
Teaching Introductory
Software Engineering

ASEE&T 2011	

	

Timothy C. Lethbridge
University of Ottawa
tcl@site.uottawa.ca

http://www.site.uottawa.ca/~tcl

Agenda
The course I teach	

	

My experiences and how they shaped my teaching	

	

Key lessons: Keeping attention and fostering affinity for SE	

	

Keeping teaching focused: Areas I suggest to emphasize	

T. Lethbridge	

 ASEE&T 2011 	

 2	

The Course I Teach:
SEG2105 Introduction to SE (link)

A 40-hour course taught in year two of four at the
University of Ottawa	

• Students’ background is two Java courses	

	

Students are in a mix of different degree programs	

• Software Engineering	

• Computer Science	

• Computer Engineering	

• Arts, social science, other engineering: in a minor	

	

Registration: 70 students per course section	

T. Lethbridge	

 ASEE&T 2011 	

 3	

My course is very similar to
Course SE201 of SE2004

http://sites.computer.org/ccse/SE2004Volume.pdf p. 100	

	

Introduction to Software Engineering	

Principles of software engineering: Requirements, design and
testing. Review of principles of object orientation. Object
oriented analysis using UML. Frameworks and APIs.
Introduction to the client-server architecture. Analysis, design
and programming of simple servers and clients. Introduction to
user interface technology.	

T. Lethbridge	

 ASEE&T 2011 	

 4	

SE201 Learning objectives
Upon completion of this course, students will have the ability to:	

•  Develop clear, concise, and sufficiently formal requirements for
extensions to an existing system, based on the true needs of users
and other stakeholders	

•  Apply design principles and patterns while designing and
implementing simple distributed systems-based on reusable
technology	

•  Create UML class diagrams which model aspects of the domain and
the software architecture	

•  Create UML sequence diagrams and state machines that correctly
model system behavior	

•  Implement a simple graphical user interfaces for a system	

•  Apply simple measurement techniques to software	

•  Demonstrate an appreciation for the breadth of software engineering	

T. Lethbridge	

 ASEE&T 2011 	

 5	

Agenda
The course I teach	

	

My experiences and how they shaped my teaching	

	

Key lessons: Keeping attention and fostering affinity for SE	

	

Keeping teaching focused: Areas I suggest to emphasize	

T. Lethbridge	

 ASEE&T 2011 	

 6	

My Experiences 1

I have taught Introduction to Software Engineering since
1991	

• Textbooks in the early years	

— Pressman, Sommerville, Pfleeger	

The ‘rote knowledge’ in the big textbooks went over
students’ heads	

• E.g, teaching modeling using a few examples taught them
very little	

	

T. Lethbridge	

 ASEE&T 2011 	

 7	

My Experiences 2

I recorded	

• Which teaching approaches seemed to work	

• Bad answers and misconceptions I encountered on

exams	

I adapted what I learned into the present materials	

T. Lethbridge	

 ASEE&T 2011 	

 8	

I Wrote My Own Book in 2001 That
Incorporates My Experiences

Lethbridge and Laganiere, “Object-Oriented Software
Engineering: Practical Software Development Using
UML and Java”, 2nd Edition, McGraw Hill, 2004	

http://www.lloseng.com 	

T. Lethbridge	

 ASEE&T 2011 	

 9	

Agenda
The course I teach	

	

My experiences and how they shaped my teaching	

	

Key lessons: Keeping attention and fostering affinity for SE	

1. Build on what students know	

2. Outcomes to avoid	

3. Getting and keeping students' attention	

—  Shock and awe	

—  Mixed mode teaching with 'live' tools &problem solving	

4. Integrating knowledge through experience	

5. Ensuring students feel an affinity for SE	

	

Keeping teaching focused: Areas I suggest to emphasize	

T. Lethbridge	

 ASEE&T 2011 	

 10	

A Key to Good Teaching: Understand What
Students Already Know and Build On It

Students starting my course are moderately competent
programmers (may not be true if SE started in year 1)	

• They know programs have bugs	

— This frustrates them	

• They will be motivated to make better programs faster	

	

Students have all used bad software	

• Slow, unusable, crashes etc.	

— Motivate students to avoid this	

Students know very little about process, testing,
modeling ...	

T. Lethbridge	

 ASEE&T 2011 	

 11	

Outcomes to Avoid

Students learn vocabulary only	

• Exam questions that simply ask them to define terms	

	

Students learn what, but not why and how	

• E.g. syntax of UML but without an ability to apply it
practically	

	

Students think SE is boring and look forward to getting
back to ‘real programming’	

	

Students learn techniques they will never apply	

T. Lethbridge	

 ASEE&T 2011 	

 12	

Key Teaching Methods That Work 1:
Getting and Keeping Students’ Attention

“Shock and Awe”:	

• Disasters caused by software	

— Therac 25, London Ambulance, Ariane 5	

• Recent items in the news, often related to security	

— Playstation Network hacker attaches	

• Massive wastes of money caused by doing things badly	

— E.g. Air Traffic control	

— Useful URLs: 	

-  Lessons From History	

-  Project failures cost Billions	

-  Risks Forum Digest	

	

T. Lethbridge	

 ASEE&T 2011 	

 13	

Key Teaching Methods That Work 1:
Getting and Keeping Students’ Attention – cont.

Mixed mode presentations	

• Powerpoint presented with energy	

— It’s only “evil” if the presenter is boring	

• Blackboard, whiteboard	

— For design, modeling, testing	

— Students help guide what appears	

• Live use of modeling tools, showing generated code	

T. Lethbridge	

 ASEE&T 2011 	

 14	

Mixed-Mode Teaching Demo Using Board
and UmpleOnline: http://try.umple.org

Requirements to model:	

• A theatre has a series of productions; each production

has a set of performances, and tickets are sold for
performances. Performances also have a set of
production staff and actors. 	

• A seat in the theatre is identified by row and seat
number. 	

• A subscriber can purchase tickets to a set of
performances.	

• The theatre records the name, address, phone number
and email address of all people.	

T. Lethbridge	

 ASEE&T 2011 	

 15	

Key Teaching Methods That Work 2:
Integrating Knowledge Through Experience

Practical labs	

• Measuring performance	

• Modifying and existing system in small increments	

• Generating code from a model	

	

A project that includes all steps including requirements,
design, testing and coding	

• Coding is a level of design and is integral to SE	

T. Lethbridge	

 ASEE&T 2011 	

 16	

Key Teaching Methods That Work 3:
Ensuring Students Feel an Affinity for SE

Relate topics to students’ own experience	

• Bad software they have used	

• Their difficulty programming	

Pride in being:	

•  an engineer and/or	

•  a computer professional	

Point out interesting challenges	

• This is not a dry and boring topic	

Anecdotes from personal experience	

• Stories they can relate to and empathize with	

T. Lethbridge	

 ASEE&T 2011 	

 17	

Agenda
The course I teach	

	

My experiences and how they shaped my teaching	

	

Key lessons: Keeping attention and fostering affinity for SE	

	

Keeping teaching focused: Areas I suggest to emphasize	

1. Professionalism	

2. Modeling class and state diagrams	

3. Design principles	

4. Design patterns	

5. Agility	

6. Reusability	

T. Lethbridge	

 ASEE&T 2011 	

 18	

Don’t Try to Teach All Aspects of Each Area

Teach a central subset in depth, with awareness of the
rest	

• E.g.	

— Only the most useful patterns	

— Key design principles	

-  Divide and conquer, low coupling, high cohesion	

— Subset of UML syntax and semantics	

Pareto principle: 80-20 rule	

• You don’t have to teach them everything,	

— Just the 20% that covers 80% of the ground	

— Apply this recursively to subtopics	

T. Lethbridge	

 ASEE&T 2011 	

 19	

Areas of Focus 1: Professionalism

A key factor that distinguishes good engineering	

• Key takeaway knowledge:	

— It’s a legally recognized profession in many
jurisdictions	

— You must take responsibility for safe, secure
operation of the system	

— Examples of things that are not acceptable:	

-  Bugs	

-  Poor usability	

-  Undocumented, unmaintainable code	

— Understanding clients correctly is difficult but key	

— Efficient use of resources is key to engineering	

T. Lethbridge	

 ASEE&T 2011 	

 20	

Areas of Focus 2: Modeling Class and State
Diagrams

Most current practitioners are poor modelers	

• Lack of understanding of semantics and pragmatics	

• They just draw “pretty diagrams” with semantic errors	

	

How to teach properly?	

• Point out typical mistakes (antipatterns)	

• Board work, where students point out solutions	

T. Lethbridge	

 ASEE&T 2011 	

 21	

© Lethbridge/Laganière 2005	

 Chapter 5: Modelling with classes	

 22	

Example: Avoiding unnecessary
generalizations

Inappropriate hierarchy of	

classes, which should be	

instances	

© Lethbridge/Laganière 2005	

 Chapter 5: Modelling with classes	

 23	

Avoiding unnecessary generalizations (cont)

Improved class diagram, with its corresponding instance
diagram	

Example: Class conversation about adding
details to state diagrams

How to add ‘drop course’	

T. Lethbridge	

 ASEE&T 2011 	

 24	

Areas of Focus 3: Design Principles

How to cohesion as ‘organizedness’	

• Analogy: Organizing your house	

— Temporal cohesion: A room for everything used in
the morning; another room for evening things	

— Functional cohesion: All the equipment and
ingredients needed for a recipe kept together, and
everything else kept out	

T. Lethbridge	

 ASEE&T 2011 	

 25	

More on design principles

Coupling as interdependencies	

T. Lethbridge	

 ASEE&T 2011 	

 26	

Areas of Focus 4: Design Patterns

Three types of Patterns:	

• Analysis Patterns	

• Gang of Four	

• Architectural	

T. Lethbridge	

 ASEE&T 2011 	

 27	

Examples of Teaching Patterns and
Antipatterns

T. Lethbridge	

 ASEE&T 2011 	

 28	

Abstraction-
occurrence
pattern	

Example of Architectural Patterns

Show an entire system designed using “pipe and filter”	

T. Lethbridge	

 ASEE&T 2011 	

 29	

Architectural Patterns vs. Design Principles

T. Lethbridge	

 ASEE&T 2011 	

 30	

Area of Focus 5: Agility

Other methods should be downplayed because they fail
too often	

	

Key concepts emphasized:	

• Test driven development	

• Small increments to requirements delivered quickly	

• End-user involvement	

	

How to teach?	

• Story about the origin of “Waterfall”	

• Failures of waterfall	

• Small increments in the labs, with test cases	

T. Lethbridge	

 ASEE&T 2011 	

 31	

Area of Focus 6: Reusability

How to teach:	

• Give them OCSF framework and have them build new

systems using it	

T. Lethbridge	

 ASEE&T 2011 	

 32	

Topics With Focus Reduced to 2-3 Hours

Why downplay them?	

• Students can’t relate to extensive detail	

• Students can only absorb certain key concepts in a first

course	

— They need more motivating experience first to be

able to relate better to the material	

	

Requirements	

Testing	

Project management and process issues	

T. Lethbridge	

 ASEE&T 2011 	

 33	

Topic With Reduced Focus:
Requirements

Examples given early, but how to do it now covered only
half way through course	

• Now taught after modeling	

	

Key concepts emphasized	

• Use cases	

• Alternatives considered and rationale	

• Criteria for reviewing	

T. Lethbridge	

 ASEE&T 2011 	

 34	

Topic With Reduced Focus:
Testing

Key concepts that remain	

• Test driven development	

— The excitement of getting something working	

• Equivalence classes and boundaries	

• The challenge of trying to break the system	

• Wide spectrum of surprising types of test	

— E.g. Testing under heavy load, documentation tests	

T. Lethbridge	

 ASEE&T 2011 	

 35	

Topic With Reduced Focus:
Project Management and Process

Key concepts that remain:	

• The difference between agile and waterfall	

• Surprisingly long list of tasks that the project manager

has to do	

• Ad-hoc doesn’t work: Disasters that result	

• What do key planning tools look like?	

— Gantt and Pert charts	

T. Lethbridge	

 ASEE&T 2011 	

 36	

Topics Currently Covered at the
‘Minimal Awareness’ Level

Formal methods	

• A few examples of OCL	

— Motivate why discrete math is important	

— Point out that this helps ensure programs are correct	

— But deeper knowledge left to later courses	

	

Metrics	

• Only basic performance measurements in the lab	

	

UI Design	

•  It’s my favourite topic, but it deserves its own course	

T. Lethbridge	

 ASEE&T 2011 	

 37	

Conclusions

Introductory SE can be made interesting and relevant	

Keys to good teaching include:	

• Use a variety of teaching tactics including live problem

solving and live tool use	

• Teach a limited number of topics well; don’t try to

“cover it all”	

T. Lethbridge	

 ASEE&T 2011 	

 38	

