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Abstract: Test-Driven Development (TDD) is the practice of attempting to use the software you intend to write, 
before you write it. The premise is straightforward, but the specifics of applying it in different domains 
can be complex. In this paper, we provide aTDD approach for language development. The essence is to 
apply TDD at each of four levels of language processing, hence we call our approach Multi-Level TDD, 
or MLTDD. MLTDD can be applied to programming languages, preprocessors, domain specific 
languages, and transformation engines. MLTDD was used to build Umple, a model-oriented 
programming language available for Java, Ruby, and PHP. We present two case studies where this 
approach was implemented to develop two other domain specific languages. 

1 INTRODUCTION 

Test Driven Development (TDD) (Beck, 2002), 
and its similarly-named practices (Test First 
Development, Test Driven Design, and Behaviour 
Driven Development (BDD)) provide a trusted 
strategy for software development regardless of 
the development lifecycle. The benefits of TDD 
are well documented in (Gupta & Jalote, 2007). 
The focus in this paper is not to convince the 
reader of the value of TDD, but rather to 
demonstrate a TDD approach geared for software 
language development. 

The main contribution of this paper is what we 
call Multi-Level TDD (MLTDD), which means 
applying TDD to each level of the language 
processing pipeline. 

MLTDD has been successfully used to 
develop Umple (Badreddin, 2010), (Lethbridge et 
al, 2013), (Lethbridge et al, 2010), a general 
purpose model-oriented programming language. It 
has also been used to create Appstats, (Forward, 
2012) a DSL for managing usage statistics and 
Osl, a proprietary DSL for describing network 
topologies. The examples shown in the paper 
focus primarily on Umple, publicly available at 

(Lethbridge et al, 2012). MLTDD has been 
extensively tested in Umple development and has 
helped to keep Umple’s overall quality high, and 
to facilitate its evolution. 

The paper is organized as follows. We first 
introduce the components of a language processor 
and describe how TDD can be streamlined for 
each component. We explain how this manages 
defects and reduces regression by presenting a 
hypothetical bug scenario. We then explain how 
this approach was applied in practice.  

2 DESIGN A NEW LANGUAGE 
BY TESTING: MLTDD 

The number of domain specific and general-
purpose software languages is increasing. There 
are several reasons for creating such languages 
(Gronback, 2009). An approach to building new 
languages is shown in Figure 1. The exact 
architecture of each language processor may 
differ, but this workflow provides a typical view. 
Variations of this architecture were used in 
developing Umple, Appstats, and Osl. 
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Figure 1: Building a new language 

The four common steps in processing a 
language are given below. Each step can be 
encapsulated in a component in the language 
processing architecture: 

• Parse the source – Processing occurs 
according to a grammar that finds matches for 
the language constructs. The language text (or 
textual representation of a visual language) is 
consumed by the parser, which translates it into 
an an abstract syntax tree (AST). The AST 
remains a syntactic view of the system. 

• Populate the Metamodel – The AST is 
analyzed and an instance of the language’s 
metamodel is constructed. The metamodel 
includes additional semantic details. 

• Generate Artifacts – The metamodel instance 
is used to generate work products of the 
language, which may include code generation 
(e.g. for preprocessor languages like 
CoffeeScript, Sass, or Umple), or runtime code 
for virtual machines (e.g. Java object-code, or 
ASP.Net CLI). Alternatively, runtime 
interpretation of the metamodel instance may 
occur (e.g. Ruby, Bash, or SQL). 

• Build Systems – Now that we have a new 
language, we build real systems (the purpose 
for creating the language). For general purpose 
programming languages this may include using 
the new language to build itself (i.e. using the 
Umple language to create the Umple compiler). 

For simple languages, generating language 
artifacts could be performed directly against the 
AST, skipping the second step . But in practice it 
is worthwhile to introduce an intermediate stage 
(the metamodel) to decouple the semantics of the 
language from its specific syntax.  

More complex languages may include 
modules such as a debugger, integrated-
development tools and meta-language extension 
mechanisms. The focus of this paper remains on 
the four steps above and the components that 

implement these steps. These form a general 
architecture for software language development. 

The following sections investigate each of the 
four components and demonstrates how TDD is 
applied, using Umple as a case study.  

 
2.1 Parser Testing 

The primary intent of the parser is to correctly 
interpret the source code according to the 
language’s syntax. Driving parser design through 
tests requires explicit test cases to make these 
assertions: a) Asserting the parser properly 
tokenizes the input, and b) Asserting the parser 
properly populates the metamodel instance 

A template for testing parser in JUnit is:  
 

@Test 
  public void someSyntaxToVerify() { 
    // Step 1: Load the source code 
    // Step 2: Parse file and assert its success 
    // Step 3: Assert correct tokenization 
    // Step 4: Clean up } 

 
A simplified excerpt from the Umple 

codebase is shown below that demonstrates the 
proper parse of a simple Umple class.  

 
@Test 
public void emptyClass() { 
  String input = "class Student{}"; 
  String expectedOutput = 
    "[classDefinition][name:Student]"; 
  UmpleModel model = new 
  UmpleModel(new UmpleFile("empty.ump"));      
  UmpleParser parser = new UmpleParser(model); 
  boolean answer = parser.parse( 
    "program", input).getWasSuccess();     
  Assert.assertEquals(true, answer, 
    "Unable to parse Umple code");    
  answer = parser.analyze(false).getWasSuccess();  
  Assert.assertEquals(true, answer, 
    "Unable to analyze Umple code");    
  Assert.assertEquals(expectedOutput, 
    parser.toString()); } 
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This tests the empty class case; a class with no 

content except possibly white spaces and new line 
characters.  

The parser testing must also handle invalid 
input, or negative cases. The extent of negative 
test cases depends on the proficiency of the target 
audience, the complexity of the language and the 
desired debugger feature set. A template for 
testing invalid input is shown below: 

 
@Test 
public void someSyntaxErrorToVerify()  
{ 
  // Step 1: Load the source code 
  // Step 2: Parse file and assert its failure  
  // Step 3: Assert correct error in formation 
  // Step 4: Clean up } 

 

2.2 Metamodel Testing 

The objective of metamodel testing is to ensure 
that the compiler is able to maintain a valid 
internal representation of the input language. It 
can be argued that parser testing (above) and 
artifacts generation testing (discussed on the next 
section) are sufficient. However, from experience 
we find that testing the metamodel instance is 
crucial step to help maintain the language as it 
evolves, and facilitates debugging by isolating 
issues into either problems with syntax analysis 
(testing the parser) or language metamodel 
semantics (testing the metamodel). 

Metamodel tests use the following standard 
unit testing pattern. 

 
@Test 
public void someSpecification() { 
  // Step 1: SetUp  
  // Step 2: Execute 
  // Step 3: Verify 
  // Step 4: TearDown } 

 
It is important to document not only how the 

system behaves under normal conditions, but also 
how it behaves in abnormal scenarios where, for 
example, preconditions are not satisfied. 

Here is a sample test case for the Multiplicity 
metamodel class. Below we see that setting the 
range on a Multiplicity properly sets both the 
upper and lower bound. 

 

@Test 
public void setRange_ExplicitBounds() { 
 Multiplicity m = new Multiplicity();   
 m.setRange("1","2");  
 Assert.assertEquals(1,m.getLowerBound());  
 Assert.assertEquals(2,m.getUpperBound()); 
} 

 
Some may question the value of such 

simplistic tests. It should be noted that the test is 
merely an example to demonstrate the structure of 
a metamodel test. But, more importantly, the spirit 
of following test-driven design (as well other 
driven approaches) is the concept of evolving 
design through tests. By following a test-driven 
approach, the tests (and the ability to run them 
over and over again in an automated fashion) is a 
welcome side effect, but the true power of the 
approach is in the initial design whereby you first 
exploit the common uses of your metamodel and 
only then do you concern yourself with the 
implementation. 

 
 

2.3 Artifact Generation Testing 

The end result of any language compiler is a set of 
generated artifacts. Take Java for example, the 
Java interpreter generates byte code. Even for 
visual languages such as UML, the generated 
artifacts can be either high level programming 
language code (such as Java or C++), or XML 
based artifacts (such as XMI) that are used for 
saving and interchanging models. The objective 
of this category of tests is to ensure that the 
compiler is able to generate artifacts that match 
what is expected. 

Many of the defects of the language processor 
are likely to be discovered against these types of 
tests.  While parser and metamodel tests (are 
related code) are important to continued success 
of your project, the desired output of your 
language is really the generated artifacts (e.g. byte 
code). 

Umple generates a wide range of artifacts. 
Given an Umple source, the compiler generates a 
number of high level programming languages 
code (Java, PhP, Ruby, and C++). The compiler 
also generates XML based artifacts, such as 
Ecore, and Papyrus XMI, as well as other artifacts 
such as SQL and TextUML. We explain here the 
testing platform to support this wide range of 
artefact types. 
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The code generator typically takes a populated 
metamodel instance as input. The output is one or 
more target artifacts or a transformation into 
another modeling syntax. In addition to overall 
setup and tear down, the high-level approach to 
testing code generation is shown below. 

 
@Test 
public void verifyGeneratedCode() { 
  // Step 1: Prepare Metamodel  
  // Step 2: Run Code Generator  
  // Step 3: Verify results } 

 
To prepare the metamodel instance, there are 

two approaches: populating the model by direct 
calls to the available API of the metamodel (or 
perhaps using a mock object facility; or, parsing 
source code using the existing infrastructure. 

The first approach (to populate the metamodel 
instance directly using the API) has several 
drawbacks: The setup code can become quite 
cumbersome and complex, which could make the 
test code less readable and maintainable. And, it 
can also be error prone, as the testing developer 
must properly populate the metamodel prior to 
testing. The primary benefit of this approach is 
the isolation of the code generator's behaviour 
from that of the code that parsed the source and 
generated the metamodel instance. Issues related 
to the parsing phase (translating code into a 
populated metamodel instance) would not 
interfere with testing the code generator. 

For example, the following code creates a 
Student class with three attributes (id, name, and 
program).  

 
UmpleModel m = new UmpleModel(null); 
UmpleClass student =  m.addUmpleClass("Student"); 
student.addAttribute( 
  new Attribute("id","Integer", null,null,true));  
student.addAttribute( 
  new Attribute("program","String", null,"SEG",false)); 

 
The second approach where the test uses raw 

source code that is then parsed into the 
Metamodel instance (which is then used as input 
to the code generators) has two primary benefits. 
First, it is easier to express a system in its own 
syntax as opposed to building it using a 
metamodel's API. Second, you provide an 
important integration between the external inputs 
and outputs of your language. The obvious 

drawback is that these tests are no longer pure 
unit tests, and that failing tests in this component 
could be resulting from the parser or the code 
generator. 

Here is the same example from above written 
using the source language (Umple) syntax 
directly. 

 
class Student { 
  Integer id;  
  name; 
  program = "SEG"; } 

 
Regardless of the approach, the metamodel 

instance must be populated before the code 
generation can be tested. Instead of crafting a new 
means to populate that model, we favour the more 
pragmatic approach of simply reusing the existing 
(and tested) parsing approach as described in the 
previous section. 

By parsing the model code directly, an added 
benefit is that you can create a generic 
TemplateTest to manage the test artefacts (i.e. 
input model code, expected output system code); 
leaving the testing mostly boilerplate-code free. 

The outline of such a template class is shown 
below. 

 
public class TemplateTest { 
@Before 
public void setUp() 
{ 
  // configure paths to Umple data files 
  // this can be configured to support  
  // multiple languages } 
@After 
public void tearDown() { 
  // clean up any temporary or generated files } 
public void assertTemplate ( 
  String modelFile, 
  String expectedGeneratedFile) { 
  // Parse / tokenize modelFile 
  // Create an instance of meta model 
  // Generate code for the underlying system 
  // Compare the actual generated code  
  // with the expectedGeneratedFile } } 

 
The method signatures will vary slightly 

depending on the type of code generator that is 
being created; but the overall structure remains 
intact. 

With the infrastructure shown above in place, 
adding new code generation tests is 
straightforward, as the template encapsulates the 
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distracting elements of the test setup. A sample 
code generator test is shown below. 

 
@Test 
public void Association() { 
  assertUmpleTemplateFor("AttributeTest.ump", 
  languagePath + "/ AttributeTest." 
    + languagePath +".txt","Student"); } 

 
The test above requires a model file 

(AttributeTest.ump), as well as a source code file 
based on the selected language. In Umple, we 
currently support Java, PHP, Ruby, and C++. 
Using the test case above, the same model file can 
be reused to test against all the supported 
languages. This infrastructure can easily be 
extended to add testing for other generated 
artifacts. 

 
2.4 Testing of End-User Systems  

The previous sections described testing the 
language compiler / code generator itself in what 
can be termed white-box testing. So far, we only 
asserted that the system outputs what we expect, 
but not necessarily what the target platform 
requires. This class of testing only applies if the 
language compiler generates either executable 
artifacts (i.e, bytecode), or artifacts that 
themselves can generate executable artifacts (i.e, 
Java or C++), or artifacts that serves a tangible 
purpose (i.e, an XMI artifact that is used for 
model versioning or interchanging). 

The objective of this category of tests is to 
ensure the appropriate behaviour of the resulting 
system. This is a powerful concept because it 
enables the language developer to assert the 
semantics of the generated system (not just its 
syntax).   

The semantics of Umple’s modeling 
components are quite rich so it is important to 
provide adequate testing of generated systems to 
ensure that the semantics of an Umple model is 
upheld in the underlying base language (i.e. Java, 
PHP or Ruby). This level of testing ensures the 
appropriate behaviour of the generated Umple 
executable artefacts, which is essential to support 
our industrial case studies. 

Let us consider a simple example of testing 
the semantics of a class attribute. 

 
class Student { name; } 

 
The specifications for an attribute as defined 

above include the following properties and 
behaviours: the attribute is included as a 
constructor argument, the attribute can also be 
modified and retrieved. Based on the above 
description of an attribute, we could write the 
following tests (the tests are written using JUnit4 
syntax). 

 
@Test 
public void attributeBehaviour() { 
 Student s = new Student("james");      
 Assert.assertEquals("james",s.getName()); 
 s.setName("henry");  
 Assert.assertEquals("henry",s.getName()); } 

This test can be equally expressed in PHP 
using PHPUnit (an xUnit testing framework for 
PHP applications) as shown below. 

 
public function test_attributeBehaviour() { 
  $s = new Student("james");  
   $this->assertEqual("james", 
   $s->getName());    
   $s->setName("henry"); 
   $this->assertEqual("henry", 
   $s->getName()); } 

 
By capturing the properties and behaviour of 

systems built with Umple, we are able to build up 
an extensive library of executable specifications 
which more concretely demonstrate the realized 
behaviour of the system, as opposed to its 
documented behaviour (and as is common 
knowledge amongst most software practitioners, it 
is common for documentation to quickly get stale 
and out of sync). 

Tests under this class are not limited to simple 
systems. In the case of Umple for example, the 
whole of Umple compiler and development 
environment are implemented using Umple itself. 
In that sense, Umple provides itself is a very large 
system test case (as each new version of Umple is 
re-tested against itself to ensure it continues to 
abide by it’s own semantics). 

Tests in this category provide both an 
excellent test-bed for experimenting with code 
generation techniques (i.e. testing the effects of 
changing the code generation on the resulting 
system), as well provided added confidence 
generated systems (not just your own language 
platform) work as expected.  Meanwhile, test 
failures in this category potentially identify issues 
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in any of the previous test categories and will 
most likely require additional exploratory tests to 
uncover the true cause of the semantic error.  

3 MANAGING DEFECTS AND 
MINIMIZING REGRESSION 

Despite having over 2,500 automated Umple tests 
that span all facets of the toolset from parsing to 
code generation, any compiler inevitably will 
contain defects. In this section, we discuss how 
the testing infrastructure described above allows 
for better defect management by representing 
bugs as failing tests, effectively diminishing the 
time and effort required to perform regression 
testing. 

When a defect is uncovered, it might be one of 
the following: 

1. Defects in the way in which the language 
is tokenized into an abstract syntax tree 

2. Incorrect population of the metamodel 
instance from the tokenized language. 

3. Inappropriate behaviour of the 
metamodel classes. 

4. Syntax errors in the generated artefacts. 
5. Semantic errors (i.e. incorrect behaviour) 

in the generated base code 
6. Execution errors in the generated 

systems. 
In addition to the defect scenarios above, there 

is always the possibility of usability defects. 
Dealing with this type of defect is outside the 
scope of our work, and instead, we focus our 
attention on well-defined, repeatable issues. 

As defects are uncovered, it is not always 
apparent which category of defects has been 
uncovered. Where the root cause of a defect is 
unknown, it is recommended to resort to bottom-
up defect resolution. We start by verifying the 
tokenization, then the metamodel, followed by the 
generated artifact, and finally, the system level 
testing. 

 
3.1 Step 1: Identify the problematic 

input language code and expose it 
with a failing test 

The first step is to identify the component 
responsible for the problematic output. This 

process may involve a few iterations to isolate the 
exact symptoms causing the issue, but that is not 
always necessary. 

For illustration purposes, our sample defect is 
that un-typed Umple attributes are not reflected in 
the generated code. The following code shows the 
potentially problematic Umple code. 

 
class Student { id; } 

 
The test case would perform an end-to-end 

high level test that properly documents the 
identified issue with a failing test. 

 
3.2 Step 2: Verify the tokenization of 

the problematic Umple code 

With our high-level failing test in place, we now 
analyze each step of the process to identify the 
root cause of the problem. We start with the 
Umple parser. 

The process for verifying the parser is already 
available. We simply add an additional test using 
the problematic Umple code as the input and we 
verify the output. 

To continue with the example above, we first 
make sure that un-typed attributes are properly 
parsed and tokenized. The expected result 
[class][name:Student][attribute][name:id] 
represents a toString view of the tokenization 
sequence used to assert equality in a human 
readable form. 

 
@Test 
public void untypedAttributes() { 
  assertParse("untyped.ump", 
    "[class][name:Student]"+ 
    "[attribute][name:id]"); } 

 
If this test fails, we resolve it and re-run our 

test from Step 1. If that test succeeds, then it is 
likely that the problem is now properly resolved 
and the debugging process is complete. If not, 
then we move on to the next step. 

 
3.3 Step 3: Verify the instance of the 

Umple metamodel 

Once the Umple source has been shown to parse 
correctly (but that the observed issue persists), we 
then validate that the instance of the Umple 
metamodel is consistent with the Umple input. 
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Here, we are ensuring that the metamodel was 
properly populated following the parser 
tokenization process. 

To test the metamodel, we enhance the test 
identified in Step 2 as follows.  

 
@Test 
public void untypedAttributes() { 
  assertParse("untyped.ump", "[class][name:Student]"+ 
      "[attribute][name:id]"); 
   
  UmpleClass aClass = model.getUmpleClass( 
    "Student");    
  Assert.assertEquals("Student", aClass.getName()); 
  Attribute attr = aClass.getAttribute("id"); 
  Assert.assertEquals("id", attr.getName()); 
  Assert.assertEquals("String",  attr.getType()); } 
 

 
Here, we assert that the Student class is 

created, and that it has an attribute of type String 
with the name id. If this test fails, we follow the 
same procedure starting from the previous step: 
re-test our high-level test and proceed to the next 
step only if that test still fails. 

 
3.4 Step 4: Validate the proper 

behaviour of the metamodel 

Once the Umple code appears to be parsed 
correctly, and the metamodel is properly 
populated, we then investigate if there is any 
special behaviour that is performed by the 
metamodel instance that may not be handled 
properly. 

For example, an Attribute has an operation 
isPrimitive which checks for the Umple 
predefined types, and perhaps this operation is not 
functioning as expected. Below is a test case 
demonstrating the expected behaviour.  

 
@Test 
public void isPrimitive() { 
  Attribute av; 
  av = new Attribute("a",null,null,null,false);    
   
  Assert.assertEquals(true, av.isPrimitive()); 
  av.setType("String"); 
  
  Assert.assertEquals(true, av.isPrimitive()); 
  av.setType("Address"); 
   
  Assert.assertEquals(false, av.isPrimitive()); } 
 

 

Dealing with this type of testing is difficult to 
categorize, and each scenario will need to be 
analyzed individually. If the behaviour of the 
metamodel appears to be working correctly (but 
our high-level test still fails), we continue to the 
next step. 

 
3.5 Step 5: Compare the expected 

versus actual generated code 

Next, we analyze the expected code versus actual 
generated code. Here, we are testing that the 
syntactic translation of the Umple metamodel 
instance into the generated base language is 
correct. 

The example test case would resemble the 
following code. 

 
@Test 
public void untypedAttributes() { 
 assertUmpleTemplateFor("attribute.ump", 
   "attribute.java.txt”, "Student"); } 

 
Where the “attribute.ump” would be the 

problematic Umple code and the 
“attribute.java.txt” would contain the desired Java 
code to be generated from the model. 

 
3.6 Step 6: Test the behaviour of the 

generated code 

If all other tests are passing successfully, the final 
aspect to testing the Umple system is that the 
generated code conforms to the semantics of the 
model. It might be the case where we are 
producing what is believed to be the correct code, 
when in fact the generated code does not behave 
as the intended by the model. 

In our on-going example presented above, we 
write unit tests against a sample application that 
contains a Student with an id attribute. 

 
@Test 
public void constructor() { 
  Student s = new Student("x"); 
  Assert.assertEquals("x",s.getId()); } 
 
@Test 
public void setAndGetStringAttribute() { 
  Student s = new Student("x");   
  s.setId("y"); 
  Assert.assertEquals("y",s.getId()); } 
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The steps outlined above provide a high-level 
approach to deal with issues as they arise. The 
most important first step is to create a failing test 
that exhibits the invalid behaviour of the system. 
The granularity of this test is not that important, 
as we have developed a systematic approach to 
verify each step of the Umple compiler to help 
determine the root cause of the issue. 

By adopting a test-driven approach, the 
regression test suite continues to grow to deal 
with new issues and at the same time mitigate the 
risk of regressing on existing functionality. In the 
next section, we look at how the current 
infrastructure supports future potential 
enhancements. 

4 APPLYING MLTDD TO A 
LANGUAGE WRITTEN IN 
ITSELF 

As the core features of the language become 
available, a new feature can be described as a 
defect; in other words, something is missing that 
should not be missing. The approach of adding 
new features should follow a similar path as 
described in the previous sections whenever 
possible. In this section, we describe how to 
manage new features by means of ‘dog-feeding’ 
examples. 

By following the steps described above, it is 
possible to specify the desired behaviour of a new 
language feature without that feature being 
available yet. And if the language is written in 
itself, it is required to implement most behaviour 
using the existing language constructs. 

In the example below, we demonstrate this 
process using Umple. The example illustrates 
adding an OCL-like constraint syntax to be 
specified against attributes. The semantic test 
below assumes the OCL constraint that age >= 18 
for any Student. 

Before implementing the change, we first 
write a test in the base language demonstrating the 
desired functionality. This test would need to be 
translated into each language supported. Below is 
a sample test written for Java. 

 

@Test 
public void cannotSetTo17() { 
 Student s = new Student(18);  
 Assert.assertEquals(18,m.getAge());  
 Assert.assertEquals(false,s.setAge(17));  
 Assert.assertEquals(18,m.getAge()); } 

Next, we use Umple itself to implement the 
feature using existing constructs. 

 
class Student { 
  Integer age; before setAge { 
    if (aAge < 18) { return false; } 
  } 
  after getAge { 
    if (age < 18) { 
     throw new RuntimeException("Age must be >= 18")  
    } 
  } } 

 
Once the behaviour is validated with sufficient 

(and passing) tests within our base languages, we 
then enhance the parser and metamodel with the 
new language constructs. 

The potential Umple syntax might look like 
the following. 

 
class Student { 
  Integer x; 
  // this is the potential invariant syntax  
  [x >= 18] } 

 
Next, we migrate the custom code written in 

the behaviour tests into the code generation 
process to validate the generated syntax. 
Following that, we deploy a new version of 
Umple itself and update the original behaviour 
tests to use the new language constructs (as 
opposed to having to write the behaviour by hand, 
as was required before the feature was available). 
These tests themselves remain relatively 
unchanged; we simply update the tests to use the 
new language constructs. 

In pure TDD methodology, the process is not 
just about testing; but rather about designing the 
system in a modular fashion maintaining low 
coupling and well-defined interfaces. The process 
is also about capturing the intention of the 
software (i.e. automated tests) that can be easily 
verified (i.e. re-running the test suite) effectively 
enhancing reusability. 

For example, the act of manually testing and 
modifying (i.e. debugging) an application until it 
works benefits only the developer performing the 
task. It cannot be replicated easily, as the 
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debugging steps are not documented and are lost 
once the debugging exercise is complete. 
Conversely, by capturing the testing process 
through automation, all developers can benefit as 
knowledge is gained about the true behaviour of 
the system that can be easily re-run and re-
verified. 

In the case of building a new programming 
language (or in the case of Umple, extending 
existing base languages), we first need to be 
concerned with testing the tooling itself. But, 
because the outputs of such systems are systems 
too, they can also be tested (i.e. semantic testing 
of systems generated using the new language). 

In addition, because Umple is implemented in 
itself, we are able to capture the debugging effort 
of new code generation behaviour in automated 
tests, and then modify the underlying Umple 
language to replicate that behaviour natively, as 
shown with the OCL constraint example. In 
summary, we enhance the Umple language so that 
we can refactor Umple (which is written in 
Umple) to make use of the enhanced language 
elements; ‘eating our own dog food’, so-to-speak. 

5 CASE STUDIES 

To further explore and validate our MLTDD 
approach, we applied it to two industrial projects, 
Appstats and OSL. These were undertaken in a 
software company specializing in the 
development of online process solutions. 
 
5.1 Case study 1: Appstats 

Appstats (Forward, 2012) is a small open-source 
logging and statistics library that provides a 
"counting" framework with features such as built-
in caching, delayed processing, as well as the 
creation of ad-hoc and scheduled reporting.  The 
language provides a simple, yet effective, DSL. 
The source code is about 2 KLOCs with 97% 
coverage from over 650 tests. The basic structure 
of an appstats query is  

 
# <action> <timeframe> <host/server> <context 
filter> <group filter> 

  
Actions are user defined and could include 

things like # logins, # objects created, # 
exceptions.  Date ranges support several formats 

such as "between Mar, 2010 and Mar, 2011", 
"today", "last year|month|week|day", etc.  The 
host/server simply allows the user to grab 
statistics from a particular server such as testing, 
versus staging versus production. Finally, all data 
logged by appstats is tagged with, and is 
searchable / groupable by any number of contexts 
(as defined by the user - not appstats), examples 
include tracking the logged in user, the address 
searched, number of results found, duration of 
request etc. 

By instrumenting an application appstats logs, 
you enable very powerful and efficient queries 
with a simple DSL. In addition, developers can 
write 3rd party plug-ins to augment the "logging" 
statistics with other data sources to facilitate a 
uniform API between the raw data and any 
application reporting functionality. 

The approach used to test Appstats was the 
same as that used by Umple.  Below, we discuss 
the unique characteristics of testing the statistics 
collection mechanism of Appstats. Just like any 
other type of test, you need to emulate the 
situation you are testing, and then verify that the 
right things has occurred. For Appstats statistics, 
there are a few items that require configuration, 
otherwise it is no different than testing other 
aspects of the system. 

The examples below are written in Ruby using 
the RSpec testing framework. 

1) Reset the logged and simulate the current 
time.  This will ensure the log starts empty, and 
that your logs will occur at a specific (and 
testable) time.  You will also want to remove the 
log file after each test to ensure all tests start with 
a clean slate. 

 
before(:each) do 
   Appstats::Logger.reset 
   Appstats::Logger.filename_template =  
     "test_appstats_lookup_controller" 
   Time.stub!(:now).and_return( 
      Time.parse('2010-09-21 23:15:20 UTC')) 
 end 
 after(:each)do  
    File.delete(Appstats::Logger.filename)  
If File.exists?(Appstats::Logger.filename) 
 end 
 

2) Write the test that should "gather" some 
type of statistic.  
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get :lookup, :address => 
  "123 Victoria Ave, Ottawa, K1P 1P2", 
  :radius => "0.05" 
     Appstats::Logger.raw_read.should == 
 Appstats::Logger.entry_to_s( 
  "buyer-address-lookup", 
  :accuracy => "4", 
  :area => "Ottawa area", 
  :total_results => 123 ) 
  end   end 

 
Each project requires unique testing, and the 

above demonstrates the use of the appstats API. 
Such testing is not (yet) required in Umple as 
Umple exposes itself only as a language (and 
related tools), whereas Appstats is both a 
language and an API. 

 
5.2 Another Case Study: OSL 

Another language that has benefited from the 
TDD approach described in this paper is OSL. 
OSL is a proprietary language developed by 
CENX Inc. to manage the inventory, ordering and 
monitoring of Ethernet back-haul networks.  OSL 
is comprised of a mark-up language, using YAML 
as its base as well as a runtime environment 
which is its own set of commands.  The 
description language provides the building blocks 
to describe network topologies whereas the 
runtime language helps to compile telecom 
planning spreadsheets into actual network assets.  
OSL has also been used to help large telecom 
companies properly complete circuit orders.   

OSLs use of dynamic language constructs 
such as multiple inheritance, object mix-ins and 
duck-typing have allowed network engineers to 
build various network topologies between various 
organizations with little duplication. To date, OSL 
is about 7 KLOCs of production code and are 
96% covered by 1100 automated tests, structured 
using MLTDD. 

6 RELATED WORK 

Since agile methodologies emphasize the delivery 
of working executable code in a repeatable 
manner, the notion of automatically testing these 
deliverables is appealing. Since the emergence of 
such methodologies, one can notice the increase 
of work on the value of TDD. The literature is 

rich with work reporting and assessing the 
benefits of test driven development 
methodologies. One study in IBM reported that 
adoption of TDD has reduced the number of 
defects by 50% (Maximilien & Williams, 2003). 
Our work goes beyond arguing for or against 
TDD, but rather studies how TDD can be applied 
to a specific application domain (Forward & 
Lethbridge, 2008), software language 
development. 

Steel (Steel & Lawley, 2004) reports on a 
study of the methodology of TDD of a model 
transformation engine. Similar to our work, steel’s 
study emphasizes the importance and value of 
TDD, emphasises the need of structuring tests. 
Steel also concludes that there is a need for 
maintaining tests in a structured format (i.e, in 
XML) rather than programmatically as we have 
done in Umple. 

One core difference in approach between our 
work and Steel’s is the way tests are structured. 
We advocate structuring tests around application 
tiers or components (i.e, parsing, metamodel 
instance creation, code generation and system 
creation). Steel, on the other hand, advocates 
structuring tests around features. Our view is that 
at the high level, tests must be streamlined and 
organized by level. Within each level, tests can be 
grouped by feature and sub-features. The benefit 
of the high-level grouping by levels is evident in 
the following: 
• Bugs and features are organized and 

reported against levels (parser, etc.). 
• A bug report against a feature often spans a 

number of levels. Further work is therefore 
needed to isolate the concerned level. 

• As a language grows, features overlap. If 
tests were grouped by feature it is not 
always clear which tests belongs to which 
feature. 

7 CONCLUSION 

This paper has presented a methodology we call 
multi-level TDD (MLTDD) for applying Test 
Driven Development to software languages. 
Motivated by the success we achieved with 
applying MLTDD to Umple, as well applying it to 
other projects including Appstats and OSL, we 
strongly believe that MLTDD can and should 
easily be applied to all general purpose 
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programming languages, domain languages, 
model-to-model transformations and model-to-
code transformations. 
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