
SEG4910/11 – Projet génie
logiciel en fin d’études /
Software Engineering Capstone
Project – 2023 cohort

Course notes
Timothy C. Lethbridge
Some slides derived from notes by Liam Peyton

2

Tim Lethbridge, Ph.D., P.Eng.
• Professor at Uottawa; full-time since 1994

¨ Software Engineering
n Usability, software tools, knowledge engineering, code

generation

• Former software developer at Nortel and the
Government

• Researcher with GM, IBM, Boeing, Ericsson and
smaller companies

• Current research focus:
• Model-Oriented Programming (Umple) and UX

3

Cours Bilingue ….
n Vous pouvez travailler en français
n Vous pouvez faire des présentations et les

documents pour le projet en français
n Vous pouvez poser ou répondre aux questions en

classe en français

¨En général, je communiquerai en anglais car il y
a des étudiants unilingues

¨Mais si vous me posez une question en français,
je répondrai en français

4

Everything’s online / Tout est en ligne
• Brightspace

• Videos of sessions / schedule

• Microsoft Teams
• Course announcements
• Chat / video with each team

• Website
¨ http://www.site.uottawa.ca/~tcl/seg4910-11/

¨ Class schedule
¨ These notes (updated for Jan 2023)

http://www.site.uottawa.ca/~tcl/seg4910-11/

Most of you have teams, some have
finalized projects

n We have been working on projects for 2
months prior to the course

n If you don’t have a project, see listings on
Microsoft Teams
¨Contact other students who say they are

looking, and post your own name
¨Email clients if a project is still available
¨Direct message students and the prof

5

6

One Project – 2 Courses
• 1 Project

¨ customer (meet regularly, once every week or two)
n Type 1: Customer has problem
n Type 2: Open market – customer represents a user in the market

¨ Groups: 2-5 students (possible exceptions)
¨ Typically there is a group leader (can take turns)
¨ Workload: 3-4 weeks per person per semester

n (12 weeks at 12-15h/wk per student)

• Start in 4910, finish in 4911
¨ Must have same project, same customer(s), same group

for both courses, otherwise you have to retake the entire
sequence 4910 / 4911

7

SEG4910 attends in the same time
slots as SEG4911
• SEG4911 students are finishing their project
• SEG4910 will learn from their presentations

• Only some timeslots will be used
• See the schedule to know when to attend

8

Team roles / Rôles d'équipe

• Shared among students / Partagé entre étudiants
¨ Project Manager Gestionnaire de projet
¨ Business Analyst Analyste d'affaires
¨ QA manager Responsable de l’AQ
¨ Architect Architecte
¨ Build Manager Gestionnaire de build
¨ Lead Developers Développeurs principaux

¨But everybody does some design and coding
¨tout le monde fait du design et du codage

9

The Real Customer / Le vrai client

• Someone who wants to or would be willing to use the
product after you have finished the project

• Quelqu'un qui veut ou serait prêt à utiliser le produit une
fois que vous avez terminé le projet

¨The customer follows the work from concept to
deployment over 2 semesters

¨Key to Agile approach
n The customer sees and comments on your work every

week or so, hence is ‘on site’ virtually

Deliverables to professor
n ASAP: In your Teams conversation (created when your

team is formed)
¨ Project title and brief description to be approved by the prof
¨ Name and email of customer if you have not selected from the

list of projects provided by the prof

n Week 2 of 4910: Github/Gitlab repo invitation or link
posted to Teams conversation, then project initial
overview in the Wiki
¨ Some leeway will be allowed for groups that show they are

working hard on getting going by communicating to the prof

10

Deliverables to professor
n At week 7 and 12: Each individual posts a link in Teams

to a URL listing their commits

n By week 7: Each individual has completed self-
evaluation (Prof will send URL)

n End semester in 4910; mid semester in 4911:
Presentation(s)

n End semester in 4911: Motivational demo

n Attending class most weeks (80%) according to
schedule

n Ongoing. Commits; PRs; issues; Wiki updates
11

12

Project initial overview
• Must be finalized by SEG4910 week 2 – on your

wiki or Readme.md
¨ Outline
¨ Team members and their roles
¨ Objectives (benefit to customer, key things to

accomplish, criteria for success)
¨ Expected/anticipated architecture
¨ Anticipated risks (engineering challenges, etc.)
¨ Legal and social issues.
¨ Initial plans for first release, tool setup, etc.

¨ Put the above on the Wiki and privately send me your
customer’s name, title and contact info

n Send by Team channel for your group if channel is set up

Example recent very successful
projects (1/2)
n Machine learning from network data to detect

malware (several)
n Making dev tools available on the web
n Managing sets of 3D printers
n Analyzing video of sports to automate stats

(company started … then more 491x)
n An app to help medical specialists diagnose

strokes (used by patients and doctors)

13

Example recent very successful
projects (2/2)
n App to help local farmers distribute produce directly

to consumers
n Co-op navigator mobile app
n Math educational tool
n Crowdsourcing tool for legal cases (3 years)
n Generator of Swagger from software
n Airport information system
n Warehouse robot routing

14

Example recent causes of poor grades
(1/4)
n Working full time at paid employment

(sometimes not even letting teammates know)

n Writing trivial amounts of simple code

n Not struggling hard to solve a technical problem
(”I tried” is not enough in the capstone)

n Not searching effectively online for solutions or
experimenting

15

Example recent causes of poor grades
(2/4)
n Stopping work for weeks and blaming midterms

n Trying to catch up at week 8 (or week 10)

n Arguing with clients in an unprofessional way

n Not testing enough, so clients and the prof find
too many problems

n Not trying out enough with real users

n Not polishing the product
16

Example recent causes of poor grades
(3/4)
n Spending weeks trying to learn a language in

depth (best to dive in and learn as you go)

n Trying to get away with letting team-mates do
more than their fair share

n Not delivering what they have promised to
teammates, on time

n Trying to do too much or too little, given team
size

17

Example recent causes of poor grades
(4/4)
n Making beautiful looking graphics … only

n Not contacting the prof quickly enough when a
problem starts to get out of hand

n Focusing on the business side of a startup, and
not producing software

n Building something with little innovation

n Making something that won’t realistically be able
to attract any real users

18

Overall grading scheme
Schéma de notation global

n FINAL_MARK=(Default team grade *
Complexity adjustment factor)

+ Individual factors

n NOTE_FINALE=(Note d'équipe par défaut *
Facteur d'ajustement de la complexité)

+ Facteurs individuels

19

Overall grading scheme
Schéma de notation global

n Complexity adjustment factor is usually 1.0
or close

n Le facteur d'ajustement de la complexité
est généralement de 1,0 ou proche

n Individual factors are normally 0, but can
be positive or negative

n Les facteurs individuels sont normalement
0, mais peuvent être positifs ou négatifs 20

21

Default team grade (out of 100)
Note d'équipe par défaut (sur 100)

• (25%) Customer satisfaction / Satisfaction du client
This is key / C'est la clé

• (20%) Professionalism and project management /
Professionnalisme et gestion de projet

• (10%) Presentation/demo / Présentation/démo

• (25%) Design

• (20%) Communication

Grades for customer
satisfaction worth 25% (1/2)
5% Problem solved?
n 0= not at all; 1=partly; 2=considerably; 3=mostly;

4=almost fully; 5= fully; 6=exceeds expectations for
quality; 7=exceeds expectations for quality and
functionality

5% Their perception you have been working hard

5% Reaching out and meeting
n Has the whole team met, or tried to meet with customers

regularly?
n Obtaining requirements, testing prototypes

22

Getting grades for customer
satisfaction (2/2)
5% Have you listened to them
n Did you respond to customer input, including explaining

why some things were not done?
n Have you adjusted the project to meet their needs, as

the requirements change?

5% Concretely delivered
n 4910: Do you have a great prototype?
n 4911 (middle) Do you have a minimum viable product?
n 4911 (near end) Is the product on market or in

production, with knowledge transfer?
23

Grades for design worth 25%
n Have you made design decisions that allow for

flexibility, scaling, security and maintainability?
n Do you have good data schema and APIs
n Have you used the right frameworks?
n Is code written well?
n Does it work properly?
n Is the UX good (easy to learn, speedy response,

has needed features, gives good feedback, etc.)
n Is there evidence of enough tests to prove it

works in all reasonable cases?
24

Grades for professionalism and
project management worth 20%
n Have you followed agile process with sprints, testing, etc.
n Have you managed the balance among schedule (fixed),

scope (carefully and quality (must keep high)?
n Has your team collaborated well?
n Have you made steady progress including getting going

quickly?
n Have you dealt with problems well?
n Have you avoided or dealt with any ethical problems?
n Have you interacted with the customer well?
n Have you stuck to a schedule that allows it to be in

production and maintained by others at the end of semester
2? 25

Grades for communication
worth 20%
n Do you have a good record of requirements at a

basic level?
n Have you recorded meeting minutes and design

decisions (on the wiki)
n Can the prof and others understand your

architecture quickly?
n Is your code well commented?
n Have you participated in class discussion?

26

Complexity adjustment factor
(multiplied by group grade; default 1.0)
n Rewards hard work + ensures you are not trying

to get an easy ride on an overly-simple project

n 1.1-1.2: Exceptional complexity in some of:
architecture, algorithms, number of features,
lines of code, tests, UX challenges, technical
challenges
¨ And good progress has been made
¨ Judged relative to team size

27

Complexity adjustment factor
continued
n 1: Project seems the right size for a team with

each student working 12-15h/week

n 0.7-0.99: Small size; not sufficiently challenging;
not developed far enough

n <0.7: Trivial or considerably incomplete

28

Individual adjustment factors
(added; normally zero)
n A. Up to +10 points: Exceptional individual work

as judged by clients, teammates or professor. No
more than 50% of team members may receive
such marks

n B. Up to +10 points from team members who
have had to work hard to make up for other
members that have lost points from C and D
below

29

Individual adjustment factors

n C. up to -15 points. Student is > 15 days late
delivering critical promised work to the team with
insufficient justification.
¨ Professor must be notified at 10-day point, and will

impose penalty at 15-day point.

n D. up to -10 points. Quantity and quality of
commits as assessed by the professor and TA
are lower than expected of a 4th year student.

30

Individual adjustment factors

n E. -5 each. Missing/late individual deliverables to
the prof (self-evaluation, URL with personal
commits, absent from presentation, excess
absence from class)

n F. -5. Failure to disclose ethical issues (e.g.
conflict of interest, working full time)

31

32

Agile work
• Use a Git repository

• Github (preferred), Gitlab, Bitbucket. Give the prof and TA access
• Deliver tests with commits where possible
• Use issue tracking for all user stories, features and bugs
• Use a Wiki or text files in repo for requirements, design.,

• Put meeting minutes, progress logs here
• Do not use non-repo files (e.g. Googhle docs)

• Use a group communication channel (Teams, or Slack)
• Set up automated building where possible

• Deliver in increments when commits are ready at intervals
of no more than a month, starting in Week 5 at the latest

• Continuous integration
¨ Each person commits their changes and the build runs

33

Legal Issues
• Academic Fraud

¨ Using others work without acknowledgement
¨ Misrepresenting results, participation

• IP
¨ You own your work but can relinquish your ownership

(companies may insist on this)

• Non-Disclosure Agreements
¨ Sometimes needed – discuss with professor

• Paid-For Work
¨ I do NOT recommend it. You must discuss with me.
¨ All team members must be equal

Work schedule

• Schedule times each week to work with
your team
• Use the timeslots when you are not attending

class

• After the pandemic, you can use project
room on STE 2nd floor
• I will need to sign a form to get you access

34

A real project driven through to
completion (1)
n Your capstone should be in production

by the time you are done
¨Being used by the customer for a month or

two at least
¨Or on the market with several update cycles

and some downloads

n …With a plan for ongoing maintenance by
somebody

35

A real project driven through to
completion (2)
n This means

¨Keep it small enough
¨Focus on high-value requirements
¨Ensure there is automated testing
¨Ensure it is

n Maintainable
n Installable
n Flexible
n Usable, etc.

36

A real project driven through to
completion (3)
n You will lose marks at the end if

¨The project is ‘sort of done’ but will likely be
abandoned

¨You only submit a functioning system at the
very last minute without much chance for
people to seriously use it and find new issues

n There can be exceptions for ‘proof of concept’
work, but this must be pre-approved by me and
the customer 37

Avoid blindly doing what
customers ‘say’ they want
n Many real requirements emerge ‘in use’ and

through usability testing
n Requirements ALWAYS change
n Ask multiple potential users and experts

(including the profs and TAs) and follow their
advice

n Use your creativity and inventiveness to make
your project better and more flexible

38

Beware of architectures/ frameworks
that make response time slow

n The ‘modern web’ isn’t always the best
n Fast response time is one of the most

important qualities

39

40

• Insufficient requirements
• Ambiguous communications
• Brittle architectures
• Overwhelming complexity
• Subjective assessment
• Undetected inconsistencies
• Poor testing
• Waterfall development
• Uncontrolled change
• Insufficient automation

• Develop iteratively using
agile methods

• Manage requirements
using agile methods

• Use component
architectures and
frameworks

• Model the software visually
– consider Umple

• Test driven development
• Version control with pull

requests and review
• Continuous integration

Root Causes Best Practices
Best Practices Address Root Causes

41

Iterative Development
Accelerates Risk Reduction

WaterfallIterative

R

I

S

K

T I M E
Iteration Iteration Iteration Iteration Iteration Iteration Iteration

42

Iterative Development
Characteristics
• Critical risks are resolved before making large

investments
• Initial iterations enable early user feedback
• Testing and integration are continuous
• Objective milestones provide short-term focus
• Progress is measured by assessing implementations
• Partial implementations can be deployed

43

SCRUM (Ken Schwaber)
¨ http://www.scrumalliance.org/learn_about_scrum
¨ 2-4 week sprints (customer releasable), prioritized

feature backlog
¨ See separate slide deck

Extreme Programming (Ken Beck)
¨3 week iterations, tests and data created and

agreed to by customer before coding begins

Analysis & Iterative Development

http://www.scrumalliance.org/learn_about_scrum

The Agile Manifesto
http://agilemanifesto.org/principles.html

• Individuals and interactions over
processes and tools

• Working software over comprehensive
documentation

• Customer collaboration over contract
negotiation

• Responding to change over following a
plan

44

http://agilemanifesto.org/principles.html

Design in an Agile Environment

Some ‘agile’ proponents downplay design
But

¨Design is not the same thing as
documentation

¨All the manifesto downplays is comprehensive
documentation

45

How should design be expressed in
an agile environment?
What is the minimum the team needs to
properly structure the next sprint?

¨Use cases/stories & test cases
¨UI sketches / storyboards
¨Class diagrams
¨APIs
¨Non-obvious Architecture Elements:

• Components, layers, dependencies, patterns and
mechanisms

46

Agile Design 2

All of the above for the current sprint only
¨ i.e. don’t design much beyond the current

sprint except the list of user stories (backlog)
¨Update your design in each sprint

n As you tackle new user stories
n As you refactor

Avoid recording design elements that can be
rapidly found by looking in the code or using
tools

47

Agile Design 3

What information will other software engineers
need when they try to modify your software?

¨All of the above plus:
n How is the code laid out?

¨ Readme files in each directory
¨ Headings at the top of each file
¨ Possibly: Package diagram with textual descriptions

n How to make anticipated types of changes
¨Create a high-level ‘developers guide’ for

everything that can’t be put on code
48

Agile Design 4

Beware of maintaining design elements that
will have to be changed whenever code is
changed

¨Storyboards (put in ‘old’ folder after use?)
¨Use cases (perhaps just keep a list, not

details after they are implemented?)
¨UML diagrams (can they be generated from

code or can you use a tool that generates
code from diagrams such as Umple)

49

Agile Design 5

As you create or maintain a document (i.e. a
wiki page)

¨Ask yourself if the effort of creating and
maintaining it is worth it?
n Will anyone actually read it (again)?

¨Will the cost of deleting it or throwing out
detail be more than the cost of not being able
to find information?

50

Agile Release Management

Key: Releasing something functional to the
user by the end of every sprint

Methods
¨Test-driven driven development
¨Managing quality vs. scope vs. time

n Drop features from the release to ensure quality
requirements and deadline are met

51

Agile Release Management 2

Methods continued
¨Continuous integration

• Every submit to the repository triggers a build
¨ Issuetracking

• With measurement of how well you are doing at
reducing the backlog of bugs

52

53

Cost of corrections

Req. Design Code Dev. System Field
test test Operation

1 3-6

10

15-40

30-70

40-1000

54

Example Sources of Defects (1)
• Misinterpretation of customer/user real needs

• Poor communication / lack of iteration/prototyping

• Unanticipated scenarios never accounted for
• Changing operating system, dependency version or regulations
• Feature interactions
• Legal issues, licensing issues

• Not considering enough cases
• Not enough use cases
• Not enough types of data, etc

• Shortcuts to save time
• Skipping tests, comments, requirements

55

Example Sources of Defects (2)
• Hacking or coding without design

• Agile development still means being disciplined

• Excess complexity
• Complex logic
• Classes or methods with too many lines

• Not understanding code or data before making changes

• Weakness in user interface

• Bad database / bad class diagram
• E.g. Not normalized

Tracking and continual
improvement
• Have a goal to reduce the number of high priority defects

• Track over time
• Remove defects before adding features

• Data mine for common causes
• Improve processes to reduce common causes

• Show graphs of accomplishments
• Needed by mid-SEG4911

56

