Accepted: AAAI Workshop on Knowledge Representation Aspects of Knowledge Acquisition, San Jose, July 1992

Informality in Knowledge Exchange

Timothy C. Lethbridge
Doug Skuce

Department of Computer Science
University of Ottawa
Ottawa, Ontario, Canada K1N 6N5
(613) 564-8155 tcl@csi.uottawa.ca
(613) 564-4518 doug@csi.uottawa.ca

There are
Abstract active proposals for the adoption of a

We believe that a knowledge exchange language
(KEL) should be able to support informality. By
this we mean the presence of knowledge
structures for which the KEL definition specifies
no semantics. Such structures are intended to be
interpretable only by humans, or by specialized
programs into which a KEL file is|oaded.

We explain the rationale for this assertion and
point out some shortcomings of current
proposals. We describe several types of informal
knowledge and suggest how such knowledge can
be handled in a KEL. CODE4 is used as an
example of a working knowledge management
system whose CKB file format has some of the
capabilities we propose.
knowledge exchange language
1. Introduction (KEL) that would alow disparate
systems to share knowledge bases.
Among the suggestions are the Knowledge Interchange
Format (KIF)1 by Genesereth and Fikes [GENES 91]; and
Sowa’s conceptual graphs [SOWA 84].

Most of the debate about KEL proposals has centred on

their syntax and formal semantics?. Little or no attention
has been given to the exchange of knowledge structures

1 The teem KIF has developed two senses: The specific
proposed KIF language, and, more generically, any proposal
for some future standard language whose requirements are
still being actively researched and debated. We suggest the
replacement term KEL for the generic sense.

2 Examples of forma semantics can be found in: [SOWA 84]
for conceptual graphs, and [SCHMO 91] for the KL-ONE
derivative, NIKL.

that are 1) only partialy forma, or 2) differently
interpretable by various subsets of the exchanging systems.
We term such structures informal.

Currently most knowledge representation languages
contain some kind of informality, although this is often
not properly appreciated. The following are examples: The
mere use of English words as logical symbols results in
knowledge bases whose ‘meaning’ is largely grounded in
humans interpretations of the symbols (e.g. predicate
names that are English words). Most KR languages allow
some kind of “commentary” knowledge to be integrated.
Other KR languages contain primitive elements whose
formal semantics are given by an implementation
language such as Lisp. We will argue that these latter
elements should be considered informal too, relative to a

KELS.

In this paper, we first expand on what we mean by
informal knowledge and then explain the importance of
being able to represent it. Finally we propose how
informality might be handled in a KEL.

Our ideas are being implemented as part of CODE4
[SKUC 92], a generic knowledge representation
environment that supports informality and usability in
preference to strong inference capabilities. CODE4 is
derived from earlier work on CODE2 [SKUC 91]. CODE4

supports various knowledge representation schemata®:

3 Lisp the language, is undoubtedly formal; however, a piece
of Lisp embedded in some knowledge base would be
considered informal relative to the KR language's formal
semantics if those semantics do not contain the Lisp formal
semantics. We expand further in section 2.

4" The terms schema, representation, language and format are
often used interchangably (with considerable resulting
confusion). We use schema as the most general of these
terms. We use representation (when it does not qualify
something) to mean, ‘an instantiation (e.g. as text or data
structures) of a schema’. Format and language are reserved

e A conceptual schema, that is abstract and
mathematical.

» Several user interface presentation schemata for the
display of knowledge in an easy-to-understand format
(instantiated as mediating representations).

* An internal physical schema for efficient inferencing
and manipulation (instantiated as the data structure
arrangement of the current implementation).

* An external compact file format for the exchange of
knowledge bases.

All these representation schemata have fundamental
differences, but all handle informality. It is the latter, the
CODE4 Knowledge Base (CKB) file format, that has
many properties we hope will be possessed by a standard
KEL. A partial syntax for the CKB format is given in the
appendix.

If a satisfactory standard KEL can be agreed upon, we
would look forward to using it instead of CKB format so
that we can exchange knowledge, both formal and
informal, with systems as diverse as CY C [LENA 90] and
Classic [BRACH 91]

2. Towards a Definition of Informal
Knowledge

During the first Workshop on Informal Computing
[MUND 91], attempts were made to define informal
knowledge (or its converse, formal knowledge). The
following points are derived in part from the discussions

at the workshop®:

a) Whereas purely formal knowledge has a semantics,.
i.e. its syntax is mapped to some underlying model (e.g.
set theory), informal knowledge lacks such a mapping.
Informal knowledge can only have meaning by being

‘groundedG’ in external interpretation, e.g. in a human.

for schemata whose instantiations are in a linear or planar
form. Some of our terminology is due to Bradshaw et a
[BRAD 91].
S We do not intend to imply that these points were agreed to at
the workshop. For example, there was debate about whether
point a or point ¢ in fact leads to a definition of informality.
Here, we have concluded that interconnectedness is a
consequent of formality, rather than a defining property.
6 We use the word ground in the general sense of ‘making a
connection to’. In logic, one grounds a variable by making a
connection to some constant. Here, one grounds a symbol by

b) The formality of a representation is relative to the
declared semantics of a representation schema; i.e. a
representation’s formality is not an absolute attribute. We
can consider knowledge in the context of different
knowledge representation schemas (e.g. as it is physically
moved, or as different processes operate on it), thus
knowledge that is formal under one semantics may be
informal under some other semantics, and vice versa. For
example, the expression (+ 2 2) may be considered
formal Lisp, or an informal character string, or informal
marks on a piece of paper.

¢) The richness of the set of computable relationships
among the knowledge elements (i.e. the number of
deducible facts normalized with respect to the KB size)
depends on the formality, since the semantics determine
what is computable. The richness of the relationships
therefore might lead to a way to measure relative

formality”.

This paper will focus on points @ and b). Different
systems that are to exchange knowledge will inevitably
have different semantics for their individual conceptua
schemata. It is reasonable to assume that even after
thorough rationalization, it will not be possible to map the
entirety of any given system’s semantics into those of a
common schema whose instantiations are interpretable by
all other systems. In fact, as we shall point out in the next
section, it is very important to give researchers the
freedom to extend their semantics at will, as long as a way
is found whereby such systems can remain compliant with
aKEL standard.

A KEL standard should therefore have a very small core
with a well-defined semantics to which every system can
map (e.g. one based on first order logic), as well as a
syntactic mechanism for handling elements that are
informal relative to the KEL.

The following is a (perhaps partial) list of knowledge
representation elements which should be considered
informal since they have a syntax but no formal semantics:

i. Symbols:

making a connection to some human (or machine) so that the
next time the human (or machine) sees the symbol the same
neural pathways (or procedures) are activated. The same
symbol can be grounded differently in different contexts (e.g.
two humans, or the same person a different times,
examining a knowledge base will likely make different
interpretations).

7 Measuring relative formality or informality is a subject of
ongoing research for the authors.

Here we include things like conventional constant
symbols in logic that are usually represented as
character strings having some meaning to humans,
and perhaps to specialized computationa
subsystems. We exclude syntactic markers from our
definition of symbols, since their identity affects
syntax and hence semantics.

Under the core semantics of a KEL it should always
be possible to substitute al occurrences of a given
symbol by some other, such that the forma meaning
of the knowledge base would be unchanged relative
to the core semantics. Of course in such a case, there
is likely to be a knowledge change due to the
semantics of the symbol itself as interpreted by (i.e.
relative to the semantics of) a human or a computer
system.

We should not restrict our definition of symbols to
include only character strings, although it would be
convenient if al symbols in a KEL were constituted
of characters. In CODE4, we allow symbols to be
arbitrary images (pixel maps), but these are
converted to a compressed string format for saving to
afile.

The ordering, arrangement or visual appearance
of knowledge elements:

In pure logic, the ordering of statements has no
relevance. From the point of view of a human
looking at a knowledge structure, however, the only
way to distinguish elements might be how they are
ordered or arranged in space. Alternately, elements
might only be distinguished by their color, font etc.
For human interpretation, at least, attributes such as
these can be extremely important. For this reason, in
CODE4, we can currently save some such
information to our CKB format. In future we plan to
extend this.

Unconstrained values (typically strings) entered in
slot values or as predicate arguments.

There has been a tradition in frame systems to
associate arbitrary Lisp functions with slot values.
This is often required for complex applications.
Since different KR systems use different languages
(or at least have different libraries of executable code
available), the use of such arbitrary procedura
attachment must be considered fundamentally
informal relative to a KEL, i.e. my Lisp may not be
tranglatable to your Prolog.

It is, however, useful to alow any expression to be
entered as a slot value in order to cater to the needs
of informal knowledge acquisition. See section 3a).

iv. Comments and annotations of any sort:

Annotating knowledge structures is allowed in most
languages and is explicitly informal. We would not
expect to give a forma semantics to such structures.
However, we would suggest as a guideline that
comments only use a circumscribed terminology
consistent with the symbols.

All knowledge representation languages known to the
authors alow some informality, e.g. they use symbols that
are English words. We believe that such languages should
have explicitly identified types of informal elements, such

asthe above, and alow all of them if possi bleB.

Using metaknowledge (higher order knowledge) the four
types of informal elements listed above could al be
expressed in a syntactically uniform manner. For example
in a predicate-based schema, ordering might be expressed
using the predicate:

position (conceptl, 3).

We do not recommend this approach, preferring to keep
the types of formality syntactically distinct. The reason is
that amount of such metaknowledge would tend to
dominate, hence we should use syntactic shortcuts. Of
course, a system that interprets the KEL could convert the
syntactically-distinct types of informal knowledge into
metaknowledge for its own internal knowledge
representation

3. Rationale for the Exchange of Informal
Knowledge

The following points answer the question: Why should we
want to include informal knowledge in a KEL?

8 As a matter of theoretical interest, we believe that a
knowledge representation should be able to have no informal
knowledge (unlike most current representations). This
means, in particular, a representation with no explicit
permanent symbols. One can construct a CODE4 knowledge
base with no permanent symbols: Internal references are
memory pointers, and temporary symbols are generated only
for display or storage.

b)

So knowledge bases lacking sufficient
formalization, e.g. those under development, can
be exchanged:

In our research, we have found it very useful to have
knowledge enterers ‘sketch’ knowledge initially and
then gradually formalize it over time. This is
especialy important when using a knowledge based
system as a creative tool, as a brainstorming tool, or
as atool to resolve differences among experts. As an
improvement over natural language documents, it is
essential in our experience to be able to exchange
such knowledge bases.

At the current time, most typical knowledge
acquisition systems will not tolerate any syntactic
freedom, except those that permit unconstrained
natural language. We believe it would be desirable
for there to be a continuum; CODE4 is designed with
this in mind: Very fine-grained elements of
knowledge can be either formal or informal, and can
be transformed between these states through various
mechanisms. Larger knowledge structures, composed
of the finer-grained elements, can therefore be
partially formal and partialy informal.

One should distinguish ‘sloppiness from
‘informality’. Stored knowledge can be informal e.g.,

« if only fragments are present, e.g. “you fill in the

« if the syntax has not been refined, e.g. an outline of
arule,

» if concepts that are referred-to have not been
defined, or

« if the knowledge is merely commentary in nature.

Sloppiness, on the other hand, refers to such
undesirable activities as making statements or
choosing terminology without careful thinking, or
without careful review.

Because it is necessary, at some level, to ground6
knowledge in terms of human- or machine-
understandable elements:

Even if knowledge is entered very formally from the
start, it is dtill necessary to make some of the
representation human-or machine-interpretable,
otherwise nothing can be done with the knowledge.
At the very least this implies allowing human-
understandable symbols (and al known systems
allow this). This idea should be extended, e.g. to
allow images.

d)

Because informal elements allow for
heterogeneous knowledge representation systems
to coexist:

It is sometime desirable to store and exchange
representations of expressions interpretable only by
some specific system, e.g. a particular Smalltalk, or a
particular KL-ONE derivative (the representations
are therefore informal with respect to some system
that is not based on Smalltalk or is not the particular
KL-ONE derivative). Without this, it would be
necessary to ensure that there is a complete mapping
between the formal semantics of any two systems.
When such elements are loaded into a system that
can interpret them they will regain their formal
interpretability. When loaded into some other
system, they will be given no specia treatment, i.e.
they remain informal.

Because informal elements facilitate research into
knowledge representation without hindering it
with excessive or unnecessary syntax and/or
semantics:

This point follows from point c. Research into
knowledge representation is still very young.
Different researchers have many ideas about what
should be included in a KEL. Most researchers do,
however, agree that something equivalent to first
order logic would be a minimum requirement.
Systems would use informal elements to exchange
knowledge corresponding to their special features.
Different subsets of the systems could evolve to
interpret each other’s specia informal elements. In
time, it might be decided to extend the KEL.

The KIF proposal [GENES 91], for example,
supposes that a substantial number of Lisp functions
should be primitives in the KEL. We would prefer to
only include those functions having some degree of
universality (e.g. for which there is an obvious
analog in CODE4, or Prolog or C++). On the other
hand most existing systems would have a very hard
time dealing with some of the features of CODE4,
e.g. its support for many-to-many relationships
between terms and concepts (CODE4 properly
distinguishes these two very different notions [LETH
91]). This could be made an informal feature of a
first-generation KEL.

Interestingly, several enhancements to CODE4 have
been made without changing the syntax of the CKB
format at al (for example the storing and loading of
images is done using aready-existing informal
elements). We anticipate adding informal knowledge

about visual appearance and arrangement without
further changesto CKB format.

4. Representing Informality in a KEL

Before suggesting how informal knowledge might be
represented in a KEL, we believe it is important to give
some criteria for evaluating the effectiveness of a KEL’s
schema. Current proposals (e.g. [GENES 91]) do not offer
such criteria, so what follows is offered for general
consideration.

We propose that a KEL and compliant systems satisfy the
following criteria:

a) Conservation of system-specific knowledge by the
KEL:

A KEL knowledge base written by a compliant
system shall be subsequently readable by the same
system. The resultant internal representation of both
informal and formal structures shall be functionally
equivalent to that prior to the the writing, i.e.
nothing shall be lost.

b) Conservation of KEL knowledge by a compliant
system:

A compliant system X shall be able to read any KEL
knowledge base originated by another system Y, and
shall be able to subsequently write out an equivalent
KEL knowledge base that is functionally equivalent
to that which was read, i.e. X shall preserve any
specia-purpose informal knowledge originated by Y.

Criterion @) requires preservation of system-specific
semantics of knowledge despite the fact that the
knowledge is trandlated to KEL and back. Any semantics
not defined in the KEL standard would have to be
transmitted by informal structures.

Criterion b) requires that knowledge structures, including
informal ones, survive manipulation by a system
potentialy different from the one that had originally
written the knowledge base.

The main conclusion we can draw from the above is that
the representation of informal elements must have the
following properties:

* Informal elements must be syntactic units that a parser
will unambiguously recognize as such.

* Specific systems may choose to tag informa elements
with unique flags, (e.g. tags universally understood t mean
‘Common Lisp’, ‘Smalltalk block’, ‘Compressed image’,
‘Postscript’, ‘CODE4 term list’).

When processing a KEL file, a system should take an
informal element as a whole. Some systems may decide to
further process the informal element, others would ignore
its contents, preserving it for when anew KEL fileisto be
written.

In CODE4, we pre-process informa elements when
writing CKB format so they can be expressed in ASCII
strings that do not include the character that
unambiguously terminates the parsing of the informal
element. When reading CKB format, some processing is
attempted (e.g. to convert compressed images back into
displayable images), but if this fails, the informal element
is kept asasimple string and is displayed as such. A given
non-CODE4 system that could read CKB format might
not be able to interpret compressed-image strings, but no
knowledge would be lost. Instead, compressed images
could at least be viewed (as funny strings) by the user in
addition to regular strings.

. In this paper we propose that serious

5. Conclusions thought be given to alowing the

representation of informality during

the development of a knowledge exchange language

(KEL). Our work with CKB format in CODE4 has led us
to several important conclusions:

a) The KEL should be able to store informal elements as
syntactically distinct units, and compliant systems should
be able to process these or merely store them for later
output.

b) The informal elements should contain knowledge that
has no agreed-upon forma semantics, but may be
semantically meaningful to humans or specific systems.

¢) The core semantics of a KEL should be very small, such
that all members of the knowledge representation
community can agree about it. The representational needs
of systems that go beyond the core semantics can be
handled using metaknowledge and/or informal elements.

The CODE4 system has been
Acknowledgements geveloped by the authors as

well as Ken lisaka, Danny
Epstein and David Corbett. Ken lisaka designed the CKB
syntax in the appendix. Support for this research has been
provided in part by the Natural Sciences and Engineering
Research Council of Canada.

. Thefollowing is the syntax of the CKB file
AppendiX format, by which CODE4 systems exchange
knowledge bases. CKB format is very

compact, but includes only printable ASCII characters so
it can be emailed and processed easily by other software. It

is not designed for direct human readability, but can be
easily followed if necessary (e.g. for debugging, or
developing a new system).

In lieu of symbols (which are not strictly necessary),
references between concepts in CKB format are made
using integer labels. The integers are sequentially assigned
as a knowledge base is written out, and are discarded on
input.

CKB format supports informality in four ways,
corresponding to the points made in section 2:

i. Symbols are all represented in the string of <Term>.
This string can be interpreted as a simple character string,
or an arbitrary image. Concepts can have any number of
terms, including none.

ii. Order is preserved in collections. At the current time
there is no provision for storing general spatial
arrangement or other graphic attributes, but it is planned
to add this to CODE4 without changing CKB format:
Graphic information about a concept would be stored as a
term (recognizing the fact that appearance or orientation
isameans of conveying information symbolically).

iii. Arbitrary strings can be entered in the <head> of
<CleartalkNode>. CODE4 may or may not be able to
parse this string to obtain <semantics>. In fact, the
parsability may dynamicaly change as knowledge is
altered: The formality thus dynamically changes.

iv. Comments can be associated with any concept.

The internal syntax of strings (which can be compressed
images) is not shown. It was not considered necessary to
distinguish this functionality in the semantics of the
exchange language

Some 30 small knowledge bases have aready been
produced with CODE4 in our laboratory. An extended
version of CODEA4 is how also being developed by Boeing
[BRAD 91], and they plan to use CKB format. We
anticipate they will be able to store their extensions in
informal elements, so that their knowledge bases will till
be readable by the original system.

CKB format is till under development: We do not
propose it as a KEL, we merely hope it stimulates ideas.
Although it has syntactic markers for specific types of
concepts used in CODE4, these could very easily be
removed.

<KB Fi | e> 1. = <header >

<concept Li st s>

<header >

<syst enVer si on>
<digits>

<KBver si on>

<concept Li st s>
<concept Li st >

$)

<concept s>

<concept Recor d>

<Ter np»

<PrimtiveProperty>)

<Type>

<subconcept s>
<di sj uncti ons>

<col |l ecti on>

$]

<el enment s>
<el enment s>
<nil >

<l nst ance>

<Property>

<subproperties>

<super properties> :

<statenent s>

<St at enent >

<subj ect >
<pr edi cat e>
<val ue>
<st at us>

<nodal i ty>

;= '"'COMWWAND KB ' <cr>

<syst enVer si on> $,
<KBver si on> <cr>

$V <digits> $.

<digits>

| <concept Li st >
<concept Li st s>

$((| <concepts>)

<concept Recor d>
| <concept Record> $,
<concept s>

(<Type> | <Instance>
| <Property>

| <Statenment> |

| <PrimtiveType>
I

<terns>

<sour cePr operties>

$Y <subconcept s>
<di sj uncti ons>

<col |l ecti on>

<col |l ecti on>

$[(e| <el ements>)

<nil>| <digits>
| <digits> $

$@
$l

$P <subproperties>
<super properties>
<st at enent s>

<col |l ecti on>
<col |l ecti on>
<col |l ecti on>

$0 <subj ect >

<pr edi cat e> <val ue>
<status> <nodal ity>
<comment >

<know edgeRef er ence>

<col | ecti on>
<col | ecti on>
<col | ecti on>
<string>

<string>

<conment > 1. = <col |l ection>

<knowl edgeRef erence>: : = <col l ecti on>

<Ter np c:= $T <string>

<Met aConcept > ;= $M <submet aconcept >

<PrimtiveType> 1= By _<s_ub_concept s>
<primtive>

<primtive> ;1= <string>

<PrimtiveProperty> ::= $p

<subproperties> <super propertise>
<st at enent s>

<primtive>
<terns> ;.= <col |l ection>
<sourceProperties> ::= <collection>

<Cl eart al kNode> 1= $C <(Cl eartal kCl ass>
<semanti cs> <head>
<Cl eart al kIl nst Var s>

<Cl eartal kO ass> ::= <cl assKey>
<semanti cs> ;1= <col |l ection>
<head> ii= <string> | <digits>
<Cleartalklnstvars> ::= | $[
<CTI nst Var Li st > $]
<CTI nst Var Li st > ;.= <CTl nst Var > |
<CTl nst Var> $,
<CTI nst Var >
<CTI nst Var > ci=<nil> | <digits> | $(

<col |l ection> $)

[BRACH 91] Brachman, R., McGuiness,

References D., Patel-Schneider, P. and Alperin
Resnick, L., “Living with Classic: When and How
to Use a KL-ONE-Like Language’, in Sowa, J ed.,
Principles of Semantic Networks: Explorations in
the Representation of Knowledge, Morgan
Kaufmann, pp 401-456

[BRAD 91] Bradshaw, JM., Ford, K.M. and Adams-
Webber, J, “Knowledge Representation for
Knowledge Acquisition: A Three-Schmata
approach”, proc. 6th Banff Knowledge Acquisition
for Knowledge-Based Systems Workshop, Banff,
October, pp 4-1:4-25.

[GENES 91] Genesereth, Michael R. and Fikes, Richard,
“Knowledge Interchange Format, Version 2.2,
Reference manual”, Logic-90-4, Logic Group, C.S.
Dept, Stanford Univ., March.

[LENA 90] Lenat, D. and Guha, R. Building Large
Knowledge Based Systems. Reading, MA, Addison
Wedey

[LETH 91] Lethbridge, T.C., “Creative Knowledge
Acquisition: An Analysis’, 6th Knowledge
Acquisition for Knowledge-Based Systems
Workshop, Banff, October

[MUND 91] Mundie, D.A., and Shultis, J.C., proc.
Workshop on Informal Computing, Santa Cruz,
May, Incremental Systems

[SCHMO 91] Schmolze, James A. and Mark, William,
“The NIKL expreience”, Comput. Intell. 6, 48-69

[SKUC91] Skuce, D., “A Wide Spectrum Knowledge
Management System.”To appear in: Knowledge
Acquisition : 49 pp

[SKUC92] Skuce, D., and Lethbridge, T.C., “A

Knowledge Represenation for Interactive
Knowledge Management”, in preparation
[SOWA 84] Sowa, John, Conceptual Structures:

Information Processing in Mind and machine,
Addison-Wedley

