SEG4910/11 — Projet génie
logiciel en fin d’études /

Software Engineering Capstone
Project — 2023 cohort

Course notes
Timothy C. Lethbridge

Some slides derived from notes by Liam Peyton

"
Tim Lethbridge, Ph.D., P.Eng.

Professor at Uottawa; full-time since 1994

Software Engineering

m Usability, software tools, knowledge engineering, code
generation

Former software developer at Nortel and the
Government

Researcher with GM, IBM, Boeing, Ericsson and
smaller companies

- Current research focus:
Model-Oriented Programming (Umple) and UX

Cours Bilingue

m Vous pouvez travailler en francais

m Vous pouvez faire des presentations et les
documents pour le projet en francais

m \V/ous pouvez poser ou répondre aux questions en
classe en francais

En géneral, je communiquerai en anglais car il y
a des etudiants unilingues

Mais si vous me posez une question en francais,
je repondrai en francais

Everything’s online / Tout est en ligne

Brightspace
Videos of sessions / schedule

Microsoft Teams
Course announcements
Chat / video with each team

- Website
http://www.site.uottawa.ca/~tcl/seg4910-11/

Class schedule
These notes (updated for Jan 2023)

http://www.site.uottawa.ca/~tcl/seg4910-11/

" A
Most of you have teams, some have
finalized projects

m \We have been working on projects for 2
months prior to the course

m [f you don’t have a project, see listings on
Microsoft Teams

Contact other students who say they are
looking, and post your own name

Email clients if a project is still available
Direct message students and the prof

" S
One Project — 2 Courses

- 1 Project

customer (meet regularly, once every week or two)

s Type 1. Customer has problem
= Type 2: Open market — customer represents a user in the market

Groups: 2-5 students (possible exceptions)
Typically there is a group leader (can take turns)

Workload: 3-4 weeks per person per semester
n (12 weeks at 12-15h/wk per student)

- Start in 4910, finish in 4911

Must have same project, same customer(s), same group
for both courses, otherwise you have to retake the entire
sequence 4910 /4911

"
SEG4910 attends in the same time
slots as SEG4911

SEG4911 students are finishing their project
SEG4910 will learn from their presentations

Only some timeslots will be used
See the schedule to know when to attend

" S
Team roles / Roles d'equipe

- Shared among students / Partage entre étudiants

Project Manager Gestionnaire de projet
Business Analyst Analyste d'affaires

QA manager Responsable de 'AQ
Architect Architecte

Build Manager Gestionnaire de build
Lead Developers Développeurs principaux

But everybody does some design and coding
tout le monde fait du design et du codage

The Real Customer / Le vrai client

Someone who wants to or would be willing to use the
product after you have finished the project

Quelgu'un qui veut ou serait prét a utiliser le produit une
fois que vous avez termineé le projet

The customer follows the work from concept to
deployment over 2 semesters

Key to Agile approach

m The customer sees and comments on your work every
week or so, hence is ‘on site’ virtually

" I
Deliverables to professor

m ASAP: In your Teams conversation (created when your
team is formed)

Project title and brief description to be approved by the prof

Name and email of customer if you have not selected from the
list of projects provided by the prof

m Week 2 of 4910: Github/Gitlab repo invitation or link
posted to Teams conversation, then project initial
overview in the Wiki

Some leeway will be allowed for groups that show they are
working hard on getting going by communicating to the prof

10

" I
Deliverables to professor

At week 7 and 12: Each individual posts a link in Teams

to a URL listing their commits

By week 7: Each individual has completed self-
evaluation (Prof will send URL)

End semester in 4910; mid semester in 4911:
Presentation(s)

End semester in 4911: Motivational demo

Attending class most weeks (80%) according to
schedule

Ongoing. Commits; PRs; issues; Wiki updates

11

" S
Project initial overview

- Must be finalized by SEG4910 week 2 — on your
wiki or Readme.md

Outline

Team members and their roles

Objectives (benefit to customer, key things to
accomplish, criteria for success)

Expected/anticipated architecture

Anticipated risks (engineering challenges, etc.)
Legal and social issues.

Initial plans for first release, tool setup, etc.

Put the above on the Wiki and privately send me your
customer’s name, title and contact info

m Send by Team channel for your group if channel is set up
12

"
Example recent very successful
projects (1/2)

m Machine learning from network data to detect
malware (several)

m Making dev tools available on the web
m Managing sets of 3D printers

m Analyzing video of sports to automate stats
(company started ... then more 491x)

m An app to help medical specialists diagnose
strokes (used by patients and doctors)

13

" S
Example recent very successful
projects (2/2)

m App to help local farmers distribute produce directly
to consumers

m Co-op navigator mobile app

m Math educational tool

m Crowdsourcing tool for legal cases (3 years)
m Generator of Swagger from software

m Airport information system

m Warehouse robot routing

14

" S
Example recent causes of poor grades
(1/4)

m Working full time at paid employment
(sometimes not even letting teammates know)

m \Writing trivial amounts of simple code

m Not struggling hard to solve a technical problem
("l tried” is not enough in the capstone)

m Not searching effectively online for solutions or
experimenting

15

"
Example recent causes of poor grades
(2/4)
m Stopping work for weeks and blaming midterms
m Trying to catch up at week 8 (or week 10)
m Arguing with clients in an unprofessional way

m Not testing enough, so clients and the prof find
too many problems

m Not trying out enough with real users

m Not polishing the product

16

" S
Example recent causes of poor grades
(3/4)

m Spending weeks trying to learn a language in
depth (best to dive in and learn as you go)

m [rying to get away with letting team-mates do
more than their fair share

m Not delivering what they have promised to
teammates, on time

m [rying to do too much or too little, given team
size

17

" S
Example recent causes of poor grades
(4/4)

m Making beautiful looking graphics ... only

m Not contacting the prof quickly enough when a
problem starts to get out of hand

m Focusing on the business side of a startup, and

not

m Bui

m Ma

producing software

ding something with little innovation

King something that won't realistically be able

to attract any real users

18

" S
Overall grading scheme
Schema de notation global

m FINAL MARK=(Default team grade *
Complexity adjustment factor)
+ |Individual factors

m NOTE_ FINALE=(Note d'équipe par défaut *
Facteur d'ajustement de la complexite)
+ Facteurs individuels

19

" S
Overall grading scheme
Schema de notation global

m Complexity adjustment factor is usually 1.0
or close

m Le facteur d'ajustement de la complexite
est generalement de 1,0 ou proche

m Individual factors are normally O, but can
be positive or negative

m Les facteurs individuels sont normalement
0, mais peuvent étre positifs ou negatifs 2

"
Default team grade (out of 100)
Note d'equipe par défaut (sur 100)

(25%) Customer satisfaction / Satisfaction du client
This is key / C'est la clé

(20%) Professionalism and project management /
Professionnalisme et gestion de projet

(10%) Presentation/demo / Présentation/demo
(25%) Design
(20%)

21

» I
Grades for customer
satisfaction worth 25% (1/2)

5% Problem solved?

m 0= not at all; 1=partly; 2=considerably; 3=mostly;
4=almost fully; 5= fully; 6=exceeds expectations for
quality; 7=exceeds expectations for quality and
functionality

5% Their perception you have been working hard

5% Reaching out and meeting

m Has the whole team met, or tried to meet with customers
regularly?

m Obtaining requirements, testing prototypes

22

" I
Getting grades for customer
satisfaction (2/2)

5% Have you listened to them

m Did you respond to customer input, including explaining
why some things were not done”?

m Have you adjusted the project to meet their needs, as
the requirements change?

5% Concretely delivered
m 4910: Do you have a great prototype?
m 4911 (middle) Do you have a minimum viable product?

m 4911 (near end) Is the product on market or in
production, with knowledge transfer?

23

Grades for design worth 25%

m Have you made design decisions that allow for
flexibility, scaling, security and maintainability?

m Do you have good data schema and APls

m Have you used the right frameworks?

m |s code written well?

m Does it work properly?

m |s the UX good (easy to learn, speedy response,
has needed features, gives good feedback, etc.)

m |s there evidence of enough tests to prove it
works in all reasonable cases?

24

" S
Grades for professionalism and
project management worth 20%

m Have you followed agile process with sprints, testing, etc.

m Have you managed the balance among schedule (fixed),
scope (carefully and quality (must keep high)?

m Has your team collaborated well?

Have you made steady progress including getting going

quickly?

ave you dealt with problems well?

ave you avoided or dealt with any ethical problems?
ave you interacted with the customer well?

ave you stuck to a schedule that allows it to be in

production and maintained by others at the end of semester
27 25

" I
Grades for

m Do you have a good record of requirements at a
basic level?

m Have you recorded meeting minutes and design
decisions (on the wiki)

m Can the prof and others understand your
architecture quickly?

m Is your code well commented?
m Have you participated in class discussion?

26

" S
Complexity adjustment factor
(multiplied by group grade; default 1.0)

m Rewards hard work + ensures you are not trying
to get an easy ride on an overly-simple project

m 1.1-1.2: Exceptional complexity in some of:
architecture, algorithms, number of features,
lines of code, tests, UX challenges, technical
challenges

And good progress has been made
Judged relative to team size

27

" I
Complexity adjustment factor
continued

m 1: Project seems the right size for a team with
each student working 12-15h/week

m 0.7-0.99: Small size; not sufficiently challenging;
not developed far enough

m <0.7: Trivial or considerably incomplete

28

" I
Individual adjustment factors
(added; normally zero)

m A. Up to +10 points: Exceptional individual work
as judged by clients, teammates or professor. No
more than 50% of team members may receive
such marks

m B. Up to +10 points from team members who
have had to work hard to make up for other
members that have lost points from C and D
below

29

" I
Individual adjustment factors

m C. up to -15 points. Student is > 15 days late
delivering critical promised work to the team with
insufficient justification.

Professor must be notified at 10-day point, and will
Impose penalty at 15-day point.

m D. up to -10 points. Quantity and quality of
commits as assessed by the professor and TA
are lower than expected of a 4" year student.

30

"
Individual adjustment factors

m E. -5 each. Missing/late individual deliverables to
the prof (self-evaluation, URL with personal
commits, absent from presentation, excess
absence from class)

m F. -5. Failure to disclose ethical issues (e.g.
conflict of interest, working full time)

31

" S
Aglle work

Use a Git repository
Github (preferred), Gitlab, Bitbucket. Give the prof and TA access

Deliver tests with commits where possible
Use issue tracking for all user stories, features and bugs

Use a Wiki or text files in repo for requirements, design.,
Put meeting minutes, progress logs here
Do not use non-repo files (e.g. Googhle docs)

Use a group communication channel (Teams, or Slack)
Set up automated building where possible

Deliver in increments when commits are ready at intervals
of no more than a month, starting in Week 5 at the latest

Continuous integration
Each person commits their changes and the build runs

32

Eega‘ ‘SSUGS

- Academic Fraud
Using others work without acknowledgement
Misrepresenting results, participation

. 1P

You own your work but can relinquish your ownership
(companies may insist on this)

- Non-Disclosure Agreements
Sometimes needed — discuss with professor

- Paid-For Work

| do NOT recommend it. You must discuss with me.
All team members must be equal

33

Work schedule

. Schedule times each week to work with
your team

Use the timeslots when you are not attending
class

- After the pandemic, you can use project
room on STE 2" floor

| will need to sign a form to get you access

34

" I
A real project driven through to
completion (1)

m Your capstone should be in production
by the time you are done

Being used by the customer for a month or
two at least

Or on the market with several update cycles
and some downloads

m ...With a plan for ongoing maintenance by
somebody

35

" I
A real project driven through to
completion (2)

m This means
Keep it small enough
Focus on high-value requirements

Ensure there is automated testing

Ensure it is
= Maintainable
= Installable
m Flexible
m Usable, etc.

36

" I
A real project driven through to
completion (3)

m You will lose marks at the end if

The project is ‘'sort of done’ but will likely be
abandoned

You only submit a functioning system at the
very last minute without much chance for
people to seriously use it and find new issues

m There can be exceptions for ‘proof of concept’
work, but this must be pre-approved by me and
the customer 37

"
Avoid blindly doing what
customers ‘say’ they want

m Many real requirements emerge ‘in use’ and
through usabillity testing

m Requirements ALWAYS change

m Ask multiple potential users and experts

(including the profs and TAs) and follow their
advice

m Use your creativity and inventiveness to make
your project better and more flexible

38

"
Beware of architectures/ frameworks
that make response time slow

m The ‘'modern web’ isn’'t always the best

m Fast response time is one of the most
important qualities

39

Best Practices Address Root Causes

Root Causes

Insufficient requirements
Ambiguous communications
Brittle architectures
Overwhelming complexity
Subjective assessment
Undetected inconsistencies
Poor testing

Waterfall development
Uncontrolled change
Insufficient automation

Best Practices

Develop iteratively using
agile methods

Manage requirements
using agile methods

Use component
architectures and
frameworks

Model the software visually
— consider Umple

Test driven development

Version control with pull
requests and review

Continuous integration

" I
Iterative Development
Accelerates Risk Reduction

Iterative

Ilteration lteration Iteration Iteration Iteration Iteration Iterationl
T I M E

41

"
Iterative Development
Characteristics

Critical risks are resolved before making large
Investments

Initial iterations enable early user feedback

Testing and integration are continuous

Objective milestones provide short-term focus
Progress is measured by assessing implementations
Partial implementations can be deployed

42

Analysis & lterative Development
SCRUM (Ken Schwaber)

http://www.scrumalliance.org/learn _about scrum

2-4 week sprints (customer releasable), prioritized
feature backlog

See separate slide deck

Extreme Programming (Ken Beck)

3 week iterations, tests and data created and
agreed to by customer before coding begins

43

http://www.scrumalliance.org/learn_about_scrum

"
The Agile Manifesto

http.//agilemanifesto.org/principles.html

- Individuals and interactions over
processes and tools

- Working software over comprehensive
documentation

. Customer collaboration over contract
negotiation

- Responding to change over following a
plan

44

http://agilemanifesto.org/principles.html

Design in an Agile Environment

Some ‘agile’ proponents downplay design

But

Design is not the same thing as
documentation

All the manifesto downplays is comprehensive
documentation

45

" S
How should design be expressed Iin
an agile environment?

What is the minimum the team needs to
properly structure the next sprint?
Use cases/stories & test cases

Ul sketches / storyboards
Class diagrams

APls
Non-obvious Architecture Elements:

. Components, layers, dependencies, patterns and

mechanisms
46

"
Agile Design 2

All of the above for the current sprint only

l.e. don't designh much beyond the current
sprint except the list of user stories (backlog)

Update your design in each sprint
= As you tackle new user stories
= As you refactor

Avoid recording design elements that can be
rapidly found by looking in the code or using
tools

47

" I
Agile Design 3

What information will other software engineers
need when they try to modify your software?

All of the above plus:

= How is the code laid out?
Readme files in each directory
Headings at the top of each file
Possibly: Package diagram with textual descriptions

= How to make anticipated types of changes

Create a high-level ‘developers guide’ for
everything that can’t be put on code

48

"
Agile Design 4

Beware of maintaining design elements that
will have to be changed whenever code is
changed

Storyboards (put in ‘old’ folder after use?)

Use cases (perhaps just keep a list, not
details after they are implemented?)

UML diagrams (can they be generated from
code or can you use a tool that generates
code from diagrams such as Umple)

49

Agile Design 5

As you create or maintain a document (i.e. a
wiki page)
Ask yourself if the effort of creating and
maintaining it is worth it?
= Will anyone actually read it (again)?
Will the cost of deleting it or throwing out

detail be more than the cost of not being able
to find information?

50

Agile Release Management

Key: Releasing something functional to the
user by the end of every sprint

Methods

Test-driven driven development

Managing quality vs. scope vs. time

m Drop features from the release to ensure quality
requirements and deadline are met

51

Agile Release Management 2

Methods continued

Continuous integration
- Every submit to the repository triggers a build

Issuetracking

- With measurement of how well you are doing at
reducing the backlog of bugs

52

" S .,
Cost of corrections

30-70

15-40
10
1 3-6
=

Reqg. Design Code Dev. System Field
test test Operation

53

" I
Example Sources of Defects (1)

Misinterpretation of customer/user real needs
Poor communication / lack of iteration/prototyping

Unanticipated scenarios never accounted for
Changing operating system, dependency version or regulations
Feature interactions
Legal issues, licensing issues

Not considering enough cases
Not enough use cases
Not enough types of data, etc

Shortcuts to save time
Skipping tests, comments, requirements 54

" I
Example Sources of Defects (2)

Hacking or coding without design
Agile development still means being disciplined

Excess complexity
Complex logic
Classes or methods with too many lines

Not understanding code or data before making changes
Weakness in user interface

Bad database / bad class diagram

E.g. Not normalized
55

"
Tracking and continual
Improvement

Have a goal to reduce the number of high priority defects
Track over time
Remove defects before adding features

Data mine for common causes
Improve processes to reduce common causes

Show graphs of accomplishments
Needed by mid-SEG4911

56

