4.6 the Affecting Interaction Pattern
	for Test_1 and Test_2
	Figure 4.7 the Affected Interaction Pattern
	for Test_1 and Test_2

	Algorithm for Reducing Regression Test Suite
	Algorithm for Generating Interaction Patterns for a Given Te

	Chapter 5
	RTSR Software Tool
	RTSR Overview
	Figure 5.1 Structure of RTSR

	Input File Formats
	Table 5.1 BNF Definition of an EFSM Input File
	Table 5.2 BNF Definition of a MOD Input File
	Table 5.3 BNF Definition of a TS Input File

	Output File Formats
	Table 5.4 BNF Definition of an IP Output File

	RTSR Tool
	Table 5.5 An Example of Dependencies from T1 to T2
	Table 5.6 An Example Internal Data Structure of Modified EFS
	Table 5.7: An Example of Internal Data Structure of SM
	Table 5.8: An Example of Reduced Regression Test Suite in RR
	Table 5.9: An Example of Affecting Interaction Pattern for T

	Application of RTSR to an Example
	Table 5.10 The Interaction Patterns and the Equivalent Test
	Table 5.11 The Interaction Patterns and the Equivalent Test
	Table 5.12 Regression Test Suite Reduction of the Simplified
	Table 5.13 Possible Number of Interaction Patterns wrt T9
	Table 5.14 Possible Number of Interaction Patterns wrt T6dum

	Chapter 6
	Conclusion
	Final Remarks
	Summary of Contributions
	6.3 Directions for Future Research

	References:
	Appendix A: Simplified ATM System
	A.1 Requirements of the Simplified ATM System
	A.2 The EFSM Model of the Simplified ATM System
	A.3 The Modified EFSM Model of the Simplified ATM System
	A.4 Regression Test Suite for the Simplified ATM System wrt
	A.5 Results of Applying RTSR Tool to the Regression Test Sui
	A.6 “.efsm” File for the EFSM of the Simplified ATM System
	A.7 “.mod” File for the EFSM of the Simplified ATM System
	A.8 An Example “.ts” File for the EFSM of the Simplified ATM
	A.9 An Example “.rip” File for the EFSM of the Simplified AT

