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ABSTRACT 

This thesis describes the use of behaviour functions to 

create systems of graphic objects that appear to be behaving 

purposefully. These functions determine the motion of an 

object based on the positions and velocities of all the ob-

jects in its environment. 

A mathematical framework is presented that relates 

classes of rules to the type of behaviour the objects are 

perceived to take on. Functions using just the positions of 

objects at the previous time interval can model pushing, 

pulling, approaching, retreating and tendency to maintain 

distance. When the second preceding time-step is used, se-

veral other important fundamental types of response can be 

achieved. Sophisticated behaviour such as chasing, pouncing 

and fish schooling can be created by combining the more sim-

ple responses. 

A software system is described that, in real-time, con-

trols the movement of a number of objects on the screen ac-

cording to behaviour functions described in terms of a 

simple language. 
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Chapter 1. 

INTRODUCTION 

The word animation has two main meanings; it can mean a mo-

tion picture produced from a series of images, each repre-

senting a small advancement in the action, or it can refer 

to the general quality of vivacity or liveliness. This the-

sis is concerned with both senses: A technique of animation 

is described that is useful and applicable to the creation 

of all types of animated motion picture, however special 

[emphasis is placed on those animations that move with 

intentiona Iity or life-like actions. 

In effective animation, viewers receive the psycho-

logical impression of animacy when they are in fact seeing 

|the simple movement of geometric shapes on a screen. We may 

[perceive, for example, one object 'kicking' another around, 

feven though both shape and motion may be quite simple. In 

[conventional animation, this perceived intentionaIity is 

t»chieved through the skill and intuition of the animator who 

jaust achieve the behaviour by specifying the positions of 

[all parts of the scene in a succession of time frames. The 

[computer can aid many aspects of the animation process, but 

fthe animator's judgement usually remains an essential ele-

ment. 

- 1 -



The behaviour-function technique presented in this the-

sis enables the animator to tell objects how to behave, 

rather than just where they should be, thus allowing him to 

concentrate his creative energy at a higher level and be 

potentially far more productive. The concept of behaviour 

functions is that objects move by responding continuously to 

the various objects in the environment -- the primary objec-

tive of this thesis is to find behaviour functions that 

would be useful to animators. 

In the remainder of this chapter, a look is first taken 

at animation in general; then several research studies with 

relevance to behaviour function animation are summarized. 

During this discussion, comments are made about the rele-

vance of the research to behaviour function animation and 

the implementation created for this thesis, PAM (Perceived 

Animate Motion). In subsequent chapters, the concept of 

behaviour functions and the current implementation is de-

scribed in detail, after which findings regarding classes of 

simple behaviours are outlined. 

Motion picture animation had its beginnings in the 19th cen-

tury with the invention of several mechanical devices that 

1.1 AN OVERVIEW OF TRADITIONAL ANIMATION 



displayed rapid sequences of images.1 Animated films were 

first produced starting in 1906 and techniques were con-

tinually refined over the subsequent decades. It was in the 

1930's, however, when animation became big business by the 

work of Walt Disney -- the first full-length commercial ani-

mated cartoon being Snow White and the Seven Dwarfs. 

Today, animation is everywhere. We see it most fre-

quently in entertainment both on television and in the mov-

ies -- it is used for entire films or just for special 

effects. Industry and government make extensive use of ani-

mation for marketing, mass communication and education. It 

is also useful for research where it is applied to 

simulation.2 

The complete process of producing a traditional ani-

mated film is too complex to describe in detail, but some 

fundamental elements are worth mentioning. The story is 

first successively refined in a hierarchical series of 

documents3. After the sketches of the characters and back-

ground setting have been decided upon and the sound-track 

has been recorded, the animation-process proper begins. A 

master animator draws key frames -- significant points in 

1. Magnenat-ThaImann and Thalmann 1985 p. 11 

2. Ibid. p. 12 

3. Ibid p. 4-5. 



the action. Assistant animators draw some of the in between 

images and the remaining frames are created by so-called 

' in-betweeners'. Once the drawings are complete, the images 

are painted ready for shooting. The shooting process can be 

quite complex, with series of images being moved over vari-

ous levels of background. The final stage is postproduction 

where sequences, are assembled, edited and synchronized with 

sound before release prints are made. 

The computer has been used as an aid in virtually all as-

pects of the animation process.4 Numerous systems have been 

developed with the animation artist in mind. Also, languages 

have been developed that allow the full power of computers 

to be exploited for various special effects. There is a de-

bate between advocates of interactive animation systems and 

advocates of languages -- the issue being ease and natural-

ness of use versus flexibility and power. 

Magnenat-ThaImann and Thalmann describe two fundamental 

classes of system: computer-assisted (key-frame) animation 

and modelled animation. Computer-assisted animation has two 

levels of complexity: level 1 systems are merely graphics 

editors for drawing and painting key-frames; level 2 systems 

4. Ibid p. 13-17 
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compute the in-between images, moving objects along defined 

paths between two key-frames. Modelled animation systems al-

low for the, "manipulation of more general 

representations."5 Modelled systems are conceptually broken 

down into three levels above computer-assisted systems. 

Level 3 systems provide operations such as scaling, rotation 

and virtual camera movements, level 4 systems provide actors 

that move on their own based on constraints or rules, and 

level 5 systems, as of yet undeveloped, would incorporate 

learning and intelligence into the animation process. 

Level 4 systems are at the forefront of research; the 

PAM system designed for this thesis is such a system al-

though it is only experimental and lacks many features typi-

cal of a modelled system. Magnenat-ThaImann and Thalmann 

discuss several modelled systems6 termed object-oriented or 

actor systems. An object-oriented animation system is one 

where the programming emphasis is on the movements and 

interactions of individual objects rather than the environ-

ment as a whole. Many of the higher-level animation systems 

are written in the Smalltalk language as this treats all en-

tities as objects which interact by sending messages. The 

concept of 'actors' was developed by Hewitt7 who, along with 

5. Ibid p. 14 

6. Ibid. pp. 135-164 

7. Hewitt et al. 1973 



Greif8, defined 'behaviours' in terms of the actions taken 

in response to transmissions from other objects. The concept 

of behaviour function animation developed in this thesis is 

somewhat different, as is the concept of actors. In the work 

of this thesis, actors conceptually respond continuously --

all movements are calculated responses -- whereas in previ-

ous object-oriented systems, patterns of movement are 

changed at irregular time intervals when messages are re-

ceived. Our behaviours are continuous patterns of action 

that may develop and change over time as opposed to actions 

taken in response to a particular event. Actors in previous 

object-oriented systems might be imagined as blind, guided 

around by what they can learn by talking to other objects; 

our actors, on the other hand, can see! 

Another class of systems that could be classed as level 

4 systems are constraint-oriented systems. An example of 

such a system although not specifically intended for ani-

mation, is Thinglab9. Such systems operate based on a set 

of rules or equations that must be satisfied at all times. 

Like behaviour-function systems they must check their 

environment at every time step. They must iterate towards 

some 'solution' to the constraints, therefore exhibiting 

some behaviour. The rules controlling objects in a 

8. Greif and Hewitt, 1975 

9. Borning 1986 



behaviour-function system are not constraints, allowing a 

much wider set of available behaviour. 

Most of the level 4 systems currently implemented were 

designed as experimental prototypes of systems that could be 

used for production. Most of the differences among these 

systems are in the ways they allow for the description of 

higher level object and actions. For example, such a system 

may be able to define hierarchical objects, actor behav-

iours, camera movements and light sources into procedures 

with parameters and other variables. This thesis is only in-

tended to study behaviour functions in a low, detailed 

level; it is not intended to create a production-type sys-

tem . 

Several other technological considerations are also 

important in the categorization of computer animation sys-

tems. One consideration is whether the system is designed to 

produce animation in real time or frame-by-frame; a second 

consideration is the realism that the system is capable of 

producing. These two considerations conflict with each other 

since a real-time animation system (such as a video-game), 

typically single-user and microprocessor based, does not 

have the computational power to produce great realism. 

Magnenat-ThaImann and Thalmann 1 0 outline many realism issues 

10. Magnenat-ThaImann and Thalmann 1985 p. 79-130 
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and techniques such as hidden-surface elimination, 

reflectance, shading, transparency, texture, shadows, anti-

aliasing and human modeling. The PAM system is not concerned 

with any of these things. It is designed for real-time or 

near-real-time operation and attempts to present realism of 

movement, not image realism. 

When a behaviour pattern is displayed on a screen, what is 

important is its perception on the part of the observer, not 

the abstract movements themselves. When attempting to 

synthesize behaviour, it is therefore desirable to know the 

classes of simple motions and interactions to which humans 

would attach higher-level meanings at a subconscious level, 

and the variations and limits on these classes of motion 

that would still yield such impressions. Armed with findings 

about fundamental effects, we should be able to generate 

more complex effects. 

Among the phenomenoIogicaI effects discussed in the 

literature are causality, intentionaIity and animacy. The 

impression of causality is the impression that one action 

caused another -- the actors could appear totally inanimate. 

IntentionaIity refers to the impression that an object 

purposefully performed some action. Animacy is less clearly 

defined -- the impression of animacy has much in common with 

1.3 MICHOTTE'S WORK ON PERCEIVED CAUSALITY 



the impression of intentionaIity, but might be regarded as a 

broader term encompassing any impression of life-like activ-

ity ('animation' in its sense of vivacity or liveliness). 

A major work in the perception of causality is by 

Michotte. 1 1 Michotte studies two psychological effects in 

depth: 'launching' and 'entraining'. Both of these effects 

are described in terms of the 'ampliation' of movement, 

which is the "extension of a movement from one object onto a 

second, in such a way that it remains the movement of the 

first object while bringing about the 'displacement' of the 

second." 1 2 

The launching effect occurs when one object impacts an-

other and sets the second object in motion, the whole motion 

being regarded as that of the first object. As with most of 

the effects Michotte defined, an optimum range of speeds was 

found in which subjects reported this effect -- if the first 

object moves too fast or too slowly, the effect is weaker or 

nonexistent. A time-lag between impact and the start of 

movement of the second object was also found to be signif-

icant. As the halt-time increases the effect changes from an 

impression of continuous movement to an impression an object 

is 'caught' on something, to an impression of a movement in 

11. Michotte 1963 

12. Ibid. 
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two stages, to an impression of two separate movements. An-

other example of a modification in this effect occurs with a 

change in the ratio of the speeds of the two objects: if the 

second object moves off much faster than the first object 

approached, then a 'triggering* effect is reported where the 

ampliation is cut short. 

Michptte's second major effect, entraining, involves 

the impact of one object into a second after which both ob-

jects move off at the same velocity. Like launching, 

Michotte identified many modifications to this effect given 

special conditions. 

One particularly interesting result from Michotte is 

his finding regarding the impression of animal (as opposed 

to animate) movement. If one perceives animal movement, one 

perceives that an object is moving under its own power. 

Michotte reports that for such an impression, it is neces-

sary that a change in shape be followed by a forward move-

ment -- by way of ampliation, the change in shape becomes 

the forward movement. This, in fact, seems quite intuitive 

since it would be hard to imagine an unchanging object mov-

ing with a steady speed and direction as having any animal-

like quality unless its shape were changing (••g- the 

contraction and extension of a caterpillar). Although it 

would be possible to build change of shape into a gener-

alized behaviour function animation system, the inves-
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fcigations in this thesis and the PAM implementation only 

involve the motions of unchanging objects. Due to this, when 

the movements of animals are simulated, the emphasis is on 

interaction of several actors as opposed to the locomotion 

of a single actor. The objective is to obtain impressions of 

'animacy' from these interactions. If change of shape were 

introduced to add Michotte's 'animal movement,' the im-

pression of animacy might be enhanced. 

Marion, Fleischer and Vickers 1 3 outline five requirements 

they feel necessary for an animation system to effectively 

elicit impressions of animacy in observers. They derive 

their conclusions from work in psychology (including 

Michotte), animation, dance and related areas. Certain con-

cepts are not well structured by Marion et al: For example 

one of their five requirements for animacy, intentionaIity, 

is an impression that has its own sub-requirements, while 

the other four requirements are attributes of the motion. 

It would seem reasonable to handle the sub-impression of 

intentionaIity, a property of the perceiver, separately from 

the properties of the stimuli and actors, but this is not 

done in Marion et al. Also, they fail to define animacy, 

the very concept for which they are attempting to classify 

13. Marion, Fleischer and Vickers, 1984 

1.4 NECESSARY INGREPIENTS_FOR THE IMPRESSION OF ANIMACY 
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requirements. Nevertheless, the work of Marion et al. is 

the only broadly-encompassing research in the field and is 

therefore discussed here. 

IntentionaIity is the perception that Marion, Fleischer 

and Vickers identify as a requirement for the perception of 

animacy. They admit that detailed work is needed to deter-

mine the precise circumstances which evoke feelings that an 

object has intentions in its actions, but do indicate se-

veral circumstances that appear to heighten this impression. 

In particular they mention apparent violation of Newton's 

laws, systems too complex to understand and systems where 

goals are modelled. Behaviour function animation certainly 

allows for the first two circumstances: for objects to vio-

late Newton's laws is more the norm than the exception in 

any animation system unless constraints are applied. 

Complexity is easily achieved because the number of possible 

slight differences in interactions mounts rapidly as addi-

tional freely moving objects are added to a behaviour-

driven system. The modelling of goals, however, is not 

inherently part of the behaviour function concept since, in 

general, objects would be expected to move around with fixed 

behaviours fid._in,finitumA Goals in behaviour function ani-

mation would only be achievable if 'traps' were set that 

would prevent particular behaviours once a particular 

circumstance has occurred. 
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Dependent and independent motion is the second animacy-

inducing factor identified by Marion et al. For this it is 

necessary for objects to influence each other in varying de-

grees. This factor is unavoidable in behaviour- function 

animation since movements are defined in terms of inter-

object influence. 

Marion, Fleischer and Vickers' third requirement for 

animacy is temporal phrasing. This refers to the possibility 

of breaking down a larger behaviour into distinguishable 

units. Two types of temporal phrasing can be considered, 

sequential and hierarchical. In the sequential type, one 

behaviour changes to another at a certain point in time, 

presumably due to some change in stimulus. In hierarchical 

temporal phrasing a higher-level ongoing behaviour, say 

walking along a street, can be seen to be composed of lower-

level behaviours such as movements of arms or legs. In 

behaviour function animation, sequential temporal phrasing 

would be naturally present due to changes in behaviour as 

objects move among stimuli. Hierarchical temporal phrasing, 

although achievable with behaviour-function animation, is 

most often attached to hierarchically described objects. 

Since only simple objects are to be considered in this the-

sis, little attempt is made to obtain the latter kind of 

temporal phrasing. 
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Another important quality found to yield animacy is 

exaggeration, which is achieved by increasing the contrast 

between two objects' behaviours. Exaggeration itself gives 

rise to impressions of humour or enthusiasm which are only 

attributable to animate objects. 

The final factor considered to be prerequisite for 

animacy is lack of repetition. Marion, Fleischer and Vickers 

suggest that the injection of randomness into a system is 

necessary to achieve this objective. However it is desirable 

to avoid random variables because they add complexity and 

make mathematical models less easy to define, and it is 

possible that they may not even be necessary. From the 

mathematics of chaos we know that for a system of even mini-

mal complexity, the process of feeding back outputs into in-

puts results in sequences that in general do not repeat; as 

it happens, this is exactly what is going on in behaviour 

function animation when the status of objects as a result of 

previous behaviours is used in the computation of current 

behaviour. 

In addition to concerning themselves with the qualities 

of interaction and movement that might yield animacy, 

Marion, Fleischer and Vickers turn the question around and 

propose four features necessary in a software system that is 

to display animate objects. Three of these features -- log-

ical relationships between objects, separation of motion and 
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object representation, and parameterization of the motion 

description -- are naturally part of the behaviour function 

concept. The fourth feature, hierarchy of motion de-

scription, can be achieved explicitly by the animator by de-

fining behaviours such that a given object responds 

primarily to an object considered to be at the next higher 

level in a h i e ra rchy. 

This concept of feedback producing animate behaviour is made 

use of by Braitenberg1 4 whose work was recently discussed in 

Sci§nt|fis_AfflS£iSlQ 1 5 - Braitenberg calls his concept 

'synthetic psychology.' He works with simple 'vehicles' that 

are composed of rectangular blocks with light sensors con-

nected to wheel motors. Several methods of interconnection 

are described, but they are all very simple. The vehicles 

are released on a plain whose monotony is broken only by 

occasional light bulbs. The vehicles move around on the 

plain, however different vehicles exhibit different behav-

iours depending on how the light sensors are connected to 

the motors. In one case the effect of turning towards a 

light bulb might lead to a stronger attraction to the light 

bulb. As this process continues, the object might accelerate 

14. Braitenberg 1984 

15. Dewdney 1987 

1.5 BRAITENBERC'S VEHICLES 
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towards the bulb, eventually destroying it. Instead of this 

'aggressive' behaviour, the simple wiring of other objects 

might lead to 'love', 'timidity' or a wide variety of other 

animate behaviours. 

Braitenberg's approach is, in essence, very similar to 

the one developed here, except that using computer graphics 

and simulation as opposed to mechanical devices is far more 

flexible and allows more freedom for exploration. 



Chapter 2. 

FRAMEWORK FOR BEHAVIOUR FUNCTION ANIMATION 

This chapter presents the formal specifications for behav-

iour functions. Several additional concepts are defined that 

have been found useful for the refinement of the behaviour 

function concept; these are partial responses and sub-

responses. Factors are also introduced that allow for the 

classification of behaviour functions and responses. 

The micro world which is considered in this thesis is a 

graphical environment with n distinct objects. Several 

characteristics of each object are defined; of particular 

importance is the position vector, g . . of a given object i 
1,1, 

at t i me t. 

We define a behaviour function B. as a function which 

determines the velocity vector (change in position) of an 

object over a discrete time interval. At time t, the behav-

iour returned by function B. is velocity v. . . The new posi-

tion of object i is calculated as: 

B = E + v (Eq. 2.1) 
i,t i,t-1 i , t 

- 17 -
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The set of behaviour functions we are concerned with 

are those for which the velocity of an object i at time t is 

a function of the positions of all the objects in the 

environment, including itself, at times t-1, t-2 ... t-k for 

some finite number, k, of previous intervals. Thus, 

v * B ( e , B 
i.t i l.t-1 l.t-2 

B . e 
2,t-1 2,t-2 

l.t-k. 

2,t-k. 

n,t-l n,t-2 
C ) (Eq- 2.2) 
n , t-k 

In the investigation reported here we have restricted 

ourselves to behaviour functions where k is at most 2. In 

other words, the positions of objects at times t-1 and t-2 

are the only variable inputs to the functions. From a prac-

tical point of view these functions are the most interesting 

in that the overhead of storing the previous states of the 

system is minimized. A major goal of this research is to 

discover whether a rich and interesting variety of behaviour 

is available within this limitation. 



Every object in an environment exists both as a stimulus, 

provoking the behaviours of the other objects and as an ac-

tor, behaving in response to its environment. For concep-

tual simplicity we found it necessary to define a set of 

'partial response functions' R • ., which determine the par-

tial response of each actor to each stimulus. We have used 

the term partial response rather than behaviour because the 

partial response is only a tendency to behave; partial re-

sponses to other objects must be combined at a higher level 

to determine behaviour. We can express this set of partial 

response functions as a matrix in which each object appears 

twice, once as an actor a^, and once as a stimulus s•. 

s 1 s 2 "* • sn 

• ! IRi i R 

a2 

1,1 "1,2 

R2,l R2,2 

Rn,l Rn,2 

. R 

l,n 

2,n 

. R n ,n 

The labels on the columns and rows of the matrix iden-

tify stimulus and actor objects respectively. The elements 

of the rows are the partial responses of a given actor to 

each of the stimuli in its environment -- the entire row re-

presents the elements of the actor's behaviour function. In 

2.2 PARTIAL RESPONSE FUNCTIONS 



practice, many elements of this matrix may be zero, meaning 

that an actor never responds to a given stimulus -- where an 

entire row is zero, the object would be static and act as a 

stimulus to other objects only. The fact that the behaviour 

matrix is square means that the computational complexity of 

behaviour-function animation is inherently 0(n 2) -- in prac-

tice this worst-case is reduced by the presence of zeros 

making the matrix sparse. 

At a higher level the organism must select among the 

various stimuli in its environment and decide which are to 

be responded to at a given instant. In principle the func-

tion combining partial responses to form the complete behav-

iour could be of arbitrary complexity. We chose, for the 

sake of simplicity, to sum the values returned by the par-

tial response functions. Thus, the subset of functions we 

have studied most extensively considers the complete behav-

iour as the sum of the independent responses, R n- -j, to each 

object. The behaviour function B^ in this subset can there-

fore be expressed as: 

Y. = £ R (B , B • B . B ) 
i,t j=l i.j i.t-1 i,t-2 j,t-l j.t-2 

(Eq. 2.3) 

where the object i is the actor and the objects j are the 

sti mu I i . 



Thus far we have introduced a two-level hierarchy where a 

behaviour function is made up of a number of partial re-

sponse functions, designating the response of an object to 

each other object in its environment. In fact we found it 

necessary to subdivide even further so that partial re-

sponses were themselves composite functions consisting of 

'sub-responses'. 

The idea of a sub-response can easily be given by an 

example: Curiosity might cause an animal to approach an un-

known object, and fear of the unknown might cause it to 

withdraw. Curiosity tends to dominate while the object is 

distant, fear tends to dominate with closer proximity. Very 

often radically different behavioural forces exist at 

different distances, and together they make up the partial 

response of an actor to an object. These components of par-

tial responses are what we call sub-responses. Specifically 

the partial response functions we have investigated are of 

the following form: 

v = £ ( M + c ) b D 
i , j , t r = 1 i , j , t, r i , j , r i , j , r i , j , t, r 

(Eq. 2.4) 

where each of the expressions (subscripted by r) being 

summed is a sub-response. The M are magnitudes and the D 

2.3 SUB-RESPONSES 



are direction unit vectors; all are computed using g • ... , 

e i t -2' E i t-1 ' fii t-2 ' T h e 'f'n''te '' s t ° * time-

dependent magnitudes and directions is discussed in the next 

section. The c and b are variables that allow the fine-

tuning of the partial response. It has been found in general 

that where some generic effect can be achieved by using 

different combinations of magnitudes and directions, a 

specific effect may be generated by appropriate values for c 

and b. b is composed of two parts -- a response-

distinguishing constant m and a weighting value u : 

b = m u 
i.j.r i.j.r i.j.r 

(Eq. 2.5) 

The u . of all sub-responses in a behaviour function are 

guaranteed to sum to one, i.e. for a behaviour function B.-, 

n n 

j=l r=l i.j.r 
(Eq. 2.6) 

The weighting factor allows some sub-responses to be power-

ful and others to have only negligible effect on the result-

ing behaviour. As is seen in the next chapter, the weight 

can be based on a function of some time-dependent magnitude 

from the same set as M came from. A special case is where 

the weight is conceptually set to zero if the magnitude is 
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outside some range — this is implemented using conditional 

expressions to determine which sub-responses is executed. 

There are several ways that behaviour functions could be 

classified. One fundamental method is based on the maximum 

number of time-steps involved in the calculations. Thus, we 

call a behaviour function which determines behaviour based 

only on the positions of objects at time t-1 a Tl behaviour 

function. A behaviour function in which both t-1 and t-2 

environments are taken into account is a T2 behaviour, and 

so on. As mentioned above, we have only investigated Tl and 

T2 behaviours. The T1-T2 classification can be expanded by 

considering which magnitude and direction components go into 

behaviour functions -- the components are discussed below 

and much of the discussion in chapter 5 uses this method of 

cI ass i f icati on. 

From the observer's point-of-view, behaviours can be 

classified in order of increasing animacy. At the low end 

of the scale are the purely mechanical behaviours that are 

necessary so that objects obey fundamental physical laws. 

At the high end of the scale are behaviours that appear 

increasingly complex and purposeful. Note that those behav-

iours that 'appear' to be increasingly complex need not be 

based on complex behaviour functions. We have created such 

2.4 CLASSIFICATION OF BEHAVIOUR FUNCTIONS AND RESPONSES 
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things as the appearance of 'teasing* with functions which 

are relatively simple. 

g^.-IIMErBEPEliiDEMl.MAQMIiyDiS.AMD-DIBEQIIQ!!!? 
In the Tl case, the only quantities available for compu-

tation of responses are the distance and the inter-object 

direction. In the T2 case, on the other hand, a much wider 

variety of time-dependent quantities exist; these include 

the velocity and direction of the actor and stimulus, the 

relative motion and the change in distance. When studying T2 

responses, many different combinations of magnitudes and di-

rections were considered. 

The velocity vector resulting from a behaviour is a 

function of the magnitudes and directions used as input to 

the constituent responses. For an individual sub-response, 

the direction of the response vector is the same as the 

direction input (if the magnitude is negative, the direction 

appears reversed though); it is only the magnitude of the 

output vector that is affected by the additive and multi-

plicative parameters as well as the input magnitude. When 

several sub-responses are summed however, both the direction 

and magnitude of the output vector are dependent on all fac-

tors: input magnitudes, input directions, additive and 

multiplicative parameters and weights. 
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I 1 
T|Keyword Method of Calculation 

I 
1jd istance 
2|veIoc i ty 
2|othveIoc ity 
2 
2 

changed ist 
re Iveloc i ty 

FUNDAMENTAL QUANTITIES 

Euclidean distance between perimeters 
Velocity of actor 
Velocity of stimulus (other's velocity) 
Change in distance 
Re I ati ve veloc i ty 

ti metoreach 
appf i xedness 
sti I I hess 

COMPOUND QUANTITIES 

Time-to-reach; distance/changedist 
Apparent fixedness; distance/othvelocity 
Stillness; distance/re IveIocity 

id i stance 
ichanged i st 
i timetoreach 

INVERSE-SQUARE QUANTITIES 

Inverse-square distance between centres 
Change in inverse-square distance 
Inverse-square distance/changedist 

Figure 2.1 -- Time-Dependent Magnitudes 

Figure 2.1 lists the magnitudes used in sub-responses 

for the work of this thesis, and figure 2.2 lists the di-

rections. The first column of each table shows whether the 

item is Tl or T2; the classification of a sub-response is 

based on the highest classification of its components, hence 

a sub-response can only be classed as Tl if both its magni-

tude and direction are Tl. 

The second column of the tables shows the symbolic 

keyword chosen to represent each quantity -- these are used 

in the language which is described in the next chapter. 
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The third column describes the method of calculation of 

the quantities. Some quantities, termed fundamental, are 

calculated directly from positions or from subtraction of 

other fundamental quantities. The compound quantities are 

ratios of two fundamental quantities. The inverse-square 

magnitudes are closely related to other magnitudes -- they 

involve inverse-square distance instead of Euclidean dis-

tance. 

In figure 2.2, the pairs towards-away, forwards-

backwards and with-against are inverses of each other. In 

one sense it is redundant to allow both directions in each 

pair because the second member of the pair could always be 

generated from the first by specifying a negative multi-

plicative parameter; however, away, backwards and against 

are simple intuitive concepts and it was decided to allow 

them for the convenience of the user. 

Most fundamental quantities come in natural magnitude-

direction pairs: distance-towards, velocity-forwards and 

re IveIocity-movere I ative are examples. Each pair can be com-

bined to form a vector that is meaningful in the physical 

world (the vector of absolute movement, the vector between 

two objects, and the vector of relative movement, respec-

tively). The compound quantities do not, in general, come 

in pa i rs . 
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| T|Keyword | 
I l 

r l 1 

1 
l 
l 
2 
2 
2 
2 
2 

2 
2 
2 

towa rds 
away 
forwa rds 
backwa rds 
with 
aga i nst 
movere1 ati ve 

ref1ecti on 
orb i ta1 
inte rcept 

Method of Calculation | 
j 

FUNDAMENTAL QUANTITIES | 

Direction between nearest points 
Negative towards 
Direction of movement 
Negative forwards 
Direction of movement of stimulus 
Negative with 
Direction of relative movement 

COMPOUND QUANTITIES 

Equal to angle of incidence 
Pa ra11e1 to norma 1 
Direction to optimize interception 

Figure 2.2 -- Time-Dependent Directions 

Complete details of the algorithms for computing all 

the quantities in figures 2.1 and 2.2 can be found in the 

technical documentation for PAM -- the general philosophy is 

also discussed in chapter 4. 



Chapter 3. 

THE ANIMATION DESCRIPTION LANGUAGE 

A simple language was developed to describe the environment 

and behaviours. This may be called the 'assembly language' 

of behaviour function animation, since there is a logical 

correspondence between the statements and the equations of 

chapter 2. 

The following illustrative example is the complete de-

scription of an environment using this language: 

wrapa round 

object 1 
c i rcrad 40 
xcent 100 ycent 200 
dx 12 dy 11 

obend 

object 2 
xhalfdim 35.5 yhalfdim 35.5 
xcent 900 ycent 600 
dx -13 dy -10 

obend 

partresp 1 
if (timetoreach < .5) 

return(veIocity reflection) 
e I se 

return(veIocity forwards) 
prend 

bmatri x 
0 1 
1 0 

SCALARS 

OBJECTS 

PARTIAL 

BEHAVIOUR 

- 28 -

RESPONSES 

MATRIX 



29 

The language statements are on the left and the main 

sections of the language are indicated on the right. The 

scalers section defines the general mode of operation. The 

objects section describes the shape, colour and initial 

movement of the objects. The partial responses section de-

fines various types of action that may be taken by an actor 

in response to a stimulus; and the behaviour matrix section 

relates each actor/stimulus pair to a partial response. If 

the above example were executed, the user would see a square 

and a circle moving around and bouncing off each other. 

The following description shows the concrete syntax of 

the language in BNF along with some descriptive material and 

examples; more complete details may be found in the PAM user 

guide and technical description documents.1 In the BNF defi-

nitions, <fval> means a floating-point value, <ival> means 

an integer value and <sval> means a character string value. 

All of the keywords are unique to three characters. 

There are four main sections in the description of 

every environment: 

<env i ronment> : : = 
<scaI a rs> 
<obj ects> 
<pa rti al_responses> 
<behaviour_matrix> 

1. Lethbridge T., 1987 
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These sections are indicated on the right hand side of the 

example given above. 

The scalars section allows for definition of general attrib-

utes of the environment and has the following syntax: 

<scaI a rs> : : = 
<nul l> 

| (set I a r_ item> 
j <scaIar_item> <scalars> 

<scaI a r i tem> :: = 
halt 

| speed < i va I > 
j protection 
| eye Ii m i t < i va I > 
| mouseacti ve 
j nextenv <sva I > 
| wraparound 

Each scalar item keyword may only be specified once in an 

environment. The first three keywords only affect the user 

interface. Cyclimit and nextenv allow for the chaining of 

environments and the showing of short sequences. Mouseactive 

allows one object to be under the control of the user and 

wraparound creates a situation where if an object passes 

through one side of the screen it comes back in through the 

other side. 

3.1 SCALARS SECTION 
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The objects section allows for the definition of objects 

which may later be made to interact with each other: 

<obj ects> :: = 
<object_definition> 

| <object.definition> <objects> 

<object_definition> ::= 
object < i va I > 
<object_description> 
obend 

<object.description) ::= 
<object_parameter> 

| <object.parameter> <object.description> 

<object_parameter> ::= 
colour <ival> | color <ival> 

| ci rcrad i us <fva I > 
| xhalfdim <fval> | yhalfdim <fval> 
| xcentre <fval> | ycentre <fval> 
j dx <fval> | dy <fval> | static 

Each object parameter keyword may only be specified once for 

each object and where a parameter is absent a default is as-

sumed. The colour parameter allows the choice of a colour 

from 1 to 15 with 15 being invisible. The radius and half 

parameters define the shape; Figure 3.1 shows the effect of 

the presence or absence of these parameters. In all cases, 

the shape is symmetrical about both x and y axes, is convex 

and its perimeter is composed only of horizontal and verti-

cal lines and quarter-arcs of circles. The shape parameters 

may be negative, indicating that the object is a 'hole' 

meaning that another object would be inside its mass if it 

were outside its apparent perimeter. 

3.2 OBJECTS SECTION 
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1 
Va1ue Present 

X 

N 
N 
N 
N 
Y 
Y 
Y 
Y 

y 

N 
N 
Y 
Y 
N 
N 
Y 
Y 

c i re 

N 
Y 
N 
Y 
N 
Y 
N 
Y 

1 
Resu11i ng Shape 

Point 
C i r c 1 e 
Hor i zonta1 line 
Horizontal bar with semicircular ends 
Vertical Line 
Vertical bar with semicircular ends 
Rectang1e 
Rectangle with rounded corners 

Figure 3.1 — Effect of Shape Parameters 

An example of an objects section might be: 

object 1 
coIou r 2 
c i rcrad 30 
xcent 50 ycent 50 
dx 1 dy 1 

obend 

object 2 
coIou r 3 
xhalfdim 100 yhalfdim 12 
xcent 512 ycent 600 
stati c 

obend 

This would define a red circle in the bottom left-hand cor-

ner of the screen with an initial velocity towards the top-

right, as well as a green horizontal bar near the top of the 

screen that never moves. 
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The partial responses section is used to create a series of 

partial responses that can be used to relate any actor-

stimulus pair. The syntax is as follows2: 

<partia I.responses) :: = 
<p_response_definition) 

I <p_response_definition) <partia I.responses) 

<p_response_definition> ::= 
partresp <1va I > 
<p_response_description) 
prend 

<P_response description) :: = 
return?<sub_response>) 

| return(<sub_response)J 
<p_response.description> 

| if <condition> return(<sub_response)! 
j if <condition> return(<sub_response)) 
<p_response_description) 

| if <condition) return(<sub_response)) 
else <p_response_description) 

<sub_response) ::= 
<magnitude_section) 
<di rection.section) 
<weight_section) 

<magnitude.section) ::= 
<magnitude) 

| <magnitude) * <fval) 
j <magnitude) + <fval) 
j (<magnitude> + <fval)) * <fval> 

2. The syntax for this section is actually slightly differ-
ent from that which PAM uses. Since the work of this thesis 
does not involve compiler-writing, the PAM syntax is made 
somewhat easier to parse but remains functionally identical. 
Appendix A contains an inter-Ianguage mapping. 

3.3 PARTIAL RESPONSES SECTION 
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<magn i tude> :: = 
d i stance 

| velocity 
| othvelocitv 
| changedist 
| re Iveloc i tv 
| timetoreach 
j appfixedness 
j sti I Iness 
| idistance 
| ichangedist 
| itimetoreach 

<direction_section> ::= 
<nu I l> 

| forwards 
| backwards 
| with 
| aga i nst 
| towards 
j awayfrom 
j move re I ati ve 
| refIecti on 
j orbital 
| interception 

<weight.section> ::= 
<nu I l> 

| weight <fval> 

<cond i ti on> : : = 
<magnitude> > <fval> 

| <magnitude> < <fval> 
j <magnitude> > <fval> * < <fval> 

Note that the magnitudes and directions are the same as 

those found in the tables in the previous chapter. The 

weights given in sub-responses need not add to one -- this 

is done inte rna I I y . 

An example of a partial response description might be 
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if timetoreach < .5 
return(velocity * .9 reflection weight 100) 

e I se 
if distance < 100 

return(velocity * 1.01 away) 
e I se 

if distance < 300 
return(velocity * 1.01 towards) 

In English sentences, this is saying that if the actor 

object is about to collide with the stimulus it is very 

important that it bounce off. Otherwise, if the distance is 

less than 100 units, the actor should be repelled from the 

stimulus. In the final case, if the distance is less than 

300 units, the actor should be attracted. Visually, we see 

the actor mind its own business until the stimulus comes 

within range, then the actor starts to accelerate towards 

the stimulus. At a distance of 100 units it begins to decel-

erate, and ultimately accelerates away again. If the actor 

is moving fast, however, we may see inadequate 'braking' 

followed by a collision. On an on-going basis we may see the 

actor moving alternately towards and away from the stimulus. 

The overall impression depends, though, on exactly what the 

stimulus is doing. 

The behaviour matrix section occurs once at the end of every 

environment; it has the following syntax: 

3.4 BEHAVIOUR MATRIX SECTION 
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<behaviour.matrix> ::= 
<sub_format> 

| <fulT_format> 

<sub_format> ::= 
bsubmatr i x 
<d i mensions> 
<coIumn_IabeIs> 
<IabeI I ed_rows> 

<d i mens i ons> : : = 
< i v a I> <ival> 

<coIumn Iabe I s> : : = 
<ival> 

| <ival> <coIumn_IabeIs> 

<IabeI Ied_rows> :: = 
<ival> <behaviour.function> 

| <ival> <behaviour.function> <IabeI Ied_rows> 

<behaviour_function> ::= 
<ival> 

| < i va I> <behawiour_function) 

<fuI I_format> :: = 
b m a t r i x 
<un I abeI Ied_rows> 

<un I abeI I e d - r o w s > :: = 
< b e h a v i o u r _ f u n c t i o n > 

| < b e h a v i o u r _ f u n c t i o n > <un I abeI Ied_rows> 

The i n t e g e r s in the < b e h a v i o u r _ f u n c t i o n > d e f i n i t i o n re-

fer to partial r e s p o n s e n u m b e r s which relate an a c t o r to a 

s t i m u l u s . The row and column labels in the s u b - f o r m a t are 

the n u m b e r s of o b j e c t s to be r e l a t e d . The d i m e n s i o n s in the 

s u b - f o r m a t indicate the number of o b j e c t s a c t i n g as a c t o r s 

and stimu I i . 

The f o l l o w i n g e x a m p l e of a b e h a v i o u r matrix s e c t i o n 

shows t w o actor o b j e c t s (5 and 8 ) re a c t i n g to t h r e e s t i m u l u s 
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objects (l, 5 and 7 ) . There are four types of partial re-

sponse involved (2, 3, 4 and 5 ) . Both actors respond to 

stimulus 1 with partial response 2, and both respond to 

stimulus 7 with response 5. Object 5 responds to itself 

with response 3 and object 8 responds to stimulus 5 with re-

sponse 4. 

bsubmatr i x 2 3 

1 5 7 

5 
8 

2 3 5 
2 4 5 



Chapter 4. 

THE SOFTWARE 

This chapter is an attempt to present the implementation of 

a behaviour-function oriented animation system in a general 

way. The discussion is primarily about the PAM (Perceived 

Animate Motion) implementation made for this thesis, with an 

eye to concepts necessary for implementations in general. It 

should be noted that a full-scale commercial implementation 

would most likely combine features of other animation sys-

tems along with behaviour functions -- this would signif-

icantly complicate the issues and hence the discussion here 

is limited to a 'pure' behaviour-function implementation. 

The PAM implementation was written in C with library 

calls for graphics output and other device interface 

requirements. The hardware used was a Silicon Graphics IRIS 

2400 with a floating point accelerator. PAM is dealt with 

in much more detail in the technical description document1. 

At the core of any behaviour function system must be a set 

of routines that take the status of objects, apply the 

1. Lethbridge T., PAM Technical Documentation, 1987 

- 38 -

4.1 THE FUNDAMENTAL STRUCTURE 
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behaviour functions and output the new status. Indeed this 

is all that is needed for a bare minimum system since the 

behaviour-functions could be hard-coded and the displaying 

of objects at the output positions could be left to other 

software or hardware. The minimal data structure needed 

would be the positions of objects at the previous two time 

steps (assuming that only Tl and T2 behaviours are in-

volved), hfe return to this environment updating module after 

looking at the broader aspects of implementation. 

For a fully functional system there must be two other 

modules: Routines are needed to load behaviour functions 

from some external description and possibly modify the 

behaviour functions at intermittent intervals, since if 

behaviour functions were hard-coded the system would be 

highly restricted. Also, routines are needed to process the 

output of the environment update module -- either to display 

the objects on a screen or record them somewhere else for 

later d i spI ay . 

Figure 4.1 shows the relationship of the three main 

nodules in terms of the flow of control. The load/modify 

module need only be executed when the program first starts 

although occasional execution might be needed later. The 

environment update module and the display/record module must 

logically be executed repeatedly and alternately, one cycle 

for every time-step or frame. These two modules can there-



40 

J, 
i : 1 

Load and/or Modify 

Objects and Behaviour 

A 
Run-Animation Module 

Environment Update 

Central Core 

T 
Jl 

Kh 

K-i 

Display and/or Record 

Objects at Positions 

, 

Figure 4.1 — Modules in Behaviour-Function Animation 

fore be conceptually combined into a single run-animation 

moduIe. 

Behaviour function animation is computationally inten-

sive due to the necessity to compute large numbers of 

frames. This is exacerbated by the fact that, at its worst, 

it is an n2 process. As a result efficiency is a paramount 

concern, especially if the frames are to be displayed in 

real time. For real-time animation, a fresh display must be 

created at least 9>i«ry 1/15 of a second for the human brain 
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to have the illusion of continuity. Since monitors have a 

refresh rate of l/33 of a second the design must strive to 

allow iterations of the run-animation module at this fre-

quency . 

In the PAM system it was found necessary to do a maxi-

mum of pre-processing in the load/modify module and optimize 

the operation of the run-animation module to achieve oper-

ation as close to real-time as possible. The discussion in 

subsequent sections deals with each of these modules in 

turn . 

It should be mentioned that in addition to the modules 

described above there is additional initialization and 

termination work required in PAM, primarily for the graphics 

system and the user interface. The complete PAM system can 

therefore be best described by figure 4.2. 

This module could be arbitrarily complex; if behaviour-

function animation were to be combined with other methods of 

animation, this would be where the extra complexity would 

lie. For the PAM system it was decided to simply make this 

module read a series of environment files containing the 

animation description language described in the previous 

chapter, and create data structures optimized for the run-

4.2 THE LOAD/MODIFY MODULE 



42 

A 
Initialize 

T A. 
Load Environment 

Run Animation 
T 

A. 
Terni nate 

Kh 

H 

1 

Figure 4.2 — Top-Level Diagram of PAM 

animation module. No facilities were incorporated to allow 

interactive modification of the environment although such a 

facility would be a logical and useful enhancement. To up-

date an environment using PAM, the user must edit the lan-

guage description (using vi 2 or some other UNIX text editor) 

and then re-load it without restarting the program — PAM 

provides a convenient one-button reload capability. 

Figure 4.3 shows an intermediate-IeveI breakdown of the 

environment loading module. This method of structuring has 

been found to provide the best combination of structured de-

sign and efficiency. Although this structure specifically 

represents PAM, it seems applicable to any behaviour-

2. Joy W. and Horton M., 1984 
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Parsing 
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1 r 
A. 

OBJECT 
DESCRIPTIONS 
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A. 
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RESPONSES 
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BEHAVIOUR 
MATRIX 

JL 
EstabIi shment 
of Objects 

A. ,L &L 
Beha v i ou r Matr i x 

Processing 
1 

J*. 
DISPLAY LIST 

J&. 

~T~ 

| ENVIRONMENT 
AND UPDATE LIST 

^ 

Figure 4.3 -- The Environment-Loading Module 

function animation system that does not allow changes to the 

environment after loading. 

The first process is to parse the environment files and 

generate data structures representing each of the four 

sections of the language: scalars, objects, partial re-

sponses and the behaviour matrix. This intermediate-I eve I 

data is in a format similar to that in the environment 

files. The partial responses are termed 'dummy' because they 
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are merely templates -- they have not yet been applied to 

any specific actor-stimulus pair. In PAM, the behaviour ma-

trix is not actually stored at the intermediate level be-

cause the process of parsing is tied directly to the next 

process -- producing the structures required for the run-

an i mati on moduIe. 

Two separate structures are built that allow the system 

to run as fast as possible in the run-animation module. The 

display list is a list of graphics commands stored for most 

efficient display. The update list is a program to optimally 

update the environment and associated data. Two options 

were considered for this, a series of data items processed 

by an interpreter or a routine especially compiled for the 

environment. For the PAM implementation, the interpreting 

option was chosen for simplicity; the update list is inte-

grated with the environment data and is composed primarily 

of pointers to data that must be updated and pointers to 

functions that do the updating. The environment data con-

sists of the positions and velocity vectors of moving ob-

jects plus storage space for whatever other quantities may 

need to be calculated (magnitudes, directions etc.) along 

with flags indicating whather they have been updated or not 

at a given time-step 
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Many things can be done to optimize the update list and 

environment data. An example is the pre-muItipIying of 

weights by multiplicative factors. 

This module runs in a loop performing the main operations --

environment update and display of objects -- described ear-

lier. Additionally, this is where any user-interface rou-

tines would be placed; PAN, for example checks once every 

time step to see if any button is pressed and, if so, per-

forms one of the tasks outlined in the user documentation 

such as allowing the mouse to control an object or allowing 

objects to trace out paths so still photographs may be 

taken. 

4.3 THE RUN-ANIMATION MODULE 

4.3.1 The Environment Update Module 

The environment update module, as mentioned earlier, is the 

central core. It can be divided into two phases: the first 

phase involves proceeding down the update list processing 

each partial response, and the second phase involves the 

computation of finalized behaviours and position vectors for 

each actor from partial responses. Figure 4.4 summarizes 

the environment update module and the following paragraphs 

expand on some details. 
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PARTIAL RESPONSE CALCULATION 
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I 

Figure 4.4 -- The Environment Update Module 

All the sub-responses are processed in sequence by fol-

lowing the update list. The update list is actually broken 

down into sublists, one for each partial response; the ele-

ments of the sublists are the sub-responses. The basic 

computation for a sub-response is very simple, it is a mat-
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ter of applying equation 4 from chapter 2. Before this can 

be done though, the time-dependent magnitudes and directions 

required for the response must be calculated -- this turns 

out to be the most time-consuming part of the whole system. 

Often a given magnitude or direction will have already 

been found by a previous sub-response in the same partial 

response or by a sub-response in the inverse partial re-

sponse (if the actor-stimulus roles are reversed many quan-

tities are the same or the negative -- distance remains the 

same, while the towards direction is the negative). Much 

redundant computation is saved by flagging every value once 

it has been updated for a given time-step. 

If a magnitude or direction has not been found, then it 

must be updated using an appropriate algorithm. In PAM, the 

update list contains pointers to a series of functions to 

perform these algorithms. Most of the algorithms are very 

simple; the most important and one of the more complex algo-

rithms is that which computes the Euclidean distance between 

perimeters and the towards direction at the same time 

full details about this are in the technical documentation. 

All of the algorithms have prerequisite data. The only 

prerequisite data that is guaranteed to be up-to-date are 

the positions of objects at the previous two time steps and 

the velocity vector at the previous time step. (All that 
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strictly need to be saved for T2 behaviours are the two sets 

of positions. Any value that is computed at the previous 

time step and may be needed at the current time step is 

saved. Since velocity is always computed, it is always 

available.) A given algorithm may have to call other algo-

rithms to find other prerequisites, and these may in turn 

call further algorithms until finally all data is available. 

A network graph can be drawn showing the relationships of 

all algorithms and the prerequisites they require back to 

the position vectors. Since the whole network is somewhat 

complex, a sub-network only is shown in figure 4.5. This 

shows the prerequisites required to find time-to-reach at 

the current time step (t): Before time-to-reach can be 

found, the distance and the change in distance must be 

available; these in turn have their own prerequisite quan-

tities. 

As described in chapter two, when the responses are 

calculated, the result velocities are summed for each actor 

to yield a velocity vector for this time step. The most 

heavily weighted responses contribute more to the sum than 

the less-weighted responses. In the model all the weights 

must sum to one; this is best handled by summing the weights 

for each actor as the responses are calculated, and then 

normalizing the velocity vector by dividing by the weight 

sum. The user, therefore, need not be concerned that 

weights they supply sum to one. 
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Figure 4.5 -- Prerequisite Network for Time to Reach 

The final step in the environment update module is to 

apply equation 2.1 in order to determine the final positions 

of each actor. This simply involves adding the velocity to 

the previous position. (Note that this does not involve the 

adding of incompatible units because the velocity is the 

change in position for a single time step.) 

This module has two alternative but simple tasks. If it is 

to display objects, it must update the display list to re-

flect the new positions of the objects and then must cause 

the display list to display graphic output. If the module is 

to record the positions of objects, it must allocate space 

in memory for a record or write a record to a a file. PAM 

always displays data although it can be made to do this less 

4i3.2__The_DisDlay/Record ModuIe 
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frequently than once a time-step. PAM is also capable of re-

cording positions both in memory or in a file at the request 

of the user. 

Since many objects in an environment may only have the 

role of stimulus, there is no need to update the positions 

of these static objects in the display list. To improve 

efficiency, static and non-static objects are represented 

differently in the display list. As in most graphics 

environments, an object in PAM is represented by a series of 

function calls. Static objects are centered on the screen at 

their absolute locations by these function calls. Non-static 

objects on the other hand are centered at the origin and a 

single translation is done before each object is displayed 

-- it is this translation that is modified at each time step 

to cause the object to move. 



Chapter 5. 

FINDINGS: THE GENERATION OF BEHAVIOUR 

In this chapter we look at a wide range of simple categories 

of response from both a mathematical and perceptual point of 

view. A study is made of the categories of simple sub-

response discussed in chapter 2 as well as interesting 

combinations of these. A look is also taken at some of the 

problems that can occur when dealing with behaviour func-

tions, and how to deal with these problems. 

The findings reported here were obtained by a combi-

nation of tria I-and-error experimentation using the PAM 

implementation, and mathematical deduction. The general 

procedure was to start with a very basic version of the 

implementation and add features when it was determined they 

might serve a useful purpose. When patterns were observed or 

hypothesized, an attempt was made to formalize these mathe-

matically. 

Some of the results are of an objective nature and oth-

ers are somewhat subjective. The subjective observations are 

the author's impressions and may be interpreted slightly 

differently by others. The objective results, which form 

the bulk of the findings, have been repeatedly tested to 

determine their rigorousness, but are nevertheless due to 

- 51 -
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preliminary analysis on the part of the author. As research 

progresses, the relative importance of various findings is 

likely to alter and useful findings may come out of areas of 

investigation that appeared barren to the author. 

Figure 5.1 shows how the fundamental and complex time-

dependent magnitudes and directions can be combined to form 

a matrix of 56 different types of sub-response. Some of 

these have been found to be broadly useful, and others less 

so. Reverse directions and inverse-square magnitudes have 

been left out for simplicity. It should be remembered that 

this table is by no means an exhaustive list of sub-response 

types because although the fundamental quantities form an 

exhaustive list (if only two time steps are considered), 

there are many more possible complex quantities. The num-

bers in the boxes in figure 5.1 show how useful the various 

combinations were found to be on a scale of increasing 

usefulness from 1 to 10. The numbers by the magnitudes indi-

cate their usefulness as range parameters in conditions. 

Of the 56 table entries in figure 5.1, only the top left 

element is Tl; the other 55 are T2 (see chapter 2 for the 

basis of the T1/T2 classification). In general Tl responses 

can model situations where one object gravitates to a cer-

tain distance from another. More specifically, we have used 

5.1 Tl RESPONSES 
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Figure 5.1 — Categorization of Sub-Responses 

them for clinging, pushing, pulling, chasing, attraction, 

escaping and repulsion. 

The only magnitudes that can be used in a Tl response 

are distances, since these are all that can be calculated 

from the positions of objects at the current time step only. 

(Referring to equation 2.3, note that in the Tl case there 

are only two, not four, position inputs to response func-

tions.) For now only Euclidean distance is considered; 
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inverse-square distance has comparable properties and is 

discussed later. The only Tl direction is the direction be-

tween the actor and stimulus; the towards and away di-

rections are both manifestations of the same thing and can 

be interchanged by negating the multiplicative parameter. 

The towards direction seems more intuitive to use for inter-

object direction, but the away direction has the nice prop-

erty that when used with a positive magnitude it causes an 

increase in distance and when used with a negative magnitude 

the distance decreases. 

Since the only input to equation 2.4 is distance, in a 

simple two-object Tl system the actor's velocity towards or 

away from the stimulus must be a linear function of dis-

tance. In order to design a Tl partial response we must 

first decide what the velocity should be at various dis-

tances. Figure 5.2 shows a typical graph with distance on 

the x-axis and the desired away velocity on the y-axis (to-

wards velocities are represented as negative). Linear seg-

ments with slopes ml, m2 and m3 have been drawn between 

distance-velocity points. This graph indicates that at dis-

tances dO, dl, d2 and d3 the velocities should be vO, vl, v2 

and v3 respectively (vl and v3 coincide at the x-axis). In 

this typical graph, the actor's away velocity would decrease 

as distance increased from dO to dl with vl being zero. From 

dl to d2, the velocity would increase in the towards direc-

tion, and then decrease again from d2 to d3. In reality, the 
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Figure 5.2 -- Velocity vs. Distance in a Tl Partial Response 

graph extends beyond dO and d3 to negative infinity and 

infinity -- when designing a Tl partial response, these 

extensions must also be considered. 

A plan similar to figure 5.2 is essential if a Tl par-

tial response is to yield reasonable behaviour. The follow-

ing guidelines should be followed when setting up such a 

response: 

l) Any number of linear segments may be used, but the 

curve should generally be continuous to prevent unnatural 

movements or oscillation -- these problems and others are 

discussed later in the chapter. (Small discontinuities may 

cause unnatural or jerky movements that are desirable be-

cause they can enhance the impression of intentionaIity, but 

the high risk of oscillation from such discontinuities makes 
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it more practical to cause abrupt movements by juxtaposition 

of segments of shallow and steeper slopes). It should be 

noted that the graph need not necessarily have segments both 

above and below the x-axis. 

2) The left and right extensions must always have a 

negative or zero slope. Additionally, the velocity in the 

left extension must at some point be non-negative and the 

velocity in the right extension must at some point be non-

positive. These guidelines are essential in order to keep 

the response from going out of control or oscillating. 

Typically the left extension, into the object, is a contin-

uation of the first segment, and the right extension has a 

slope and velocity of zero (the response has no influence in 

th i s range). 

3) The maximum velocity generated at any distance where 

the actor might exist should not be too fast; at the same 

time, the mean velocity over distances where the actor might 

exist should be synchronized with the rest of the environ-

ment. If the actor is not expected to ever exist inside the 

stimulus, then the velocity in that part of the graph could 

be made arbitrarily high. Likewise, if the actor is never 

expected to get v«ry far from the stimulus (a condition that 

normally cannot be relied on) the graph velocity could be 

allowed to become high at great distance. 
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Each of the segments of the graph can be expressed as a 

linear equation with an additive parameter c and a multi-

plicative parameter m. These translate directly into sub-

responses of the general form; 

if distance < d 
r 

return((distance - c ) * m away) 
r r 

The subscript r indicates the particular segment or sub-

response. The multiplicative parameter is the slope of the 

curve segment and can be computed as follows: 

m m (v - v ) / (d - d ) 
i r r-1 r r-1 

(Eq. 5.1) 

It controls the responsiveness and speed of the actor. The 

additive parameter is the negative x-intercept of the curve 

segment and can be computed as follows: 

c = v / m - d 
r r r r 

(Eq. 5.2) 

Both parameters used together control whether the actor is 

repelled or attracted to the stimulus and in what ranges. 

Figure 5.3 shows values for a typical Tl partial re-

sponse. Note that the above guidelines have been followed; 
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Figure 5.3 -- Typical Calculations for a Tl Response 

in particular, the rightmost velocity is zero and the left-

most velocity is positive. There is no sub-response 0, but 

the distance and velocity 0 are needed for the calculations. 

The underlined numbers, the m and c parameter columns, were 

found by solving the equations; if the equations are solved 

for successively increasing distances, continuity of the 

segment-curve is guaranteed. 

The complete partial response translated from the 

computations in figure 5.3 is as follows: 

if distance < 80 
return ( (distance - 80) * -0.15 away) 

e I se 
if distance < 200 

return((distance - 80) * -0.083 away) 
e Ise 

if distance < 500 
return((distance - 500) * 0.033 away) 

Since this partial response contains no sub-response effec-

tive above 500 units of distance, the velocity in that range 

will be zero (ignoring the effects of other partial re-
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sponses). Also, since the range of the first sub-response 

encompasses all distances from 80 down to negative infinity, 

the first segment is extended to distances inside the stim-

ulus. Both of these facts conform with the guidelines. 

The above response is decreasingly repulsive to 80 

units of distance, increasingly attractive to 200 units and 

then decreasingly attractive to 500 units. For Tl responses 

in general, the actor will gravitate to the distance at 

which the velocity segment-curve crosses the x-axis; in this 

example that would be 80 units from the stimulus. 

The overall effect of a simple Tl response depends on 

what the stimulus is doing. One of the simplest behaviour 

patterns that can be created using two objects is persuit. 

If two actors respond to each other with Tl functions that 

have differing stable distances, the actor with the response 

whose stable distance is smaller will become the persuer and 

the other actor (the stimulus to the first) will become the 

quarry. This type of persuit alone does not appear animate, 

in fact the two objects will maintain equilibria of dis-

tance, velocity and direction if there are no further influ-

ences. For simple Tl systems, equilibrium distance and 

velocity can be computed from the following formulas: 

d as -(c m + c m ) / (m + m ) (Eq* 5.3) 
eq p p q q p q 
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v = (c m m - c m m ) / (m + m ) (Eq. 5.4) 
eq q p q p p q P q 

where the c and m values *r« the additive and multiplicative 

coefficients of sub-responses that are active at the 

equilibrium state: q is the quarry's response at distances 

just less than its stable distance, and p is the persuer's 

response at distances just greater than its stable distance. 

The following environment contains two Tl responses. Object 

1 would be the persuer and object 2 would be the quarry; the 

responses active in the equilibrium state are underlined. 

wrapa round 

object 1 
circrad 20 xcent 100 ycent 200 

obend 

object 2 
circrad 20 xcent 924 ycent 668 

obend 

partresp 1 
if distance < 65 

return((distance -65) * -.385 away) 
e I se 

if distance < 280 
return(fdistance -65) * -.056 awav) 

e I se 
if distance < 295 

return((distance -295) *.8 away) 
prend 



61 

e I se 
if distance < 280 

return((distance -150) * -.192 away) 
e I se 

if distance < 500 
return((distance -500) *.114 away) 

prend 

bmatri x 
0 1 
2 0 

The equilibrium distance in the above example would be 119.5 

units and the equilibrium velocity would be 3.05 units. The 

direction of motion would be the initial inter-object direc-

tion. 

A simple Tl response becomes more interesting as the 

stimulus' behaviour becomes more interesting. If the stim-

ulus moves in an arbitrary manner, it will seem to push or 

pull the actor at a distance, as if by a long rubber pole. 

The length of the 'pole' is the equilibrium distance and the 

apparent stiffness is determined by the slopes of the 

segment-curve. As the slopes (multiplicative parameters) 

approach -1 the pole will appear very stiff -- the actor 

will spring to the equilibrium distance in about 1 time 

unit. If the slopes are that high, the potential for exces-

sive velocity is also high -- this type of response is only 

useful if there is nothing that could rapidly move the actor 

partresp 2 
if distance < 150 

return (fdistance -150} * -.1 awav) 
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away from the equilibrium distance. An away slope less than 

-1 causes oscillation and is never useful. 

If the invisible pole becomes arbitrarily short, by us-

ing an equilibrium distance of zero or less, then the ob-

served behaviour will be pure attraction. If a slope near -1 

is combined with a zero equilibrium distance then the stim-

ulus appears to be pushing or pulling the actor and the ac-

tor appears to be clinging to the stimulus. The following 

very simple partial response causes this behaviour if used 

alone: 

return(distance towards) 

Note that a multiplicative parameter of +1 was used with the 

towards direction instead of the equivalent -1 away. This 

type of Tl behaviour has a very realistic feel about it. For 

example, if the actor is being pushed and the two meeting 

surfaces are not perpendicular to the direction of movement, 

the actor will tend to slide sideways, swing round to the 

rear of the stimulus and end up being pulled. The only prob-

lem with this response is in cases where the object being 

pushed becomes 'caught' due to an overriding response and 

then jumps back with excessive velocity. 

Tl responses can be constructed in numerous ways to 

create many interesting effects. Say, for instance, a re-
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Figure 5.4 -- Calculations for a Be-Captured Tl Response 

sponse was wanted that simulated 'being captured*. The first 

step would be to set up a table like figure 5.4. Again the 

underlined unknowns are found by solving the equations given 

earlier; this time however, the first segment has a known 

slope (-1 to keep the actor captured at a fixed distance) 

but an unknown distance. 

The following would be how these calculations would ap-

pear as a partial response: 

if distance < -20 
return((distance + 40) * -1 away weight 500) 

else 
if distance < 40 

return((distance - 40) * 0.333 away) 

The response has no effect if the actor is further than 40 

units from the stimulus. A quite strong attraction is felt 

if the actor comes within 40 units, the closer the stronger. 

The attraction sucks the actor towards the stimulus as if it 

were being captured. The very strong weight on the first 

sub-response ensures that no other response can cause it to 
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escape. There is one drawback to this function though, if 

the stimulus moves faster than 20 units after the capture 

has taken place it will release the actor. This may some-

times be useful, but normally the condition in the above 

example must be modified to use apparent fixedness -- this 

is discussed later. To make the capture visually effective, 

the actor should be defined before the stimulus because ob-

jects defined later can cover up objects defined earlier. 

In the examples above, some behaviour on the part of 

the stimulus was needed in addition to the Tl responses to 

achieve an interesting system. A system composed entirely of 

Tl responses will settle down into an equilibrium state with 

all actors hovering at fixed distances from their stimuli 

(assuming the responses are constructed properly so the sys-

tem does not go out of control or oscillate). The only 

movement could be the monotonous type of equilibrium 

persuit. Thus while many useful elements of a system can be 

Tl, T2 elements are required to obtain animate behaviours. 

In T2 responses, calculations are based on the positions of 

objects in the previous two time intervals. The magnitudes 

and directions that can be used to build T2 sub-responses 

are various expressions of the concept of 'change in posi-

tion'. The most important magnitude is velocity and the most 

5.2 T2 RESPONSES 



On* of the most interesting and useful T2 responses is that 

of an object responding to its own previous velocity and 

forwards direction. The simplest self-oriented response is: 

return(veIocity forwards) 

which has the effect of at least trying to maintain the cur-

rent movement (it could be overruled by more heavily 

weighted partial responses). 

Responses involving just velocity and forwards are the 

only ones where the actor is not concerned with an external 

stimulus; the stimulus is the actor itself. The most logical 

place to enter such partial responses in a behaviour matrix 

is on the diagonal where the row and column refer to the 

same object. In fact, the only partial responses that make 

sense on the diagonal are self-oriented ones (PAM will allow 

any partial response on the diagonal, but the output veloc-

ity from one that is not self-oriented is a meaningless con-

stant). Since, however, self-oriented partial responses are 

only concerned with the actor, it is possible to place them 

in any element of a behaviour matrix row with identical ef-

fect . 

important direction is the forwards direction (the direction 

of movement). 

5.2.1 Self-Oriented (Reflexive) Resoonses 
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Self-oriented responses can be used to make an object 

have a characteristic velocity to which it will return in 

the absence of other influences. This characteristic, or 

homeostatic, velocity might be very slow in the case of, for 

example, a grazing animal, or relatively fast in the case of 

a hungry predator. One must, though, bear the user's abil-

ity to perceive the scene in mind when deciding on a charac-

teristic velocity -- this issue is discussed later in this 

chapter. Self-oriented responses can also be used to do such 

things as limit the top speed of an actor so that while it 

may accelerate rapidly to some speed while engaged in 

persuit or avoidance, it requires an increasingly powerful 

response to its stimulus to continue accelerating as it ap-

proaches its maximum speed. 

The following is an example of a useful self-oriented 

pa rti a I response: 

if veloc i ty < 1 
return(velocity + 0.5 forwards weight O.l) 

e I se 
if veloci ty < 5 

return(velocity * 1.05 forwards weight 0.01) 
e I se 

if veloc i ty < 8 
return(velocity forwards weight 0.001) 

e Ise 
if velocity < 15 

return(velocity « .95 forwards weight 0.01) 
e I se 

return(velocity * .9 forwards weight 2) 
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The aim of this response is to cause the actor to maintain a 

speed of between 5 and 8 units per time frame. In that speed 

range, the output is the maintenance of the current veloc-

ity, however the low weight means that some other partial 

response could easily override this one. If the actor devi-

ates slightly from the optimal velocity range, either above 

or below, then the velocity will be decreased or increased 

slightly at each step in order to bring it back to normal. 

The weights are higher for this in order to make it slightly 

harder for the correction to be overruled. At the extremes 

velocity below 1 unit or above 15 units -- even more 

corrective action is needed. At very low velocity, an addi-

tive parameter is used instead of a multiplicative one be-

cause if the velocity dropped to zero, no amount of 

multiplication could ever increase it. At excessively high 

velocities the weight of the seIf-oriented response jumps 

dramatically -- this provides the actor with a maximum 

speed . 

The parameters in the above example could be altered 

somewhat, but the function performed would always be the 

same. Unlike Tl responses there are no computations involved 

to set up a self-oriented response. One important thing to 

bear in mind is that the multiplicative parameters should 

not deviate far from one, otherwise there is the risk of the 

behaviour going out of control or oscillating wildly. 



The distance-towards (Tl) and velocity-forwards (self-

oriented) types of responses together provide a firm founda-

tion for many types of behaviour. The variety of behaviour 

available from just these responses can be further expanded 

by combining their elements in different ways. 

In general, any response that uses distance as its 

variable magnitude is constructed in a way similar to Tl re-

sponses. The user must choose velocities the actor should 

assume at the desired distances and then solve the equations 

for the parameters to a series of sub-responses. 

Responses that use velocity as their variable magnitude 

are usually constructed like self-oriented responses in or-

der to achieve control of acceleration in a certain direc-

tion. 

Responses that use the forwards direction do not have 

any influence over the direction of movement whereas re-

sponses that use the towards direction are concerned with 

movements towards or away from the stimulus. 

An example of an interesting combination are distance-

forwards responses. Unlike with Tl functions, it is usually 

only advisable to have positive velocities on the velocity 

vs. distance graph since negative velocities would result in 

5.2.2 Combinations of Tl and Self-Oriented Elements 
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backwards movement and oscillations would ensue unless 

masked by some other response. Additionally, some of guide-

lines for Tl responses can be ignored, such as ensuring the 

velocity at the outermost distance range is zero, because 

sudden velocity changes are not compounded by sudden direc-

tion changes. Distance-forwards responses are useful to 

make an actor speed up or slow down in the vicinity of a 

stimulus; this can be helpful in the building of impressions 

such as those of 'fear* but since no change of direction oc-

curs, other elements are needed. 

The following partial response contains several combi-

nations of the elements described above. Distance-forwards 

elements in three ranges cause an actor to slow down as it 

comes within an initial range of the stimulus, but then rap-

idly speed up if it gets too close; the calculations for 

this part of the sub-response are in figure 5.5. Velocity-

towards based elements cause the actor to move towards and 

away from the stimulus at different ranges. In the inter-

mediate range there is a self-oriented sub-response; it is 

also assumed that this partial response would be combined 

with a low-weighted self-oriented response that would take 

effect outside the range. 
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Figure 5.5 -- Calculations for a Distance-Forwards Response 

if distance < 80 

e I se 

return ( (distance-141.176)* -.1063 forwards) 
return (velocity • .6 away) 

if distance < 120 

e I se 

return ((distance-127.2731* 
return (velocity forwards) 

-.1375 forwards) 

if distance < 180 
return ((distance -109.117) 

* .0917 forwards) 
return ((velocity + -.2) * .4 towards) 

This response is the first discussed in this chapter 

that had some semblance of intentionaIity, especially when 

the stimulus is also moving. Figure 5.6 shows a trace of the 

path of an actor with the above partial response towards the 

stimulus in the centre. In this photograph it is easy to see 

that a pattern is actually being formed. When no trace is 

being made, the pattern is not so easily detected. If the 

stimulus moves even slightly, the pattern is completely dis-

rupted. One thing that the photograph cannot convey are the 

changes in velocity that the actor undergoes. 
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Figure 5.6 — Path of an Actor with Intentional Behaviour 

With this response, the actor will approach and retreat 

from the stimulus, sometimes making small hops and other 

times making much larger hops. The behaviour can be compared 

to a dog rounding up sheep, except that this dog sometimes 

loses interest if it gets too far away. To complete the 

scene, of course, a 'sheep' behaviour is needed on the part 

of the stimulus. 



Th« othvelocity magnitude and the with direction allow an 

actor to respond to the stimulus' movements instead of its 

distance and direction. One drawback of these quantities is 

that the actor responds in the same manner no matter what 

the distance. 

The response: 

return(othveIocity with) 

causes the actor to move identically to the stimulus. This 

can be useful in behaviour such as fish schooling where 

groups of objects should move together, however a similar 

and often superior effect can be obtained with Tl responses. 

The fundamental difference is that othvelocity-with re-

sponses fix the direction at which the actor stays with re-

spect to the stimulus -- this often looks unnatural. 

One useful combination involving these elements is: 

returnfvelocity * .9 forwards) 
retu rn(othveloc i ty * .1 with) 

This has the somewhat unexpected effect of ensuring that the 

actor always stays at the same relative position with re-

spect to the stimulus, but lags behind in catching up to 

5.2.3 'Othvelocity' and 'With' Direetion 



Change in distance (changedist) can be used in similar ways 

to velocity. 

Distance-based responses have the problem that the 

behaviour of the actor is symmetrical when it is approaching 

and retreating from a stimulus. By using change in distance 

in conjunction with other elements, an object can be made to 

move in one manner on approach and in another manner as it 

moves away. To do this, one set of response could be active 

if the change in distance were negative (moving towards) and 

another active if it were positive. 

5.2.5 Time to Reach 

Many responses that uses the distance magnitude can be con-

verted to use time to reach instead. Time to reach, which is 

distance divided by the change in distance, allows an inter-

this required position. The lag-time can be adjusted using 

the multiplicative parameters. Unfortunately, this effect 

easily breaks down if other responses are present. Another 

problem is that this does not give the correct impression of 

'following' because the equilibrium direction is fixed as 

well as distance. Changing 'with' to 'towards' solves this 

second problem somewhat -- the resulting response is to move 

towards only if the stimulus is moving; the two objects will 

collide though. 

5.2.4 Chance in Distance 
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action to be made independent of velocity. A slow object 

might be made to exhibit the same behaviour at a closer dis-

tance that a faster object might exhibit at a greater dis-

tance. 

One set of cases where it is essential to prevent the 

velocity of an actor from having an effect on the response 

are physical responses such as collision. A fast-moving ac-

tor must bounce off, just as readily as a slow-moving actor. 

Theoretically, distance could be used as the criteria to de-

tect when a collision has occurred, but for reasons of 

discretization time to reach is the only magnitude that does 

the job. An example which uses *timetoreach' is the simple 

bouncing response at the start of chapter 3. 

5.2.6 Aooarent Fixedness 

if appfixedness < 1 
return(distance + c towards weight 500) 

Apparent fixedness (appfixedness) is another magnitude that 

is a ratio with distance as the numerator. The denominator 

this time is the velocity of the stimulus. 

One of the most useful responses involving apparent 

fixedness is a capture response that allows no escape: 
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where c should be twice the sum of the minimum radii (or 

half dimensions) of the objects. This would cause the stim-

ulus to apparently 'snap up' the actor if the distance be-

came less than the velocity (change in distance at one time 

step) of the stimulus. In a discrete system, capture re-

sponses which only involve distance as the range magnitude 

cause the actor to be left behind if the stimulus moves too 

fast. This cannot happen with apparent fixedness because any 

movement of the stimulus causes an equal or less increase in 

distance, maintaining apparent fixedness less than 1. The 

capturing object should be defined after the captured one 

and should be larger in order to create a proper effect. If 

the radii are similar and the stimulus moves fast, the 

'eaten' actor may appear to bulge out of the stimulus due to 

a one-time-unit time delay. 

5.2.7 Quantities Involvina Relative Movement 

When the actor is stationary, the relative velocity is the 

velocity of the stimulus; when the stimulus is stationary 

the relative velocity is that of the actor. This property 

seems promising, but in fact almost any response that can be 

created using relative velocity can be created by summing 

velocity and othvelocity (along with forwards and with di-

rections). Despite several attempts, no good use has yet 

been found for relative velocity and the direction of rela-

tive movement, because most functions that use them have a 

tendency to oscillate. 



The three compound directions, reflection, orbital and 

interception were created for specific purposes. They allow 

the response designer to direct an object to go in a direc-

tion that has a physical meaning but which cannot be 

directly obtained using simpIer directions and magnitudes. 

The reflection direction is primarily used to allow 

bouncing. The example at the beginning of chapter 3 shows 

it in use. This direction only has meaning when an actor is 

about to collide with a stimulus. 

The orbital direction is useful in object avoidance. It 

allows the actor to move in a direction orthogonal to the 

inter-object (towards) direction, and generally should be 

combined with other responses to create a slow avoidance 

curve. The orbital direction can be used to simulate the 

orbiting of planets, but if used alone the orbiting object 

will tend to spiral out -- an element of towards direction 

must be added. Orbiting can be achieved in a more simple way 

by combining elements of distance-towards (gravity) and 

velocity-forwards (momentum). This simpler method is closer 

to what happens in the real universe, but as in the universe 
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A related quantity, stillness (distance divided by 

relative velocity), has been found to be equally useless for 

similar reasons. 

5.2.8 The Use of Comoound Directions 



For the purposes of supplying fixed ranges for responses, 

inverse-square distance is identical to Euclidean distance 

since there is a one-to-one correspondence between them. 

The only advantage of inverse-square distance is in its non-

linear nature; it can, for example, be used to make a system 

of orbiting planets behave physically correctly. A Tl re-

sponse using inverse-square distance is created in a similar 

way to a normal Tl response, except that more complex compu-

tations must be done to ensure the segment-curve is contin-

uous. Each segment in the curve is non-linear, but since 

velocity changes in normal Tl responses are generally of low 

slope, and the curves in inverse-square Tl responses have 

low curvature, the resulting behaviour is v«ry similar. 

Inverse-square change in distance and inverse-square 

time to reach have been used to generate various behaviours, 

but no new classes of behaviour have been found with these. 
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the orbiter may go out of orbit or plunge towards the stim-

ulus if balancing is not correct. 

The interception direction can replace the towards 

direction in any persuit behaviour. It adds an element of 

'intelligent planning* by causing the actor to move towards 

the path of the stimulus, instead of directly towards it, 

causing a more rapid capture. 

5.2.9 Experience with Inverse-Sauare Maonitudes 



Behaving systems can be put together in an infinite variety 

of ways. The most complex environment we have created so far 

simulates the schooling of fish. We have nine 'fish* objects 

in the school and one 'predator fish' object, all with se-

veral types of response. 

Each school fish has a weak self-oriented response, 

three different sub-responses to the other school fish, and 

two strong sub-responses to the predator. The self-oriented 

response causes the fish to move forward, tending to a na-

tural speed. One response to the other fish is to move 

slowly towards them. A more powerful inter-fish response 

keeps them from coming too close to each other. The third 

inter-fish response is even more powerful and is of a phys-

ical nature, preventing fish from occupying the same space. 

The primary response of fish to the predator is to move away 

-- it is very powerful but can be overridden by the physical 

response if fish collide. If a fish should become inter-

cepted by the predator, its overriding response becomes to 

stay with the predator (it has been eaten). Eating is simu-

lated by the simple occlusion of the prey by the predator. 

The predator also has a homeostasis type response, 

which becomes overridden by a chasing response when fish 

come close. When the predator actually intercepts its prey 

5.3 COMPLEX BEHAVIOUR SYSTEMS 
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and captures it, a seIf-orianted homeostasis response again 

takes over. 

The initial conditions are a random collection of fish 

in one part of the screen and a predator in another part. 

Visually, we see both types of object minding their own 

business. The school of fish move forward, gradually co-

alescing into a semi-ordered school, there is some jostling 

around but a general unity of movement. We see the fish and 

predator swim off one side and onto the other side of the 

screen in a wrap-around manner. After a short while, the 

predator makes a sudden movement and heads towards the cen-

tre of the school. As the predator approaches, the school 

splits apart, scattering fish in all directions. The pred-

ator catches up with one of the fish which disappears. 

Finally, the school reforms as the predator heads away. 

The change in predator behaviour which occurs after it 

has captured its prey is interesting. This permanent change 

has occurred because the predator is now a composite object, 

it is carrying the prey with it at zero distance and so in 

this state it can be given different behavioural properties. 

Although new and interesting behaviours can easily be cre-

ated by varying the response functions, it has been found 

5.4 PROBLEMS WITH BEHAVIOUR FUNCTIONS AND THEIR SOLUTIONS 



Behaviours we have classed as having perceptual problems may 

be quite rich and interesting but are unacceptable to the 

viewer for one reason or another. 

The primary perceptual problem is lack of balance, 

especially of velocity. Velocities must not be too fast or 

the viewer's ability to follow action is inadequate, and a 

too-slow velocity loses all appearance of animacy. By 

experimentation acceptable velocities can be found; but even 

if objects keep some mean velocity, transitions must be con-

si dered. 

5.4.1.1 Acceptable Velocities 

Smaller objects allow slower movements to have the same ef-

fect as a larger object moving faster, but when an object 

becomes too small its behaviour becomes less noticeable. 

Objects with a radius of 1 to 2 per cent of the screen width 

(10 to 20 units in PAM) have been found to be effective, and 
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somewhat difficult to create some behaviours given a precon-

ceived notion of what they should look like. This has been 

particularly the case when a more animate appearance is de-

sired and when the interactions become more complex. Prob-

lems encountered when designing behaviour functions can be 

grouped into two classes, those of a perceptual nature and 

those resulting purely from the mathematics of the system. 

5.4.1 Problems of a Percectual Nature 
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a velocity on the order of 0.5 per cent of the screen width 

per time-step (5 units in PAM) seems to be a reasonable 

average. For a reasonable system it has been found desirable 

to let objects move in the range of velocities from 1 to 20 

units, with the faster velocities reserved for situations 

when some active behaviour is taking place. 

5.4.1.2 Handling Screen Edges 

At a mean velocity of 5 units, screen edges become a serious 

problem since an object can move from one edge to another in 

six seconds or less. Three methods have been used to handle 

screen edges, two of which are special features buiIt in to 

PAM. 

The first method is to allow the system to follow ob-

jects as they move outside screen boundaries by performing 

translate and scale operations to cause the 'virtual camera' 

to pan and zoom. In a full-scale production animation sys-

tem, this would be the most attractive solution and could be 

expanded to allow multiple camera angles in three dimen-

sions; it does have a few drawbacks though: One drawback is 

the necessity for some kind of background so the observer 

receives the appropriate sense of lateral movement -- with-

out panning or zooming this is not necessary as the physical 

boundaries of the screen act as a reference. A second draw-

back to panning or zooming is a side-effect of the behaviour 

function animation technique; the objects have independent 
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movements and when not constrained they will tend to move 

apart. In order to observe the behaviours of all objects it 

is necessary to zoom back continuously causing the objects 

to become apparently smaller and thus more difficult to no-

tice. The PAM system allows for an optional background grid 

to act as a reference and a zooming capability to keep all 

objects in view. Figure 5.7 shows the effect of this as ob-

jects move apart. In practice, this zooming has only had 

limited usefulness -- future work might enhance this to al-

low for key objects to be identified and for the system to 

pan, keeping only the most important objects in view. 

The second way of handling screen edges, also imple-

mented as a special feature of PAM, is to allow the posi-

tions of objects to be calculated using modulo arithmetic. 

Figure 5.8 shows that with this scheme, objects that move 

off one side of the screen move back on the other side; this 

works in both x and y directions. This 'wraparound* tech-

nique is commonly used in video games. Although this method 

ensures that all the behaviour one is interested in stays 

within screen boundaries, the impression of a particular 

behaviour is severely reduced as it goes through the bound-

ary. It can be particularly disconcerting to watch a chase 

scene where one object has already passed through the bound-

ary and its persuer is still just approaching the boundary 

although the persuer follows the quarry through the 

boundary there is a period of time when the persuer appears 
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Figure 5.7 -- Using Zooming to Keep Objects in View 

to be moving away from the quarry at a distance of almost 

one screen width. 

Another problem with wraparound is that as objects 

separate by more than half the screen the towards direction 

suddenly reverses causing strange effects in some behav-

iours. 

The third technique for handling boundary conditions 

does not require special features of the implementation. 

This involves the setting up of a large object that fills 
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Figure 5.8 -- Using Wraparound to Keep Objects in View 

the entire screen and has the role of 'walls'. The other ob-

jects are constrained by behaviour functions to remain 

within the boundary -- when any object is about to reach the 

wall a heavily weighted partial response would cause a 

bouncing or similar action. The advantage of this method is 

that the observer can continuously follow the movement of an 

object without it decreasing in apparent size or going 

through boundaries; unfortunately though, the behaviour of 

interest may be completely altered by the partial response 

to the waI Is. 
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| ADVANTAGE| 

| No spec i a 1 I 
| implementation required 
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Figure 5.9 -- Methods of Handling Screen Edges 

Figure 5.9 summarizes the advantages of the methods of 

handling screen edges. Either of the first two methods may 

be combined with the third method; the first two methods are 

mutually exclusive. Most of the work was done using wall ob-

jects because, although behaviours were modified, it was 

found to be the most pleasing situation to observe and it 

was still possible to observe meaningful interactions in the 
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time spans between wall collisions. The least desirable op-

tion has been found to be zooming. 

5.4.1.3 Unnatural Movements 

The worst types of unnatural movements are those where posi-

tion changes abruptly. Since the behaviour function model we 

are using is based on the determination of velocities at 

each time step, discontinuities of position will not occur 

unless the velocity gets out of control (this situation 

occasionally occurs due to mathematically based problems 

discussed later). Discontinuities of velocity or accel-

eration are other circumstances to be considered; we will 

look only at velocity since acceleration jumps do not seem 

to cause perceptual problems. 

A commonly-seen situation might be as follows: an ob-

ject is moving around at some mean velocity and then 

suddenly speeds up or slows down and may also make a sharp 

change in direction. It reaches a threshold beyond which a 

different response or set of responses influence it, prob-

ably due to the approach of another object. 

Abrupt changes in velocity at transition points are of-

ten a problem but can also enhance the animation by adding 

an element of intentionaIity. It is as though the brain, un-

able to attribute the movement to some physical cause, 

attributes it instead to a deliberate action. It should be 
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the objective in the design of an effective behaviour func-

tion to ensure i ntent i ona I i ty-i nduc i ng transitions are pre-

sent and annoying ones are absent. 

Experience has found that two factors can be manip-

ulated to deal with transitions: the mean velocity and the 

weight. If the velocities produced by responses on both 

sides of a transition threshold are close, no transition ef-

fect is seen. As a general rule, responses should be 

individually designed so the velocities they yield are 

comparable with the velocities of other responses in the 

same environment. The problem is that as objects move, the 

spheres of influence of various responses move too, with the 

result that an object will at different times be under the 

control of differing numbers of responses. In the behaviour 

function model we are using, responses are summed, so when 

an actor comes under two influences the effect may be dou-

bled or they may cancel each other out. The goal must be to 

prevent sudden changes in the sums of responses. 

There are three ways to combat changes in response 

sums: increasing the velocity gradually within the range of 

a response, weighting responses so only one has effect, or 

using minimum-distance or a similar computation to select 

only one response. 
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The first solution requires a response that, at the 

boundary of its influence, results in a velocity of zero. 

Since these boundaries are normally distances (although this 

need not be the case -- an actor could respond to a provoker 

when the provoker's velocity or time-to-reach is within a 

certain range), the linear equation for Tl functions can be 

solved to ensure the velocity is zero at the influence 

boundary and increases slowly within the boundary. Complex 

T2 magnitudes containing elements of distance can also be 

used . 

Manipulating weights is probably the easiest way to 

handle response summing. The essence of this technique is to 

rank responses in terms of overall importance and assign to 

each rank weights that differ in several orders of magni-

tude. Although a large number of different ranks can be 

used, it has been found especially useful to assign weights 

to the three ranks shown in Figure 5.10. Using these 

weights, a physical constraint response (e.g. bouncing off 

a wall) will take preference over all else. Where no phys-

ical constraint need be applied, but where the actor is 

within the area of influence of a stimulus, the primary re-

sponse of interest will be effective. Finally, if there is 

no stimulus within range, the homeostasis type response will 

control the actor's behaviour. 
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TYPE OF RESPONSE 

Self-Qriented/Homeostasis 
-- effective outside all other responses 

Primary Response 
-- effective within range of stimulus 

Physical Constraints 
— effective near stimulus boundaries 

WEIGHT 

.01- .05 

1 - 5 

100 - 500 

Figure 5.10 -- Weights for Responses of Increasing Impor-
tance 

There are two disadvantages of controlling response 

summing using weights: It is not effective where responses 

are of equal weight -- with the weighting in figure 5.10, 

the summing of the primary responses could still be a prob-

lem. The second disadvantage is the converse, it renders re-

sponses of lower rank ineffectual within the ranges of 

higher-ranked responses. For example, it is often desirable 

to have a self-oriented response override the primary re-

sponse when the velocity becomes too high or too low. This 

can be combatted by making the weight from a partial re-

sponse higher at the extremes: A series of different sub-

responses could operate within different ranges, or the 

system could be told to vary weight continuously -- in PAM a 

negative user-supplied weight specifies that the weight is 

actually to be the magnitude of the weight given, multiplied 

by the output velocity. 
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A third way of combatting summing of responses is to 

have the system select a particular response. In PAM it is 

possible to have an actor only respond to the stimulus whose 

distance (or other magnitude) is the minimum. This solution 

has not been studied in detail and should be the subject of 

future research. This method is similar to weighting in 

that only a certain set of responses has effect at one time, 

the difference is that with minimum selection, stimuli of 

equal importance can be made to dominate each other whereas 

the hierarchy of dominance is always fixed when weighting is 

used. Minimum selection is also not effective when one of 

the responses in the selection is self-oriented -- for exam-

ple you cannot compare the 'distance to yourself' with the 

distance to another object. 

Figure 5.11 summarizes the advantages of the different 

solutions to the response-summation problem. In a complex 

environment the three methods can be combined to obtain a 

desired mix of advantages. 

The mathematical class of problems tend to cause behaviours 

that are uninteresting if left unchecked; they tend, how-

ever, to be easier to solve than the perceptual class of 

problems. There are five such problems in total. Two, 

namely positive and negative feedback, are inherently part 

of the behaviour-function concept and are generally useful, 

5.4.2 Problems of a Mathematical Nature 
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Figure 5.11 -- Methods of Handling Response Summation 

only becoming problems when they get out of control. The 

third problem, oscillation, is related to the feedback prob-

lems but is never useful. Discretization, the fourth prob-

lem, is a problem caused by practical limits in 

implementation. The final problem, exact repetition, occurs 

occasionally due to pure bad luck. 
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5.4.2.1 Positive Feedback 

A response with positive feedback is one whose effect is to 

change some condition such that subsequent changes become 

greater. This leads to a lack of stability. It might be a 

change in position or a change in velocity that increases; 

both are problematic if unchecked but increasing change in 

velocity (increasing acceleration) can be far more spectac-

ular -- an actor's velocity can exceed the speed of light in 

a couple of time steps and can exceed the largest represent-

able floating-point number in less than a second! 

It is essential to have some positive feedback in a 

system because it is the only way of achieving smoothly in-

creasing velocity. There must always be some kind of limit-

ing factor, however, to prevent the system from going out of 

control. The most reliable way of preventing excessive posi-

tive feedback is to provide each response with a condition 

that specifies a range in which it can operate. Once the 

magnitude of concern is no longer in the range, positive 

feedback is cut off. Another way to control positive feed-

back is to provide a second, more heavily weighted, partial 

response that takes control within some range. This is 

effectively what walls are supposed to do -- their objective 

is to prevent objects from getting too far apart. Walls can 

suffer from other problems though, including discretization 

and oscillation. Modular arithmetic (wraparound mode) can 
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control excessive distance, but it cannot control excessive 

veIoc i ty. 

It has been found that for most types of response, 

particular combinations of multiplicative and additive 

parameters will cause positive or negative feedback, oscil-

lation or combinations of the three. Conversely, it is 

usually possible to eliminate these conditions by choosing 

appropriate parameters, although this may mean desired 

behaviours cannot be achieved. When responses become com-

plex though, it can be difficult to predict undesirable 

feedback so restricting responses to ranges may be essen-

tial. 

The subsequent paragraphs identify the values of param-

eters that are problematic for two of the simplest types of 

response. 

The following Tl partial response increases velocity 

steadily due to increasing change in distance if it is the 

only response affecting an actor: 

return(distance away) 

The velocity here will double at every iteration. Any Tl 

response will run into problems unless it follows the format 

described earlier. The away direction with a positive multi-
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plicative parameter or the towards direction with a negative 

parameter will cause a loss of control due to positive feed-

back, unless there is some limiting factor. 

The self-oriented response shown below is also problem-

atic: 

return(velocity mult 1.1 forwards) 

In general, any time the response is based on velocity with 

a multiplicative parameter greater than 1, positive feedback 

will occur. With such a multiplicative factor the result is 

increasing acceleration; one should beware if the factor is 

substantially above one. A positive additive factor also 

causes positive feedback, but only a velocity increase which 

is more benign. 

5.4.2.2 Negative Feedback 

A response with negative feedback is one whose effect is to 

change some condition such that the next change is smaller. 

The result is a damping down of movement; if uncontrolled 

the whole animation may grind to a halt. 

Some negative feedback is necessary to control positive 

feedback and to generally make behaviour interesting. The 

primary methods of control are the same as with positive 

feedback — restrict response functions to a range so that 
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if velocity is too low the negative feedback is cut off, or 

provide another response that can override the one causing 

negative feedback. Since much lower velocities and distances 

are involved, the second solution is much more effective for 

negative feedback than it is for positive feedback. 

If an object slows down to a halt, the culprit might 

not be a negative-feedback response. The response-summation 

problem mentioned earlier may be what is to blame; responses 

may be cancelling each other out. 

The simplest cases of negative feedback are similar but 

opposite to the examples given for positive feedback. The 

following Tl response causes an actor to rapidly decrease in 

velocity as it approaches its stimulus: 

return(distance * .1 towards) 

In general any Tl response which has a multiplicative param-

eter between 0 and 1 exclusive and a towards direction (or a 

parameter between - l a n d 0 and an away direction) will ex-

hibit negative feedback. The following T2 response will de-

crease the speed to nil I: 

return(velocity * .9 forwards) 
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The conditions for those seIf-oriented responses that cause 

negative feedback are almost the same as the conditions on 

Tl responses: any self-oriented response whose multi-

plicative parameter is between 0 and 1 exclusive and whose 

direction is forward (or -1, 0 and backwards) will slow 

down. 

5.4.2.3 Oscillation 

Oscillation is a frequently observed phenomenon in behaviour 

function animation. It occurs when a vicious circle is set 

up; the effect of a response at one time step is counter-

acted by a response at the next time step. This type of cy-

cle results in the actor rapidly vibrating between two 

positions at a frequency of half the time-step update rate. 

There are many circumstances that cause oscillation. 

They can be divided into two categories: those caused by a 

single sub-response and those caused by two or more sub-

responses interacting. The solution is always to remove the 

cause of the oscillation. In the case of single-response 

oscillations it is sufficient to alter parameters; to remove 

oscillation from a muIti- response situation it may be neces-

sary to do substantial tinkering with parameters, weights 

and the responses themselves. 

Single-response oscillations can be usually dealt with 

if found. The following shows a typical Tl response that 
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will cause its actor to oscillate between two points that 

might be quite distant: 

return(distance * 1.1 towards) 

In general, any unconstrainted Tl response with a multi-

plicative parameter greater than 1 and a towards direction 

(or a parameter less than -1 with an away direction) will 

oscillate since the actor will always jump back and forth 

over the sti muI us. 

Badly designed self-oriented responses like the follow-

ing also have oscillation problems: 

return(velocity * -1 forwards) 

Any such response with a negative multiplicative parameter 

and a forward direction (or a positive parameter and a back-

wards direction) will oscillate. 

All responses involving relative movement have a 

tendency to oscillate -- it is for this reason that these 

responses have been found not very useful. 

The following partial response illustrates a typical 

muIti-response oscillation problem: 
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if timetoreach < .5 
return(veIocity reflection) 

e I se 
return(veIocity towards) 

In this example the actor will initially move towards the 

stimulus. When it is about to collide with the stimulus, 

the actor will bounce off. At the next time step, it will 

again approach and the approach-retreat cycle will repeat 

forever at a very rapid rate. 

There are many other possible combinations of sub-

responses or sub-response groups that counteract each other 

at alternate time steps. Any response that contains di-

rections that can oppose each other should be used with cau-

tion. If for example a velocity-forwards and a 

veIocity-towards response were used together they will ei-

ther counteract or complement each other depending on the 

actor's forwards direction. 

5.4.2.4 Discretization 

Discretization results from the fact that although the illu-

sion of continuity is maintained in behaviour-function ani-

mation, calculations are actually made at finite intervals. 

As a result a whole time-step may pass before behaviour 

functions can respond to a situation. 
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Discretization can be a problem in many instances. One 

example is the unintentional passing of an actor through a 

stimulus when it is in fact supposed to bounce off. This 

would be likely if the velocity of the actor were greater 

than the sum of the radii of the actor and stimulus, and the 

following were the response that is supposed to cause the 

bounc i ng: 

if timetoreach < 0 
return(velocity reflection) 

The trouble with this is that the time to reach may not be 

checked until the actor is over half way through the bar-

rier, at which time the reflection direction would be for-

wards. One solution is to make the response bounce earlier: 

if the time to reach is less than 1. That works in most 

cases except when the actor is rapidly increasing in speed. 

There is a drawback to this solution though, if the actor is 

moving rapidly, it will appear to bounce before reaching the 

stimulus. When there is no danger of the actor passing 

through the stimulus it is preferable to have the bouncing 

occur when the time to reach is less than .5 because then 

the average distance at which it will actually bounce is the 

exact boundary of the stimulus. 
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5.4.2.5 Exact Repetition of a Sequence 

In a pseudo-random number generator, it is expected that cy-

cles of numbers will appear. A good generator will attempt 

to make a non-repeating sequence as long as possible, but 

eventual repetition is inevitable. Behaviour function ani-

mation works on the same principle as pseudo-random number 

generators -- outputs are fed back into inputs. The main 

difference between pseudo-random number generators and 

behaviour function animation in terms of calculations, is 

that there is more than one input and more than one output 

in the animation process. Nevertheless, if a given status 

recurs in the animation, a cycle will be formed. 

The more complex the environment, the less likely that 

the repetition will occur. Exact repetition has only been 

observed with a maximum of two objects and two simple par-

tial responses. Since cycles that repeat tend to be un-

interesting, they should be prevented. There seems to be no 

way to predict them, but making minuscule adjustments to one 

of the parameters of a partial response solves this problem. 

Sometimes an apparently-repeating sequence will crop up 

that is in fact not exact repetition. An example of this 

might be where an actor has 'cornered' a stimulus and swings 

back and forth near the corner. If precise quantities are 

noted, it will be found that this is merely a behaviour that 

follows a close but not identically repeating cycle. If this 
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behaviour is regarded as a problem, the behaviour functions 

could be modified to allow the cornered object to escape. 



Chapter 6. 

FUTURE RESEARCH 

The work of this thesis has involved the investigation of 

some fundamental principles of behaviour function animation. 

The general behaviour of simple classes of responses and 

some problems involved in creating behaviour have been iden-

tified. There is no question that this technique of ani-

mation has promise, but much more work needs to be done. 

Most of the future work outlined in this chapter would 

require enhancements to the PAM implementation. The techni-

cal documentation gives details about how some of these 

changes may be made. 

One area of future research is the generalization of the 

animation description language, especially the partial re-

sponse sect ion. 

One improvement would be to convert the keyword syntax 

described in appendix A into the formal syntax of chapter 2. 

If necessary, this could be done using a pre-processor. 
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6.1 LANGUAGE ENHANCEMENTS 
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A second, and probably more important enhancement would 

be to remove some of the idiosyncrasies that are built in 

for run-time optimization reasons. Some of the easily-

identifiable idiosyncrasies are the lack of multiple condi-

tions on a sub-response, the restriction to a single 

multiplicative and additive parameter, the fact that addi-

tion is done before multiplication and the fact that else 

conditions encompass all subsequent rules. If generalization 

were done, it would most likely be necessary to actually 

compile the partial responses in order to maintain real-time 

operati on. 

A major enhancement to make the system more usable 

would be to allow response functions to be used in the same 

way as functions in a conventional programming language 

with arguments and formal parameters. Other programming-

Ianguage-Iike features such as symbolic constants and local 

variables with expression evaluation would also be useful. 

If these enhancements were made, research would be far eas-

ier, especially into Tl or distance type functions where the 

programmer must now solve systems of equations. High-level 

functions could be programmed and saved in libraries; these 

might have definitions like the following: 

predator_avoid(notice_criteria, wary_action, 
danger.criteria, evasive.action, 
succumb.criteria, captured.action, 
re Iease.criteria, escape.action) 
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with the arguments being numbers or symbols 

Much work could be done to increase the body of knowledge 

about behaviour functions. Firstly, since there are an al-

most infinite variety of behaviour functions possible, 

interesting and useful combinations are certain to be uncov-

ered by continued 'tinkering' with the PAM system as it now 

stands. Mathematical properties of Tl responses have been 

described in detail in this thesis, further work could in-

volve finding useful equations for T2 responses and simple 

combinations of responses. 

There are several magnitudes and directions that could 

be added. In this thesis a few ratios of fundamental magni-

tudes are looked at. An extension would be to try all possi-

ble ratios as well as products (sums and differences can be 

done now due to the summing of sub-responses). 

Another area of possible research is into the way vari-

ous responses can be combined to create behaviour. The 

minimum-magnitude capability of PAM needs to be inves-

tigated, and this could be expanded to allow for the se-

lection of minimum and maximum partial responses. 

6.2 BEHAVIOUR FUNCTION RESEARCH 
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In order to enhance animacy, a useful feature would be 

to maintain a facing-direction for each object (the direc-

tion the object is looking as opposed to the way it is mov-

ing). Other useful features would be the ability for 

behaviour functions to manipulate the shape (so animal move-

ment could be created1) and colour of objects, or other as-

pects of the environment. This would imply a quite 

fundamental change in the system to accommodate more than 

one output from all types of response. 

At an even higher level, it would be useful to allow 

behaviour functions to work on complex objects, perhaps de-

fined hierarchically. The main problem here would be finding 

perimeter distances. If complex objects were built from 

components of the type used in this chapter the distance 

would be that of the closest pair of components, however 

this might be an excessively inefficient way to proceed. 

Yet another research path might be to investigate T3 or 

higher classes of response, or responses that have some 

other mode of memory -- perhaps saving data to be used as 

input at some future time-step. 

1. Michotte 1963 



There are several areas where improvements could be made 

over the PAM implementation. 

A future PAM2 system might allow for panning after 

important objects to solve some of the problems outlined in 

the last chapter. A way of concatenating sections of behav-

iour that is more effective than PAM's simple 'load after 

time-out' could be implemented to allow the production of 

films* A related enhancement would be the ability to display 

complex backgrounds. 

The whole system could be enhanced to operate in three 

dimensions. This could be relatively easily added to the 

current PAM system; the only difficulties would be creating 

depth-perception and updating the algorithms (especially the 

Euclidean distance between perimeters algorithm), ensuring 

they are still efficient enough for real-time display. If 

3-D were implemented, camera movements could be defined; the 

virtual camera might actually be an actor responding with 

behaviour to the objects it is 'filming'. 

One feature that was originally planned for PAM was the 

ability to interactively modify the environment. At its sim-

plest level, such an enhancement would involve manipulating 

constant values in functions using some valuator device such 

as the mouse. At a more complex level, this might involve 
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changing whole functions. This would greatly enhance re-

search productivity since fine tuning responses by re-

reading data files can be very time-consuming. Dummy 

interfaces are already provided in PAM for access to updat-

ing routines and to routines that would save the internally-

updated data back into a file in the manner of a 

d i sassembIe r. 

A final possibility for future work is to make a porta-

ble behaviour-function animation system -- the non-machine-

dependent elements of PAM could be isolated, and the amount 

of code in the remainder could be minimized. This would 

facilitate research using other systems. 



Chapter 7. 

SUMMARY AND CONCLUSIONS 

Behaviour function animation has been found to be an effec-

tive and promising technique. We have discovered that it is 

possible to create simple functions which cause apparently 

complex behaviours to be perceived. 

The following paragraphs summarize some of the elements 

of the thesis: 

1) In the universe, a relatively small number of phys-

ical laws are sufficient to produce all the behaviour we see 

in every day life. Likewise, in behaviour function ani-

mation, a small number of simple responses can create a vast 

array of behaviour. The concept of the chaotic system is the 

driving force in both cases. 

2) It is useful to consider behaviour in terms of the 

relationships between each pair of objects in the environ-

ment. Each object can take the role of both actor and stim-

ulus. The reaction of an actor to a stimulus is called a 

partial response, and can be further broken down into a se-

ries of sub-responses. The combination of partial responses 

for a particular actor forms the behaviour. In this thesis, 

- 108 -
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behaviour is generated by summing responses, but there is 

potential in other methods of combination. 

3) Because in the worst case, every object reacts in-

dependently to every other object in the environment, and 

there is the necessity to calculate the state of the 

environment repeatedly, behaviour function animation is 

fundamentally an 0(n 2) process. Actual environments tend to 

be better than this due to the fact that many actor-stimulus 

relationships are null, usually because the actor is a 

static object like a wall. 

4) The only output of behaviour functions, in the model 

investigated in this thesis, is the velocity vector of an 

object. Outputting positions is not useful because desirable 

behaviours involve smooth movements of objects. 

5) To create behaviour functions, it is sufficient to 

consider only the positions of objects at the two preceding 

time-steps. When just the one previous time step is used, 

the behaviours and responses are called Tl. Responses con-

sidering a second previous time step are called T2. 

6) It is most effective to combine the basic input 

positions in fundamental ways to form series of separate 

magnitudes and directions. The type of behaviour obtained 
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depends most strongly on the particular combination of 

magnitudes and directions used. 

7) Tl functions use distance and inter-object direc-

tion. Systems with only these elements can be easily defined 

in terms of simple linear equations. They allow for the 

modelling of many types of interactions between objects. 

The type of distance found most useful is distance between 

perimeters, as opposed to distance between centres -- it is 

only with the former that such effects as bouncing can be 

ach i eved . 

8) The most important type of T2 functions are those 

with which an object responds to itself. This self-oriented 

behaviour is used to maintain momentum in a system or to 

prevent a system from going out of control. The elements 

which generate this type of behaviour are velocity magnitude 

and direction of movement. 

9) Although most of the complexity of a system can be 

achieved by using just Tl and self-oriented elements, it is 

necessary to use certain other magnitudes and directions for 

particular effects. Of particular interest are: 

-- the velocity and direction of movement of the stimulus; 

— the change in distance, which allows an interaction to 

be different on approach and retreat; 
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the time-to-reach (ratio of distance to change in dis-

tance), which allows an inter-object interaction to be in-

dependent of velocity; 

the ratio of distance to velocity of the stimulus, 

which allows for effective capture behaviour; and 

-- several compound directions (reflection, orbital and 

interception) which allows objects to move in various phys-

ically meaningful ways. 

10) There is little use for certain magnitudes and di-

rections, because the behaviour generated by functions in 

which they are used is either unstable or can be more easily 

generated in other ways. Quantities in this category are 

those involving the direction and magnitude of relative mo-

tion and inverse-square distance. 

11) It is useful to divide responses into levels of 

importance with more weight given to the most important. 

Highly weighted responses prevent physically impossible 

situations, allowing for bouncing off walls or constraining 

maximum speed. Intermediate weight responses create the 

behaviour that is of interest. Low weight responses create 

background behaviour that maintains movement in the absence 

of other responses. The high and low weight responses have 

been found extremely easy to create. 
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12) Useful responses tend to be found by chance or by 

means of a considerable amount of tria I-and-error experi-

mentation. With a low-level language it is not easy to 

deliberately design a function which will cause an object to 

move in a particular animate manner. However, once they 

have been discovered, response functions tend to be robust 

In the sense that their parameters can be changed through a 

wide range of values with similar behaviour still appearing. 

Thus, for example, 'pushing' might be changed to 'pushing 

hard' due to a change in parameter values. For behaviour 

functions to be a useful animation tool it would be desir-

able for the animator to have a library of functions which 

generate standard behaviours, and for each of these func-

tions to have well designed control parameters. 

13) There are several problems that must be borne in 

mind when working with behaviour functions. On the psycho-

logical side are maintaining acceptable velocity, handling 

behaviour that would cross screen edges, and preventing un-

natural movement by dealing with boundaries of response 

summation. Problems of a mathematical nature are positive 

and negative feedback, oscillation, discretization and exact 

repetition. 

14) Animation with behaviour functions can be done in 

real time. Using an IRIS 2400 with a floating-point board, 

it is possible to animate over ten objects at once. Consid-
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erable restriction must me placed on the way partial re-

sponses are specified to allow for optimization; it is a 

concern that if these restrictions were removed, less could 

be done i n reaI ti me. 

15) It is possible to create behaviours with the crite-

ria outlined in the psychological and animation literature 

and to observe such impressions as causality, animacy and 

i ntentiona Ii ty. 

16) Only a relatively superficial look at behaviour 

function animation is presented in this thesis. It is the 

author's opinion that this methodology has great potential 

and that further research will be highly rewarding. 



Appendix A. 

MAPPINGS BETWEEN LANGUAGE VERSIONS 

The animation description language described in chapter 3 

was designed for ease of understanding on the part of the 

user. The language actually used by the PAM implementation, 

on the other hand, was designed for ease of parsing -- it 

was not an objective of this thesis to be a compiler-writing 

exercise. The PAM language follows a strictly keyword-

parameter format with the parser expecting a keyword fol-

lowed, possibly, by one or more required parameters. Input 

in the PAM language is strictly free-form with the any num-

ber of spaces, tabs or new-lines separating each the 

keywords and parameters. Additionally, any of the keywords 

can be abbreviated to a minimum of three characters. 

The only difference between the two language versions 

is in the way partial responses are specified. The two lan-

guages are functionally identical and there is a one-to-one 

mapping between them. The following shows the mapping; for 

each language element that differs, the formal version is 

shown first and the PAM version follows. 

- 114 -
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The following is the formal language: 

<p_response description) ::= 
return7<sub_response>) 

| return(<sub_response>) 
<p_response_description) 

| if <condition> return(<sub_response)} 
I if <condition> return(<sub_response)) 
<p_response_descri ption) 

| if <condition> return(<sub_response)) 
else <p_response_description> 

The following is the exactly corresponding PAM language 

<PAM_p_response_description> : : = 
<PAM_sub_response) 

I <PAM_sub_response> 
<PAM_p_response.description) 

« ~ _ I _ J : 4 . : v I / D A M _.. 

I 
<r/\n_p_response_aescript,ion> 
<PAM_condition> !<PAM_sub_response) 
<PAM_condition> !<PAM_sub_response) 
<PAM_p_response_description) 
<PAM_cond i tion) !<PAM_sub_response) 
<PAM_p_response_descri ption) 

on I y 

Forma I I anguage: 

<sub_response) ::= 
<magnitude_section) 
<di rection.section) 
<weight_section) 

PAM vers i on: 

<PAM_sub_response> ::= 
<PAM_magni tude.sect ion) 
<d irection.sect ion) 
<weight_section) 

Forma I I anguage: 

<magnitude.section) ::= 
<magn i tude) 

| <magnitude) * <fva|) 
j <magnitude) + <fval) 
j (<magnitude) + <fval)) * <fval) 
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PAM version 

<PAM_magnitude.section> ::= 
<magn i tude> 

| <magnitude> mult <fval> 
| <magnitude> plus <fval> 
j <magnitude> plus < f w a I > mult < f v a I > 

Forma I Ianguage: 

<cond i tion> :: = 
<magnitude> > <fval> 

| <magnitude> < <fwal> 
j <magnitude> > <fval> k < <fval> 

PAM ve rs ion: 

<PAM_condition) ::= 
<magnitude> gt <fval> 

| <magnitude> It <fval> 
I <magnitude> gt <fval> It <fval> 

It should be noted that definitions not shown remain 

identical (••9« <magnitude> <direction.section> 

<weight_section>). Another point worth noting is that PAM 

has greater flexibility in specifying some items than shown 

here. For example, when a <PAM_magnitude.section> is pre-

ceded by a <PAM_cond i t i on) with the §SJSS magnitude, the sec-

ond magnitude with its preceding exclamation mark may be 

omitted. Also, the ordering of keywords within sub-responses 

is not enforced, although for consistency and readability 

the syntax shown above should be followed. 
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