
 58

Chapter 4

TSR Software Tool

4.1 TSR Overview

Based on the algorithms for the reduction of requirement-based test suites using EFSM

dependency analysis described in Chapter 3, the Test Suite Reduction (TSR) program has

been developed as a part of the Test Suite Generation/Reduction Software tool (TSGR)

[20], which is implemented in C++ and Java languages and runs on Sun workstations

under Solaris Sparc 5.8. Besides the Test Suite Reduction program TSR, there exists

another part of TSGR called the Reduced Test Suite Generation (TSG) program, whose

function is to generate a small yet effective set of executable test cases such that it

exercises all possible SIPs w.r.t. each requirement under test at least once.

TSR is built to reduce the number of test cases in a given test suite by eliminating

equivalent test cases, according to the definition of either SIP or DIP. TSR is made up of

two sub-programs depending on whether SIPs or DIPs are utilized, namely, STSR

program and DTSR program. STSR stands for SIP-based Test Suite Reduction, which

reduces the number of test cases according to the static interaction patterns. As for DTSR,

it stands for DIP-based Test Suite Reduction, which reduces the number of test cases by

employing dynamic interaction patterns. Figure 4.1 and Figure 4.2 show the structure of

the STSR and DTSR program, respectively.

 59

Figure 4.1 Structure of STSR

Figure 4.2 Structure of DTSR

 60

Basically, STSR and DTSR have the same architecture and performs the following

tasks:

- Phase 1: Construction of SDG;

- Phase 2: Identification of Equivalent Test Cases and Uncovered SIPs;

- Phase 3: Construction of Reduced Test Suite;

It must be noted that Phase 1 was implemented by ASERT Lab members: Tuong

Nguyen and Yan Gao where the EFSM parser developed by Tuong yields internal data

structures which are subsequently used to build an SDG. SDG construction was

developed by Gao based on the algorithm for generating the SDG from an EFSM in [37].

The implementations of these three phases are discussed in detail in Sections 4.4 and

4.5, respectively for STSR and DTSR. Section 4.2 gives the input file formats of STSR

and DTSR, while Section 4.3 gives the output file formats.

4.2 Input File Formats

As shown in figures 4.1 and 4.2, STSR and DTSR require two input files: EFSM input

file and TS input file. The EFSM input file is a file representing an EFSM. In this thesis,

such EFSM files are given the “.efsm” extensions, and are defined formally below using

the Backus-Naur Form (BNF):

Table 4.1 BNF definition of an EFSM input file

<efsm> ::=

 efsmId

 numStates startStateIndex exitStateIndex

 <transitions>

<transitions> ::=

 61

 <transition> | <transitions> <transition>

<transition> ::=

 transition transitionId

 sourceStateIndex destinationStateIndex

 <requirement>

<requirement> ::=

 [<input>]

 [<enablingPredicate>]

 /

 [<actions>]

<actions> ::=

 <action> | <actions> <action>

<action> ::=

 <output> | <assignment> | <set> | <reset> | <procedureCall>

<input> ::=

 inputId ([<parameters>])

<output> ::=

 outputId ([<parameters>])

<enablingPredicate> ::=

 <variableIds> [/* booleanExpression */]

<assignment> ::=

 <variableId> := <expression>

<set> ::=

 62

 set (constant , timerId)

<reset> ::=

 reset (timerId)

procedureCall ::=

 procedure (procedureId (<variableIds> [; <variableIds>])) { <pbrDefs> }

<parameters> ::=

 <parameter> {, <parameter>}*

<parameter> ::=

 <variableId> | constant

<variableIds> ::=

 <variableId> {, <variableId>}*

<pbrDefs> ::=

 <pbrDef> | <pbrDefs> <pbrDef>

<pbrDef> ::=

 <variableId> := <expression> ;

<expression> ::=

 function (<variableIds>) | constant

<variableId> ::= id

An example “.efsm” file for the EFSM of the ATM system in Figure 2.3 is given in

Appendix A.7.

Another input file, TS input file, is a file representing a test suite. A TS file consists

of a set of requirements where each requirement is represented by a transition under test

(tut) and a collection of test cases. A test case is a complete sequence of transitions that

 63

starts at the entry node and ends at the exit node of the EFSM. TS input file have been

given the “.ts” extension. The detailed definition of TS files in BNF is presented below:

Table 4.2 BNF definition of a TS input file

<ts> ::=

 efsmId <tuts> <tests>

<tuts> ::=

 <tut> | <tuts> <tut>

<tut> ::=

 transitionId

<tests> ::=

 <test> | <tests> <test>

<test> ::=

 test testId <transitionSeq>

<transitionSeq> ::=

 transitionId | <transitionSeq> transitionId

An example TS file for the EFSM of the ATM system presented in Figure 2.3 is

given in Appendix A.8.

4.3 Output File Formats

STSR and DTSR each generates two output files: a reduced TS file and an IP file.

The reduced TS file is a file representing the reduced test suite where redundant test cases

have been eliminated. A reduced TS file is given the “.rts” extension and shares the

 64

format of original TS file. The detailed definition of reduced TS files in BNF is presented

below:

Table 4.3 BNF definition of a reduced TS input file

<ts> ::=

 efsmId <tests>

<tests> ::=

 <test> | <tests> <test>

<test> ::=

 test testId <transitionSeq>

<transitionSeq> ::=

 transitionId | <transitionSeq> transitionId

Another output file, IP, represents, for each TUT, two sets of interaction patterns. The

first set consists of unique interaction patterns induced by test cases in a TS input file,

which are either static or dynamic interaction patterns w.r.t. the TUT. Each interaction

pattern comes with a group of equivalent test cases that exhibit it. Each test case is

referred to in the file by its test id. The second set consists of static interaction patterns

w.r.t. the TUT that are not covered by any test case in the original TS file. The extension

of the file depends on the program used. STSR generates a “.sip” file, while DTSR

generates a “.dip” file. The IP file is defined using the Backus-Naur Form (BNF) below:

Table 4.4 BNF definition of an IP output file

<sip/dip> ::=

 efsmId <tut> <ips>

 65

<tut> ::=

 transitionId

<ips> ::=

 <ip> | <ips> <ip>

<ip> ::=

 ip ipId [<testIds>] <nodes>

<testIds> ::=

 testId | <testIds> testId

<nodes> ::=

 <node> | <nodes> <node>

<node> ::=

 node nodeIndex <label> [<adjacencySet>]

<label> ::=

 transitionId

<adjacencySet> ::=

 <reverseSet> | <nonreverseSet>

<reverseSet> ::=

 <reverse> | <reverseSet> <reverse>

<reverse> ::=

 inc sourceIndex <dependencyType>

<nonreverseSet> ::=

 <nonreverse> | <nonreverseSet> <nonreverse>

<nonreverse> ::=

 66

 out destinationIndex <dependencyType>

<dependencyTye> ::=

 dat | ctl

It is noted that an IP output file distinguishes a type of interaction pattern according to

the prefix of ipID i.e., “S”, “D” and “U” denote static, dynamic and uncovered static

interaction pattern, respectively. Examples of “.sip” files for the EFSM of the ATM

system given in Figure 2.3 can be found in Appendix A.9.

4.4 STSR Program

STSR uses static dependency analysis to reduce the size of test suites without

significantly reducing their fault-detection capability. It eliminates repetitive test cases,

i.e. all test cases except one that exhibit the same static interaction pattern. As mentioned

earlier, STSR can be broken down into three phases.

Phase 1: Construction of SDG & Sr

Given the two input files, STSR checks that the test suite belongs to the EFSM

system (e.g., by checking if efsm ids in EFSM and TS files are identical). Then, the

EFSM file is analyzed by lexical and parser utilities of the Unix environment, Lex and

Yacc, to get the EFSM information, classify the variables and their occurrences in each

transition, and form the EFSM internal data structure. Lex generates lexical analyzers.

The code generated by Lex is used to read input characters and produce a sequence of

tokens that a parser can use for syntax analysis. Yacc generates parsers that get the tokens

and fill the internal data structure of the program according to the given grammar. Based

on this internal data structure: control and data dependencies are identified and captured

 67

to build the SDG. For example, from the EFSM input file given in Appendix A.7, the

fragment of internal data structure of the SDG representing the fact that there is a data

dependency from transition T1 to transition T2 is represented here:

Table 4.5 An Example of Data Dependency Representation

EFSM id: ATM_System

Static Dependency Graph (SDG):

Source node index: 0, Label: T1

Destination node index: 1, Label: T2

Number of edges: 3

List of edges: DType(Data=0,Control=1,CUse=2,PUse=3)

(Variable, DType, OOrder of def, OOrder of use)

(pin,0,2,3)

(attempts,0,3,2)

(attempts,0,3,5)

To generate the SDG from a given EFSM efficiently, the algorithm proposed in [37]

is used. The complexity of SDG generation is quadratic in S which is a set of states in an

EFSM [37].

 68

In this phase, besides the construction of SDG, a set Sr of all possible SIPs w.r.t. each

requirement under test r is constructed. In order to construct Sr, the information from

SDG, the EFSM internal data structure and a set of requirements are needed. At this

point, only the set of requirements has not yet been obtained; hence, a TS input file is

now required. As stated previously, a TS input file consists of a set of transitions under

test and a collection of test cases where each test case is a sequence of transitions starting

at the entry node and ending at the exit node of the corresponding EFSM. At this

moment, those sets in the TS input file are extracted to form R and TS which stand for a

set of requirements under test and a set of test cases, respectively. The algorithm to

generate Sr proposed in [37] is used to obtain Sr in this phase.

Phase 2: Identification of Equivalent Test Cases and Uncovered SIPs

In this research, we assume that an individual requirement can be mapped into one

transition in an EFSM so that requirement under test r and transition under test TUT can

be referred interchangeably.

In this phase, an IP output file, “.sip” is constructed from R and TS (obtained from the

previous phase). As mentioned earlier, “.sip” is composed of, for each requirement under

test r, two sets of interaction patterns: a set S'r of SIPs w.r.t. r induced by test cases in TS

and a set of SIPs that are not covered by any test case in TS. The motivation to report

uncovered SIPs is based upon the fact that some static patterns of interactions of the

system under test may remain uncovered by the TS input file. As a consequence, the

reduced test suite obtained in Phase 3 may not be capable of detecting some faults w.r.t. a

TUT. Hence, STSR reports a set of uncovered SIPs w.r.t the TUT in “.sip”.

 69

In order to generate a “.sip” file, STSR, for each r ∈R, constructs a set of SIPs w.r.t. r

induced by test cases in TSr ⊂ TS and a set of uncovered SIPs w.r.t. r as follows:

- Step 1: STSR identifies a set of equivalence classes of transition sequences having

the same SIP w.r.t. the TUT, which is subsequently used in Phase 3 to construct a

reduced TS file.

- Step 2: STSR identifies and reports SIPs w.r.t. TUT that are not covered by any

test case in TS.

Details of the execution of these two steps are given below:

For each transition under test TUT,

/* Step1*/

1. STSR forms a set of test cases (TSr) w.r.t. TUT by extracting those test cases

from the TS file in which the TUT occurs at least once.

2. STSR identifies sets of equivalent test cases in TSr by investigating transition

sequences that exhibit the same static interaction pattern (SIP). Thus, let

TSr(SIPi) be the equivalence class of transition sequences having the same

SIPi. For each transition sequence ts ∈ TSr,

– STSR forms SIPts from ts using SDG obtained in Phase 1. The algorithm

for generating the SIPts from SDG is presented in Section 3.2.1.

– STSR puts ts in TSr(SIPi) where SIPi is equivalent to SIPts. The algorithm

for comparing two SIPs is presented in Section 3.2.2.

– STSR puts SIPi in the set S'r of static interaction patterns for r induced by

TSr.

 70

3. STSR exports all SIPr ∈ S'r (where r corresponds to the TUT) as well as a

group of test cases (referred to by test id) from TSr(SIPr) into “.sip”.

/* Step 2 */

4. STSR inputs a set of all possible SIPs w.r.t. the TUT, Sr.

5. STSR identifies which SIPr ∈ Sr (if any) is not covered by any ts ∈ TSr using

Sr and S'r (obtained in Step 1). The algorithm to identify uncovered SIPr is

presented in Section 3.2.3.

6. STSR reports Sr - S'r by appending such information to “.sip”.

Phase 3: Construction of Reduced Test Suite

In the previous phase, repetitive test cases have already been identified in terms of

equivalent test cases that exhibit the same SIP w.r.t. the TUT. Therefore, reduced test

suite can be constructed by simply selecting randomly one test case of each equivalence

class of transition sequences having the same SIP w.r.t. the TUT. More formally,

let RTS = {ts | ts is a complete sequence of transitions};

RTS ← ∅

for each r ∈ R in the TS file

RTSr ← ∅

for i = 1 to |S′r| do

select randomly one ts from TSr(SIPi) and RTSr ← RTSr ∪ {ts}

end for

RTS ← RTS ∪ RTSr

end for

 71

At this point, STSR has formed the reduced test suite and exported the contents of the

TS file to “.rts” file (including efsm id and set of transitions under test) where the

repetitive test cases have been eliminated.

4.5 DTSR Program

DTSR uses dynamic dependency analysis to reduce the size of a given test suite, without

significantly reducing its fault-detection capability. DTSR implementation is largely

similar to that of STSR, except for some specific details in phases 2 and 3. Those

differences are described here.

Phase 2: Identification of Equivalent Test Cases and Uncovered SIPs

Similar to STSR, DTSR extracts R and TS from the TS input file in Phase 1. Again in

this phase, an IP output file is constructed from R and TS; however, the extension of the

constructed IP file is “.dip” as opposed to “.sip” in STSR.

The difference between STSR and DTSR in this phase stems from the fact that in

DTSR, dynamic interaction patterns are used to define equivalence classes of transition

sequences. Therefore, “.dip” is composed of, for each requirement under test r, two sets

of interaction patterns: a set Dr of DIPs w.r.t. r induced by test cases in TS and a set of

SIPs that are not covered by any test case in TS. The motivation of DTSR to report

uncovered SIPs is based upon two facts: first, the objective of testing (as mentioned in

Chapter 3) is to cover different patterns of interactions w.r.t. each TUT and second, the

number of SIPs w.r.t. each TUT is bounded. Therefore, a complete test suite should at

least cover all static interaction patterns w.r.t. each TUT. Thus, DTSR reports uncovered

SIPs w.r.t. each TUT in “.dip”.

 72

DTSR generates “.dip” using the same principle as is used in STSR to generate “.sip”.

That is, DTSR, for each r ∈ R, constructs a set of DIPs w.r.t. r induced by test cases in

TSr ⊂ TS and a set of uncovered SIPs w.r.t. r as follows:

- Step 1: DTSR identifies a set of equivalence classes of transition sequences

having the same DIP w.r.t. the TUT, which is subsequently used in Phase 3 to

construct a reduced TS file.

- Step 2: DTSR identifies and reports SIPs w.r.t. TUT that are not covered by any

test case in TS.

Details of the execution of these two steps are given below:

For each transition under test TUT

/* Step 1 */

1. DTSR forms a set of test cases (TSr) w.r.t. TUT by extracting those test cases

from TS in which the TUT occurs at least once.

2. DTSR identifies sets of equivalent test cases in TSr by investigating transition

sequences that exhibit the same dynamic interaction pattern (DIP). Thus, let

TSr(DIPi) be the equivalence class of transition sequences having the same

DIPi.

For each transition sequence ts ∈ TSr,

- DTSR forms DDGts from ts using the algorithm for generating the DDGts

for a given ts which is presented in Section 3.3.1

- DTSR generates DIPts from DDGts using the algorithm for generating DIPts

from DDGts which is presented in Section 3.3.2.

 73

- DTSR puts ts in TSr(DIPi) where DIPi is equivalent to DIPts. The

algorithm for comparing two DIPs is presented in Section 3.3.3.

- DTSR puts DIPi in the set Dr of dynamic interaction patterns for r induced

by TSr.

3. DTSR exports all DIPr ∈ Dr (where r corresponds to the TUT) and, associated

with it, a group of test cases (referred to by test id) from TSr(DIPr) into “.dip”.

/* Step 2 */

4. DTSR inputs a set of all possible SIPs w.r.t. TUT, Sr.

5. DTSR identifies which SIPr ∈ Sr (if any) are not covered by any ts ∈ TSr

using Sr and Dr (obtained in Step1). This is based on the fact that for each

transition sequence ts, DTSR maps DIPts into a SIPts by collapsing group of

nodes representing the same transition into a single node.

6. DTSR reports Sr - Dr by appending such information to “.dip”.

Phase 3: Construction of Reduced Test Suite

Just like STSR, DTSR randomly selects one test case from each equivalence class of

transition sequences having the same DIP w.r.t. the TUT. More formally,

let RTS = {ts | ts is a complete sequence of transitions},

RTS ← ∅

for each r ∈ R in the TS file

RTSr ← ∅

for i = 1 to |Dr| do

select randomly one ts from TSr(DIPi) and RTSr ← RTSr ∪ {ts}

end for

 74

RTS ← RTS ∪ RTSr

end for

DTSR thus generates the reduced test suite and places it in the output “.rts” file. This

file shares the format of the input TS file, except for repetitive test cases which have been

removed.

In the next chapter, we evaluate our implementation through four case studies. The

results of these experiments are also presented and analyzed.

