
Position paper for WESS:

Session 2. What are the differences between maintenance skills and
those of development?
 (Session chair: Anneliese von Mayrhauser, Colorado State
 University)

Just-in-time-comprehension vs. the Full-coverage strategy.

Janice Singer
Timothy Lethbridge

Under the auspices of the Knowledge Based Reverse Engineering Group, we
have longitudinally followed one software engineer (SE), who we will
call X, from the time he entered a large telecommunications company two
years ago until today. During this period we met with him at one to six
week intervals. During the meetings, X told us what did since the last
visit; i.e., what tools he used, who he consulted, what problems arose
(either organizational, knowledge based, or technical), etc. We also
asked X at most meetings to draw a "map" of his current conception of
the system, and observed him working for half an hour.

Our data indicate that X uses two different, yet complementary,
strategies when writing source code. While doing routine maintenance
and bug fixes, X employed a Just-in-time Comprehension strategy. Here
X attempted to comprehend only that portion of the code that was
necessary for solving the current problem. X did not work towards
building a global conceptual model of every aspect of the system, but
rather he iteratively built a partial model of the system as he solved
the problem. This partial model tended to be forgotten as X moved on
to other problems. Using JITC, X tended to concentrate on the code, and
on running simulations in the laboratory (this is not to say he didn’t
use other information, but these were his primary sources).

While doing development work (adding a new feature to the system), X
employed a Full-coverage strategy. Here X spent much more time trying
to understand how all features of the system work together. He needed
to ensure that his conceptual model of the architecture was appropriate
so that the new feature addition would succeed (i.e., all interfaces
work correctly and no feature interactions occur). To achieve this, he
believed that he had to understand overall how the system worked.
Here, X looked at the source, consulted documentation, people,
ancillary texts, and additionally, wrote functional analysis and
specification documents.

The JITC and Full-coverage strategies have important similarities to
Littman, Pinto, Letovsky, and Soloway’s As-needed and Systematic
strategies. We have extended their results by showing that these
strategies are applied not only when SEs are looking at very small
pieces of unfamiliar code, but also when they are involved in solving
problems in huge and somewhat familiar systems. Additionally, we have
shown that the same SE can use both strategies. What determines usage
is not ‘SE-type,’ but rather SE goal. Because of this, we have chosen
to change the names Littman, et al. coined. We do see one strategy as
being ‘better’ for program comprehension. Rather, we believe that the
two different strategies help software engineers achieve different
goals.

When working with huge programs with millions of lines of code under
time pressure to perform changes, it makes little sense to try to
understand the source code of the entire system. Thus for routine
maintenance, SEs will employ the path of least resistance and use JITC.
However, when development calls for understanding how a new feature can
be fitted into an existing system, Full-coverage will be the strategy
of choice. We hypothesize that this difference in strategy usage is
dictated by the type of work that SEs are doing because development and
maintenance are not simply two sides of the same coin, but rather
qualitatively different activities that require different approaches.

Descriptions of maintenance background and experience:

Timothy C. Lethbridge has performed software maintenance in both
private and public sector organizations for over 15 years. As an
assistant professor at the University of Ottawa, he now focuses on
studying how industrial software engineers perform development and
maintenance, as well as what tools are most useful for them in these
activities.

