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Recovering Software Architecture from the Names of
Source Files

Abstract
We discuss how to extract a useful set of subsystems from a set of source-code file

names. This problem is challenging because, in many legacy systems, there are thousands
of files with names that are very short and cryptic. At the same time the problem is
important because software engineers often find it difficult to understand such systems.
We propose a general algorithm to cluster files based on their names, and a set of
alternative methods for implementing the algorithm. One of the key tasks is picking
candidate words that we will try to identify in file names. We do this by a) iteratively
decomposing file names, b) finding common substrings, and c) choosing words in routine
names, in an English dictionary or in source code comments. In addition, we investigate
generating abbreviations from the candidate words in order to find matches in file names,
as well as how to split file names into components given no word markers. To compare
and evaluate our approaches, we present two experiments. The first compares the
"concepts" found in each file name by each method to the results of manually
decomposing file names. The second experiment compares automatically generated
subsystems to subsystem examples proposed by experts. We conclude that two methods
are most effective: Extracting concepts using common substrings, and extracting those
concepts that relate to the names of routines in the files.
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1 Introduction

A common task presented to software engineers is to try to understand a software
system's architecture starting only from the set of files containing its source code. This
task is frequently encountered when some change must be applied to a legacy system for
which the original designers are no longer available.

In an ideal legacy system, one would find adequate documentation describing the
requirements and the design of the well-organised source code. In fact, very few legacy
systems conform to this idyllic vision. If at all available, documentation tends to be
outdated, while repeated changes to the source code have blurred out the original design.

Furthermore, the source code itself is often organised as a very large set of files in a
single directory. Older operating systems often forced the following constraints on these
files:

•  They tend not to be organised into hierarchies of subdirectories, thus the single
directory containing the source code can contain thousands of files.

•  Their names tend to have a limited number of characters (perhaps 8 or 12) with few
markers (e.g. underscore characters or initial uppercase letters) to divide names into
components.

In this paper we will focus on helping software engineers understand the architecture
of legacy systems that suffer from both these constraints. If either constraint is lifted
Ñas is the case in most modern softwareÑ the process of understanding software
architecture is made considerably easier. We can see an immediate view of aspects of the
architecture by looking at how the software is divided into directories. With long file
names, the purpose of a file may be clear from its name.

In this paper, we explore the feasibility and efficiency of using concepts abbreviations
encoded in file names to gather these files in meaningful clusters (subsystems).

The rest of this paper is organised as follows: In the next section we present the state
of the art in software architecture recovery and propose a new approach based on file
name decomposition. In section ¤3 we discuss some works related to this research. Then
(section ¤4) we propose algorithms that enable us to cluster files according to their file
names. There are a number of interesting difficulties in this process. In section ¤5, we
present a series of experiments we have conducted that illustrate the efficiency of the
approach. We close the paper on a discussion of our new approach.

2 A New Approach to Recovering Software Architecture

We will first set the context of this research by presenting the state of the art in software
architecture recovery. Then we propose a new approach based on file name and discuss
some possible outcomes of it.
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2.1 State of The Art

When a software engineer sets out to understand a legacy system of the type described
above, he or she may rely on several of the following sources of knowledge: the
application domain, software engineering principles, organisation of the company, the
software system itself, common sense, etc.
Automatic approaches must rely on fewer sources of knowledge. Traditionally, one
distinguishes two such approaches:
Code clustering: (or the bottom-up approach) Consists of looking for regularities in the

code (e.g. references to the same variable) and grouping pieces of code (files,
routines) together according to these regularities. The clusters thus created are
believed to form meaningful concepts (design) in the code.
This approach is based on knowledge about the system that is at a very low level of
abstraction.

Plan recognition: (or the top-down approach) Given a base of programming concepts
(e.g. traversal of a linked-list, counter handling), one tries to find these plans in the
code.
This approach is based on software engineering knowledge as well as the same low
abstraction level knowledge about the system (i.e. source code).

These two approaches have opposite advantages and drawbacks: The bottom-up
approach is fast and efficient, it can handle large systems with millions of lines of code
(LOC), and is portable across a wide range of software systems. However, the data it
manipulates is at a very low level of abstraction and contains much noise. This makes it
difficult to extract significant abstract concepts. It is therefore very hard for an automated
tool to make appropriate decisions about which cluster many components should be
allocated to.

Researchers have recognised the need for more human-oriented approaches and
approaches which would capture higher level abstractions [BMW94]. The goal of the
top-down approach is; in fact, to allow the system to be viewed in terms of application
domain concepts or software design concepts. So far, however, research on this approach
[PGM97,Qui94,RS97,Wil90,WQ96] has mostly concentrated on the recognition of low-
level software design concepts (linked-lists, counters, etc.), and has hardly at all
considered application domain concepts. Another problem is that the approach has
proved to be computation intensive and doesn't scale up well: Typical research has only
involved a few thousands of LOC. Also the approach requires a knowledge base of the
concepts to be recognised, which supposes a large initial investment.

Both the top-down and bottom-up approaches have one common point however:
They consider the contents of the source code as the sole source of information about the
system.
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2.2 The File Name Approach

In this paper, we explore an alternative to the above approaches to architecture recovery:
The use of file names to cluster source files. This approach has some of the following
advantages:
•  It is largely language independent; a good approach might be usable for any set of

files.
•  File names are concise, therefore the approach requires few resources and should

scale-up nicely.
•  It extracts concepts from the file names which are often application domain concepts

and therefore highly significant to the software engineers. We see this approach as
more geared toward application domain knowledge than even the top-down approach

The file name approach differs from the top-down or bottom up approaches by
shifting the focus from the contents of the source code to other less formal but more
abstract sources of information. It is based on a different kind of knowledge: One can see
file names as knowledge of the system at a higher abstraction level than source code,
giving insights into application domain knowledge.

Like the bottom-up approach, the file-name approach can be portable and fast enough
to deal with large software systems (we are working with a legacy system containing 2
million LOC). But since it uses an informal source of information, explicitly intended for
humans, it should also extract concepts that are more "human oriented".

It is clear that clustering files according to their names will only provide us with a very
coarse view of the software architecture. As Merlo [MMM93] states, "many sources of
information may need to be used during the [design] recovery process," and other
approaches will be useful. File name clustering is one solution that can give a new point of
view on a system. Many other solutions can also be used: design recovery based on
comment analysis, or on operational information such as provided by job control files. At
the end of the paper, we will discuss some considerations for combining the various
techniques.

For the particular legacy system we are studying, the file name approach was the one
that best matches the way the software engineers view the system: We asked them to give
us examples of small subsystems they knew. These subsystem examples were clearly
identified by the occurrence of a concept in all the file names [AL97].

2.3 What's in a Name?

Before we attempt to analyse systems according to file naming conventions, we should
give some thought to the forces that shape the names.

Software developers (including analysts, programmers, database administrators, etc.)
can use any combination of the following as names of files, or components of filenames:
1. Data manipulated (e.g. classes, structures, tables, ...). In the particular system we are

studying, we found abbreviations such as: flag, db (database), str (string), or queue.
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2. Algorithms or processes (or steps of these) performed (these may be descriptive or
mere symbols such as "process1"). The file names we studied include abbreviations
such as: mon (monitor), write, free, select, cnv (conversion), or chk (checking).

3. Program control implemented (e.g. state machine, dispatcher, event handler, etc.) We
found the following examples: svr (server), d (distributed), mgr (manager).

4. The time period during which processing occurs, for example in our system: boot, ini
(init), rt (runtime).

5. I/O devices, services or external systems interacted with. In our telecommunication
software one can find the following examples: k2 (sx2000, a particular product), sw
(switch), f (fibre), alarm, or kermit, ...

6. Features implemented (a particular end-user function, or an entire sub-application).
The following abbreviations were found: abrvdial (abreviated dialling), mtce
(maintenance), edit (editor).

7. The names of other applications from where code was reused to create this system.
We have no example of this particular category for the system we study.

8. The names of groups, or programmers who developed the code. Again, this
possibility has not been used in our system.

9. Versions of the files or software (e.g. the number 2 or the word 'new' may be added, or
the name of target hardware). We may cite the abbreviations: s and sg, two different
versions of a product in the company), na (North America) and ma (Malaysia), new,
...

10. Problems that were fixed by adding a file. There is no example of this in our system.
The border between these categories or not strict and often one abbreviation could fit

in two categories. There are also abbreviations like "utl" (utilities) which are difficult to
categorise.

Many organisations have well established naming conventions that may require some
particular combination of the above elements to be used in file names. More often,
however the naming convention is developed informally. Indeed there may be multiple
conventions employed by different groups and individuals.

Despite the heterogeneity of naming conventions, it seems reasonable that if we can
divide the system up according to almost any of the above criteria, we can obtain
information that would be useful to the maintainer. A key consequence or limitation of
using the file name approach is that the resulting decomposition does depend heavily on
semi-arbitrary choices made by the designers about which of the above criteria to use. In
other words, the method might provide extremely useful information, but we will find
different types of information from different systems.

As we will see later, however, a real problem with the file name approach is that
elements of the names deriving from the above criteria are highly abbreviated. Thus the
second limitation of the approach is that we will normally not be able to extract all the
information present in file names, and there will be some uncertainly in the process. Most
of the details of the algorithms we present in this paper are attempts to address this
limitation and minimise its impact.
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3 Related Research

There has been a lot of research in the reverse engineering community concerning the
clustering of files into subsystems.

Our approach to file clustering consists of extracting from file names the concepts they
contain. We then cluster together files that refer to the same concepts in their names. This
results in a set of overlapping file clusters which correspond to important application
domain concepts (e.g. Call Processing, in our telecommunication environment; Q2000, the
name of a particular product; etc.) and Software engineering concepts (e.g. database, test,
debug, etc.)

Most prior research uses the bottom-up approach. This approach defines
interrelationships between files, and then clusters together the files with strong
interrelationships. Examples of such interrelationships include calls from routine to
routine, uses in one file of variables or types defined in another, as well as inclusion of a
particular file by two or more others. Examples of this approach are found in [MOTU93]
(variable uses and routine calls), [TH97] (routine calls and file inclusion), or [MH96] (file
inclusion), see also the special issue on Reverse Engineering [WC94] or the comparison of
many research approaches in [Lak97].

However, this kind of approach is impeded by the very low level of information it is
based on. For example, in [CTH95], Carmichael reports his difficulties in extracting
correct design information from a "reasonably well designed", medium sized (300,000
LOCs) recently developed system. The experiment used inclusion between files to deduce
subsystems, but it turned out that each file includes many other files, some of these
relationships crossing important architectural boundaries.

In a famous article [BMW94], Biggerstaff advocates a more human-oriented approach
that would actually help the user to relate structures in the program to his "human
oriented conceptual knowledge".

Researchers in plan recognition (the top-down approach) claim that this is what they
are doing, but to our knowledge, this approach has never been used for file clustering, and
it is not clear how this could be possible. Moreover, up to now, this approach has
focused on finding "software engineering clich�s", it does not consider application domain
concepts.

Some researchers have used file names to extract or help extract subsystems
[Nei96,TH97] and report good results although they did not formally quantify these
results. The main difference with our research is that they manually defined the
abbreviations of interest and then looked for these abbreviations in the file names.
Apparently, these researchers are only looking for one abbreviation in each file name, the
one marking the subsystem to which the file belongs. We, on the other hand, are trying to
automatically extract all abbreviations from the file names, whether they mark a
subsystem or not. We are not looking for a partitioning of the system, but for a set of
overlapping concepts.

Merlo et al. [MMM93] has an approach very close to ours; they cluster files based on
concepts extracted from comments and identifiers. The approach uses a neural network to
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discover the important concepts; again it only aims at discovering subsystems, and does
not decompose the file names. One interest of this approach is that it is not solely based
on the code.

The 1995 Working Conference on Reverse Engineering had a special track entitled
"Analysis of Non-Code Sources". The three papers [BGST95,dPLC95,Lut95] are
concerned with analysis of documentation to extract information about the design of the
system. These researchers are working on a source of information at an abstraction level
even higher than ours. Their purpose was more akin to scavenging of documentation than
redesign of the software system.

Our research was prompted by the way the software we study seems to be organised.
Example subsystems given to us by software engineers seem to follow an informal file
naming convention.

One could argue that the system we are studying is a very peculiar one, well organised
with an unusually strict file naming convention. We do not think this is the case. We
already mentioned Neighbors' and Tzerpos' [Nei96,TH97] similar experiences with other
systems. Neighbors' experience seems particularly significant as he reports on data
"collected from three large scientific systems over a 12 year period."

Also, it seems unlikely that companies can successfully maintain huge software
systems for years with constantly renewed maintenance teams without relying on some
kind of structuring technique. For our software system, it appears to be file naming
conventions. We do not pretend it is the sole solution to file clustering, but it is one of
many possibilities. Hierarchical directories is another commonly used approach (e.g. in
the Linux project [Lin]).

4 Decomposing File Names

In this section, we present general approaches to clustering files according to their names
and the difficulties inherent in these approaches. In various subsections we discuss
strategies for overcoming the difficulties.

We call the components of a file name abbreviations because they often consist of
abbreviated forms of words.

A general algorithm for clustering files using their names might be as follows:
G.1. Split each file name into its constituent abbreviations.
G.2. Create a cluster for each abbreviation found in step G.1
G.3. For each file name, put it into each of the clusters that correspond to its

abbreviations
All file names containing a given abbreviation are clustered together. This cluster along

with the abbreviation itself forms a concept.
This general algorithm has several important problems. Overcoming these problems is

the main subject of this paper.
The word-marker problem: The first difficulty arises from the lack of word markers

(capital letters, underscore or hyphen characters) in the types of legacy software we
are studying. This means that step G.1 of the general algorithm becomes quite
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difficult. There may be several ways to split a file name. For example "fsblock"
could be decomposed into "fsb-lock" or "fs-block".

The abbreviation problem: The second difficulty arises from the limited number of
characters available for file names in legacy software. This causes the concepts
embedded in file names to be often represented as very cryptic abbreviations, and
not as entire words. Since words can be abbreviated in multiple ways and several
words can have the same abbreviation, our task of splitting file names into words
(step G.1) becomes all the harder.

The overlapping problem: The third difficulty arises from the overlapping of some of
the abbreviations embedded in the file names. There may be several ways to
interpret the string "mnut" in "actmnuts", it could stand for "MeNU" + "T..." or for
"MoNitor" + "UTility".

Not only do these problems challenge an automated system, but they also challenge a
human who tries to analyse file names manually. We spent more than 5 hours
decomposing the names of about 220 files. We later used this manual work to help
evaluate our automated approaches.
These problems make step G.1 very difficult. We propose to do it as follows:
G.1.1. Create a set of candidate abbreviations that we might expect to find in file names.

We might obtain these candidate abbreviations from comments, identifiers, a
dictionary, etc.

G.1.2. Choose the important abbreviations from this set
G.1.3. Look in each file name for occurrences of any of the candidate abbreviations

identified in step G.1.1
G.1.4. Try to find the most probable decomposition for each file name

In the following subsections, we discuss approaches to achieve these steps.
Subsections ¤4.1 to ¤4.4 address step G.1.1. Subsections ¤4.5 and ¤4.6 address step
G.1.2. Subsection ¤4.5 addresses step G.1.4.

Each approach is imperfect; we want to aim for a compromise approach that
optimises the following properties:
Precision: The approach should only generate actual abbreviations.
Completion: The approach should not miss any actual abbreviations.

To promote completion, we want to generate as many abbreviations as possible. This
will mainly be handled in step G.1.1 of the general algorithm. It is our experience that high
completion is relatively easy to achieve.

To promote precision, we want to be conservative: We want to accept only these
abbreviations that have a good chance of being real concepts. This means filtering out
simple noise words. This also means picking a source of abbreviations that is not likely to
contain concepts outside the application domain. This is mainly handled in step G.1.2 of
the general algorithm.

Overall, we will promote precision over completion.
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4.1 Candidate Abbreviations from File Names (Iterative Approach)

The following algorithm can be used to try to decompose a set of file names into their
abbreviations in the absence of word-markers.
α.1. Assume that file names of length 2, 3 or 4 are single abbreviations; i.e. the file

name has only one component. Put each such file name in the set of candidate
abbreviations and remove it from the set of file names to decompose

α.2. while there is a file name f not decomposed and prefixed by a candidate
abbreviation a do
α.3. remove f from the set of file name to decompose
α.4.  let fs be the suffix of f after removing the prefix a
α.5.  if (length(fs)  <  5 characters) or is_english_word(fs), then add fs to the set of

candidate abbreviations
α.6. else add fs to the set of "file names" to decompose

 Although it would appear that this algorithm can tackle step G.1 of the general
algorithm (decomposing each file name into abbreviations), we use it only for step G.1.1
(generating candidate abbreviations). The algorithm can only deal with about one fifth of
the file names.

Some of the abbreviations we extract with this algorithm do appear inside of file names
that are not decomposed here. This is because they are not prefixes of these file names
(step α.2). Because of the three problems mentioned in the previous subsection, relaxing
this "prefix" constraint would render the algorithm useless, i.e. decomposing the file
names erroneously and extracting wrong abbreviations.

Even as described, the algorithm does make mistakes. For example "activ" and
"activity" are two valid abbreviations. If we already asserted that "activ" is an
abbreviation, the algorithm will wrongly deduce that "ity" is another one (see overlapping
and abbreviation problems in the previous section). This kind of wrong abbreviation is
dangerous since it may actually be found in other file names.

This algorithm is based on several assumptions, specific to our system, which may or
may not be valid. Firstly, some 4-character file names might be composed of two
abbreviations (e.g. "swid" stands for SoftWare IDentifier). Secondly, some file names
longer than 4 characters might represent individual concepts that should not be
decomposed ("kermit", "activity", ...).

Despite these drawbacks, this algorithm does not seem to generate many wrong
abbreviations, therefore it will not require a subsequent step G.1.2.

4.2 Candidate Abbreviations from File Names (Statistical Approach)

Another way of extracting candidate abbreviations from file names is to take substrings
common to several file names.

The high-level objective of the research is to allow software engineers to browse
clusters of files, where each cluster represents a concept that is implemented by the files
of that cluster. This implies that we are not interested in concepts (abbreviations) that
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appear in only one file name. Conversely, we are primarily interested in abbreviations
that appear in several file names.

Extracting all common substrings from a set of names may be very time and space
consuming. A naive way to do it would consist of extracting all the substrings (of any
length) of each name and then trying to find similar substrings in different names.
However, in practice this can prove impossible because the number of substrings is
quadratic in the length of the name.

We propose instead to extract from each name, all the substrings of a given length it
contains. These strings are called n-grams [Kim88]; for a length of 3, one speaks of 3-
grams. For example, "listdbg" contains the following 3-grams: "lis", "ist", "std", "tdb" and
"dbg". The number of n-grams in a name is linear in the length of this name.
β.1. Extract all the 3-grams from all the file names
β.2. Generate a Galois lattice [GM93,Wil82]. This structure clusters file names which

share n-grams. It has an important property: It will find all clusters of file names
sharing one or more n-gram(s).

β.3.  foreach cluster c in the Galois Lattice do
β.4. let sstr be the substring shared by the file names in c
β.5. if (length(sstr)  < 5 ) or is_english_word(sstr), then accept sstr as a candidate

abbreviation
β.6. else reject sstr

 Again, we are making important assumptions here: A candidate abbreviation is either
an English word or shorter than 5 characters (step β.5).

Note that the abbreviations cannot be less than 3 characters in this case because the
algorithm is based on 3-grams extraction (step β.1). This is an important decision: If n-
grams are too long, then short substrings will not be detected; if too short, then we will
produce too many clusters to be manageable (or too many abbreviations). We tried to use
2-grams, but the algorithm extracted too many wrong abbreviations.

Clearly, this method will tend to extract many abbreviations, including wrong ones. It
will therefore require the filtering step G.1.2.

4.3 Candidate Abbreviations from Identifiers

We might also extract candidate abbreviations from the identifiers in the source code. In
general, identifiers include the names of routines, variables, structured types, etc.
However in our experiments, we considered only routine names. We made this choice
both for practical reasons and because we believed routines have a better chance of
addressing the same concepts as the files.

Merlo [MMM93] already recognised routines as a useful file clustering criterion. Here
however, we do not want to cluster files based on the identifier names they contain (this
has already proved unsuccessful in our case; see [AL97]). Instead we will use identifiers
as an easy way to get some abbreviations the software engineers may use.

In the system we are working with, identifier names are much easier to decompose
than file names. They do not exhibit the word-marker problem, they make use of the
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underscore character and capital letters. As a consequence, the overlapping problem is not
an issue either. Finally, they do not exhibit the abbreviation problem since there is no
constraint on the length of identifiers.

There is a problem with many routine names that are prefixed by the name of the file
that defines them. We do not want these file names to be unconditionally proposed as
abbreviations, therefore we will again limit the length of abbreviations to 5 characters.
γ.1.  foreach routine identifier i do

γ.2.  foreach "word" w in i do
γ.3.  if (length(w)  < 5 ) or is_english_word(w), then accept w as a candidate

abbreviation
γ.4. else reject w

4.4 Candidate Abbreviations from English Words

In several of the above methods, we noted that we would accept as abbreviations actual
English words (e.g. "list"). This gave us the idea of using an English dictionary to produce
abbreviations, each word being a candidate abbreviation. This will obviously give poor
results by itself, because many abbreviations are not English words, but it may be a good
auxiliary technique when combined with other sources.

The English dictionary we used is the one usually found in /usr/dict/words on Unix
systems. On our system (Solaris 2.5), it contains a little more than 25000 words.

Using the dictionary introduces a precision problem. It contains words like "in", "the",
or "AC" that could easily be found in file names but would not be abbreviations in our
system. We tried to use a standard stop word list (from the Information Retrieval system
Smart [sma]); however this proved harmful because the stop word list apparently
contained important words. Some more specialised stop list should be set-up.

Also this dictionary is not complete. It lacks some common words (e.g. "display"),
technical words (e.g. "kermit"), and also the ability to inflect words (conjugate verbs, put
an "s" at the end of nouns). A more intelligent tool like "ispell" could give better results,
but this tool could still not deal with the application domain concepts, or the abbreviated
form of words.

4.5 Filtering Candidate Abbreviations with Comments

This subsection and the following pertain to step G.1.2 of the general algorithm: How to
filter out abbreviations that are not useful. It will only be applied in cases where we have
first used the method described in section ¤4.2 that is the one generating excessive
numbers of candidate abbreviations.

Many "abbreviations" appear in the comments, whether they are English words or
application domain terms. The filter simply consists of keeping only those candidate
abbreviations we find in the comments. A similar method has already been used by Merlo
et al. ([MMM93] already cited). They clustered files according to similar concepts found
in the comments or in identifiers (see also section ¤4.3.)
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In the software system we are studying, many files (70%) have a summary comment,
which describes the main purpose of the file (as opposed to comments describing routines
or details of the implementation). We restricted ourselves to these summary comments:
The primary purpose of this restriction is to limit the size of data we have to deal with.

In a first experiment, we looked for a candidate abbreviation only in the summary
comment of files that have an occurrence of that abbreviation in their names. In a second
experiment, we used abbreviations found in the summary comments of all files; this gave
better results and we will only present this experiment. We believe that because
comments are only used as a filter for pre-generated substrings, the more comments we
have, the better it would be.

As a logical conclusion, it seems that although the summary comments may appear
more "focused", we might get better results using all of them.

4.6 Filtering Candidate Abbreviations with Abbreviation Rules

The proceeding filtering method works fine for "abbreviations" which are English words
or application domain concepts, because we might expect to find these in the comments.
But in the file names, many words are actually abbreviated for lack of space (i.e. the
abbreviation problem). A word like "debug" appears in its full form in the comments but
is abbreviated "dbg" in the file names.

We propose the following algorithm to try and recognise these abbreviated forms:
δ.1.  foreach candidate abbreviation a

δ.2.  foreach file name f containing an occurrence of a
δ.3.  foreach possible word w in the summary comment of f

δ.4.  if a is a prefix of w (e.g. "aud" for "audit"), then accept a as a
candidate abbreviation

δ.5.  elseif a is composed of the first letter of w and all its consonants
("abbrvt" for "abbreviate"), then accept a as a candidate abbreviation

δ.6.  else reject a
This method is computation intensive. To make it practical, we had to limit the

number of words we would consider as possible full versions of an abbreviation (step
δ.3). This is done by only considering words inside the summary comments of files that
contain an occurrence of the abbreviation in their name.

Most of the abbreviations that are accepted by this algorithm are prefixes of words
(step δ.4); the second rule rarely applies because it is too restrictive. For example, a
common abbreviation for server is "svr", where the first "r" is dropped. It is our belief
that relaxing this rule would be both inefficient in terms of time and results, the rule could
accept too many erroneous abbreviations.

4.7 Generating splits

The following approach can be used to split a file name into abbreviations (step G.1.4 of
the general algorithm), when one has an initial list of candidate abbreviation. We call each
decomposition of a name a split.
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For each name, we find all candidate abbreviations it could contain. We then generate
all combinations of abbreviations that could compose the name. For more flexibility, we
allow free characters in a split (a character not belonging to any abbreviation). For
example assuming we have two candidate abbreviations "list" and "db", the possible splits
for "listdbg" would be:
•  list Ð db Ð g
•  list Ð d Ð b Ð g
•  l Ð i Ð s Ð t Ð db Ð g
•  l Ð i Ð s Ð t Ð d Ð b Ð g

As there are relatively few possible splits for each name, we are able to generate all of
them. But some are obviously wrong (e.g. the last one in the above example). We use a
rating function to assess the correctness of the splits. We only keep the split(s) with the
best rating (there may be ties).

The current rating function simply gives a higher rating to a split with fewer members
(candidate abbreviations and free characters). The rationale is to discard those splits with
a lot of free characters.

We considered using more complex rating functions, with multiple criteria, such as:
•  Length of the abbreviations: From informal study, it seems that 3-character

abbreviations are more numerous than other sizes. We could take this into account and
give more weight to these abbreviations.

•  Number of sources proposing each abbreviation: When using several sources together,
we could give more weight to an abbreviation proposed by different sources.

•  Weighted source for abbreviations: We do not have the same confidence in all sources,
some could have a higher weight than other, and therefore favouring the abbreviations
they generated.

The rating function does have an influence on the quality of the results (although it
seems to be a minor one). But, because our goal is to compare various sources of
abbreviations, we did not want to alter the results by using a rating function that is too
complex.

5 Experiments

We have proposed a general algorithm to decompose file names. We have discussed
several sources and methods of generating candidate abbreviations and have explained how
to decompose file names using these candidate abbreviations.

In this section, we present two experiments to assess the efficiency of these different
approaches. The results of these two experiments for the particular legacy software
system we are studying will be presented in the next section.

In [AL97], we explain how we were led to consider file names as a file clustering
criterion: We work on a legacy software system of 2 million LOC, with almost 2000
different file names, and which is more than 15 years old.
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We want to create a conceptual browser for the software engineers maintaining this
software system. To assist our research, we asked them to give us examples of
subsystems with which they are familiar. Studying each subsystem, it was obvious that
its members displayed a strong similarity among their names. For each subsystem,
concept names or concept abbreviations like "q2000" (the name of a particular
subsystem), "list" (in a list manager subsystem) or "cp" (for "call processing") could be
found in all the file names. Thus we were prompted to use concepts embedded in file
names as a file clustering criterion.

If our objective were not creating a browser, but instead were re-engineering, then a
key requirement would be precise preservation of the semantics of the design. However,
to assist in the software comprehension process does not require such precision. Thus
our informal file-name clustering criterion is a feasible approach.

We propose two experiments to compare the different methods of file clustering
described in the last section:
•  Compare the splits from each method with a benchmark of manually decomposed file

names.
•  Compare the file clusters from each method with a benchmark of known subsystems.

We will now provide further detail about both experiments.

5.1 Design of "Manual Decomposition" Experiment

For the first experiment, we manually decomposed a set of file names into their
constituent concepts. For each file name in the benchmark, we automatically split
(decompose) it with all the methods described earlier and compare the results with the
manual decomposition, counting how many abbreviations the automatic method finds.

To get a representative sample, the file names we decomposed to create the benchmark
were the first 10 names (in alphabetical order) for each initial letter. As some of the letters
have few or no file names beginning with them, we decomposed only 221 names. This
sample represents 12% of the whole corpus (1817 file names).

We decided to accept several correct splits for some names. There are different reasons
for this:
1. some words may be abbreviated in many ways ("activ" or "act" for activity),
2. some words are singular and plural ("error" and/or "errors"),
3. some abbreviations overlap ("saservice" stands for "sas service"),
4. some words are composed ("wakeup").

In each of these cases, we did not want to arbitrarily choose one of the alternatives.
We will accept all "sensible" splits. For example, for "activity", we accept "activity",
"activ" and "act". In the last two cases, the remainder of the word is simply ignored. In
the case of overlapping abbreviations like "saservice", we accept "sa Ð service" and "sas"
("ervice" cannot be an abbreviation and is ignored).

For the 221 names, we accepted 256 splits. Only 31 names have more than one
accepted split. The maximum is four accepted splits (for one name); there are two names
with three accepted splits (like "activity"), and 28 names have two accepted splits.
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Using this benchmark, we measure the precision and recall of each decomposition
method. Precision is the percentage of correct abbreviations in the generated split. Recall
is the percentage of abbreviations extracted among all correct abbreviations (as defined in
the benchmark). For example, in the benchmark "listdbg" is decomposed as "list Ð dbg". If
a method proposes the split "list Ð db Ð g" it will get 33% precision and 50% recall.

When the benchmark contains several valid splits for a name, or when a method
extracts more than one best split (see the rating function described in section ¤4.7), we
take the result with the best precision.

The final results for each method are the percentage recall and precision averaged over
the 221 names.

5.2 Design of "Expert Subsystems" Experiment

As mentioned before, we aim at building a conceptual browser to help software engineers
navigate in a legacy software system. The "quality" of the concepts extracted for this
browser is evaluated by the first experiment. But the research was prompted by
subsystem examples given to us by software engineers working on the system. It seems
interesting to evaluate how well we can replicate these example subsystems using file
name based clustering.

This is not the same experiment as the first one, because not all the concepts
embedded in a file name are used to mark subsystems. For example, the file "listdbg"
contains the abbreviations "list" and "dbg" (debug). According to the examples given to
us, the first abbreviation does mark a subsystem (the "list manager" subsystem), but the
second one denotes a particular activity inside this subsystem: A collection of routines to
help debug the subsystem's features.

To find the abbreviation in a file name that denotes the subsystem to which this file
belongs, we use a simple heuristic that consists of keeping only the first abbreviation in
the file name which is not a single letter. This heuristic seems to match the organisation of
the system. The same heuristic is used in [TH97] for a different legacy system.

We exclude those first abbreviations that are single letters to try to cope with such file
names as "qlistmgr" and "flistaud" which are also members of the "list" subsystem.

There are other more complex cases, which we cannot deal with using this heuristic.
For example one of the subsystem examples (the "hotel/motel" subsystem) contains two
exceptions out of eight file names: "cphotel" and "dbthotel". These exceptions are
complex cases where two subsystems are indicated in the file name ("cp" stands for "Call
Processing", a very large subsystem; "db" is a database subsystem).

The second difficulty of the experiment is how to compare the generated file clusters
with the known subsystems. Each subsystem has a name (a label) and we could just try
to count how many files a given method successfully assigns to the right label. But this
could underestimate the result of the methods.

Consider a method that correctly groups the files with the exception that it creates file
clusters smaller than the subsystems (each subsystem might be cut in two halves for
example). We would like this method to get a relatively good score because it is clustering
the files correctly, only it extracts clusters at a slightly lower level of abstraction than the
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subsystem examples we have. What we really want to measure is whether the method
clustered together the files that are related.

The experiment will consist of comparing pairs of files as classified by a method and
as classified by the expert. Two given files may be in the same subsystem (we call it an
"intra-pair") or in different subsystems (an "inter-pair").

We will say that a method has a high recall if many of the intra-pairs of the subsystem
examples are also intra-pairs for the method, i.e. if the method does not separate the
experts' examples. Note that this is a different recall metric than in the previous section. A
simple but pointless way to have a good recall would be to have only one huge cluster.

We will say that a method has a high precision if many of its intra-pairs are also intra-
pairs in the experts' examples, i.e. if the method does not group files which should be
separate. Again, this is a different precision metric than in the previous section. A simple
way to generate high precision would be to have no clusters at all (therefore "all zero" of
the grouped pairs would be found in the example subsystems).

6 Experimental Results

We now present and discuss the results for both experiments.

6.1 Results of "Manual Decomposition" Experiment

The results are presented in Figure 1 and Table 1. We give in Figure 1 the efficiency of
each method in terms of precision and recall. Table 1 gives the number of extracted
candidate abbreviation which are not English words.

We will first analyse the results of the four methods for generating candidate
abbreviations (step G.1.1).
Dictionary: This method gives poor results, however we mentioned it was not intended
to be used alone but only as an improvement when combined with other methods. For all
other methods, we give the efficiency of the method alone and when combined with the
English dictionary.
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Figure 1: Efficiency of file name decomposition methods.

File Names (Iterative method): The method alone does not perform well (40%
precision, 50% recall). However, when combined with the English dictionary it scores
much better.

One could think the bad results might be due to the low number of proposed
abbreviations (see Table 1). But we will see that another method, using the "comments"
filter proposes only slightly more abbreviations and gives much better results.
File Names (Statistical method): The method works significantly better than the
iterative method, and is still improved by the addition of the dictionary.

Note that the method alone proposes all substrings common to more than one file
name, therefore, the improvement introduced by the dictionary should be ascribed to
words that are used in a single file name. This reduces their interest since they will not
help us to cluster files together. They may, nevertheless, have a beneficial influence on
step G.1.4 (decomposition of the file names using all candidate abbreviations).
Routine Names: This is the best of the candidate abbreviation generation methods, when
each method is used alone. Combining it with use of dictionary brings an improvement,
but less noticeable. It seems natural that with better and better results, it becomes more
and more difficult to get significant improvements.

One may notice that although the routine method alone scores better than the file name
statistical method alone, with the addition of the dictionary, the order is reversed. One
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may suppose that since routine names are less constrained in their length than file names,
the routine method already proposes many valid words, and therefore benefits less from
the dictionary. This seems to be confirmed by Table 1.

Method of obtaining words English
words

non English
words

File names (Iterative) 81 497
File names (statistical) 238 1872
Routine names 1132 2111
Dictionary 25143 0
Comments 130 368
Rules filter 181 762
Routines & File names (statistical) 1208 3475

Table 1: Number of English words and non-words proposed by each method.

Filtering with Comments: The filtering method results shown here were applied on the
file name statistical method. We also tried to filter the routine names method, but the
results were slightly worse.

This filter does eliminate many candidate abbreviations (mainly non-English words).
Unfortunately, this is done at the expense of the method's efficiency.
Filtering with Comments and Rules: A less strict filter accepts abbreviations found in
the comments that can be generated from words in comments by some simple
abbreviation rules. This filter is more permissive than the previous one. For example, it
accepts twice as many non-English words.

The results are also surprisingly good, better in fact that the abbreviation generation
method (file name statistical) itself, whereas it still proposes many fewer candidate
abbreviations.

We believe that the improvement comes from the last stage of the general algorithm
(step G.1.4). Having a smaller set of candidate abbreviations, and hopefully a more
precise one, this step is able to better decompose the file names.

This seems to support the analysis we made: comments are useful to extract full
words and application domain concepts, whereas computing abbreviated forms will
provide the other abbreviations.
A Combination of File Names (statistical) and Routine Names: Finally, we
combined the two best methods for generating abbreviations: file name statistical, and
routine names. The results are extremely good (precision and recall close to 90%).

Adding the dictionary does not bring noticeable improvement, which seems
understandable at these already high scores.
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6.2 Results of "Expert Subsystems" Experiment

The second experiment gives slightly different results. However, keep in mind that it is
based on example subsystems that are not fully representative of the system because
they contain a small number of files (4% of the entire set).
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Figure 2: Comparison of subsystems extracted with expert subsystem examples.

In Figure 2 we give the results of the second experiment: the precision and recall of
each method regarding the inter and intra-pairs they extract. Table 2 gives the average size
of the subsystems extracted by each method.

Note that precision is in all cases very high (>90 %). This means that the methods do
not group unrelated file names. A possible explanation is that the methods tend to
generate smaller subsystems than those of the experts, which favours the precision.
Compare the average size of the experts' examples (6.8 files per subsystem) with the
numbers in Table 2.

This lower average size could be the cause of the general high precision, although there
is no direct link between the two. For example, adding the dictionary to any method tends
to decrease the average size, but in many cases (comments, rule, file names statistical,
etc.), it also decreases the precision.

Dictionary gives bad results, which is expected given the previous experiment and also
the fact that it generates clusters of a very low average size.

The next result is that of the file names (iterative) method, which is still compatible
with the previous experiment.
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The five other methods are all very close (94% precision 100% and 80% recall 95%).
The comments method has very good results. The recall may be improved by the
relatively high average size of clusters, but one might have expected the precision to be
adversely affected for the same reason.

In general, combined methods give worse results in this experiment, whereas they
tended to perform better in the previous experiment. The file names statistical with
routine names method which was the best method in the previous experiment, is now
roughly in between its two components and in fact is worse than both of them regarding
recall rate. Also, as we already noted, adding the dictionary tends to give worse results
(except for the file names iterative method).

Method of obtaining words Average
size (alone)

Average size
(w/ dict.)

File names (Iterative) 5.79 4.43
File names (statistical) 3.13 3.05
Routine names 4.16 4.06
Dictionary  2.26 -
Comments  5.52 4.67
Rules filter  4.06 3.87
Routines & File names (statistical) 2.93 2.90

Table 2: Average size of the subsystems extracted by each method.

7 Discussion

Discovering subsystems in a legacy software system is an essential but difficult practical
task that raises important research questions. While studying a legacy telecommunication
software system, and the software engineers who maintain it, we discovered that their
definition what constitutes a subsystem is mainly based on the files' names. This goes
against the commonly accepted idea in the reverse-engineering research community that
the body of the source code is the sole reliable source of information when performing file
clustering.

Given these observations, our objective is to build a tool that uses file naming
conventions to help software engineers browse the concepts in a software system. We
believe extracting concepts from names could greatly contribute to the design recovery
activity by providing information of a higher abstraction level than source code.

7.1 Strategy and Experiments Presented

To discover the concepts represented by file names we need to extract the constituent
abbreviations of the names. This is a difficult task that requires both a lot of knowledge to
find the concepts to which file names refer, and a lot of intuition to associate abbreviated
forms with the concepts.
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In this paper we described several methods of extracting abbreviations, and presented
experiments to compare them.

The overall strategy we chose seems appropriate as it allows us to get good results
(90% of precision and recall). The main steps of the algorithm are: (1) Generate candidate
abbreviations, and (2) generate a probable decomposition (split) of each file name given
these abbreviations. An additional filtering step may be added in between these two
steps.

From all the methods we proposed, two proved better in our first experiment:
•  Extracting abbreviations from routine names that we will then look for in the file

names. The great appeal of this method is its extreme simplicity.
•  Extracting substrings that are common to a set of file names. This is the best of all, but

it may be difficult to compute for large software systems.
The results these methods achieve are very good and should prove difficult to

improve.
In a second experiment, we tried to build subsystems using the file name

decomposition and a simple heuristic to determine which abbreviation marks the
subsystem the file belongs to. However, because the set of real subsystem examples we
have is small, the results may not be completely significant. As with the first experiment,
the results are very good (>90% recall and quasi-perfect precision for three of the
methods). However, the conclusions about which methods are best do not match the
previous experiment. We propose an explanation that considers another factor: the
average size of the subsystems.

We believe that the main interest of this research lies in the proof that informal sources
of information may be used to help clustering files in subsystems. This departs from the
traditional approach, which only considers the code.

7.2 Considerations for Practical Application

We intend the work presented in this paper to be incorporated into CASE tools Ð
currently, CASE tools provide a variety of design recovery approaches, but we know of
no tool that does the kind of detailed analysis of file names that we have presented.

Clearly a CASE tool would want to combine this technique with others. Our technique
can extract useful high-level information, but as mentioned in the introduction, the exact
type of information depends on naming decisions made by designers and others, as well
as the quality of those decisions. Other sources of information should also be used to give
the maintainer the best possible decompositions.

A CASE tool could present the user with several alternative decompositions of the
system: e.g. a filename decomposition as described here, one that uses analysis of file
inclusions, plus another that analyses common references to routines, global variables,
types etc. The user could then select the decomposition that he or she understands best.

Alternatively, the CASE tool could incorporate an algorithm that combines the results
obtained from several different techniques [AL99]. Finally, the tool could use one
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technique to break the system into large subsystems, and then use another technique to
divide it more finely.

7.3 Future Work

The following are three suggestions for future research that builds on the work presented
in this paper:

Firstly, there are many possible avenues for researching how to combine this technique
with others as described in the last section.

More work needs to be done regarding the abbreviated forms of words. Some words
accept different abbreviations (e.g. monitor may be "mon" or "mn"; activity may be
"activ" or "act"). This is what we called the "abbreviation problem". Now that we are able
to decompose correctly most of the file names, we could try to cluster together these
related abbreviations. But this appears to be a very difficult and knowledge intensive task.

Another possible extension of this work would be to design a method that would
combine the properties of our approach (based on file names) and more traditional
approaches (top-down or bottom-up). This would possibly mean that we should first
quantify precisely the advantages of each approach.

7.4 Conclusion

The main contributions of this paper are: (1) a set of algorithms that use file names to
cluster source files based on their names, and (2) experimental results that show the
feasibility and usefulness of the approach to reverse engineering legacy software.

We believe that informal and high-level sources of information such as file names can
provide more "human oriented" decompositions of large sets of files, when compared
with approaches that instead analyse low-level details of the source code. Maintainers
will hopefully be able to use our methods to map parts of the system to application
domain concepts or high-level design concepts.
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