
1

A Test-Driven Approach for Developing Software Languages

Omar Badreddin, Andrew Forward, Timothy C. Lethbridge
School of Electrical Engineering and Computer Science (EECS)

University of Ottawa, Canada,
obadr024@uottawa.ca, aforward@gmail.com, tcl@eecs.uottawa.ca

Keywords: Test Driven Development, Model Oriented Programming Language, UML.

Abstract: Test-Driven Development (TDD) is the practice of attempting to use the software you intend to write,
before you write it. The premise is straightforward, but the specifics of applying it in different domains
can be complex. In this paper, we provide aTDD approach for language development. The essence is to
apply TDD at each of four levels of language processing, hence we call our approach Multi-Level TDD,
or MLTDD. MLTDD can be applied to programming languages, preprocessors, domain specific
languages, and transformation engines. MLTDD was used to build Umple, a model-oriented
programming language available for Java, Ruby, and PHP. We present two case studies where this
approach was implemented to develop two other domain specific languages.

1 INTRODUCTION

Test Driven Development (TDD) (Beck, 2002),
and its similarly-named practices (Test First
Development, Test Driven Design, and Behaviour
Driven Development (BDD)) provide a trusted
strategy for software development regardless of
the development lifecycle. The benefits of TDD
are well documented in (Gupta & Jalote, 2007).
The focus in this paper is not to convince the
reader of the value of TDD, but rather to
demonstrate a TDD approach geared for software
language development.

The main contribution of this paper is what we
call Multi-Level TDD (MLTDD), which means
applying TDD to each level of the language
processing pipeline.

MLTDD has been successfully used to
develop Umple (Badreddin, 2010), (Lethbridge et
al, 2013), (Lethbridge et al, 2010), a general
purpose model-oriented programming language. It
has also been used to create Appstats, (Forward,
2012) a DSL for managing usage statistics and
Osl, a proprietary DSL for describing network
topologies. The examples shown in the paper
focus primarily on Umple, publicly available at

(Lethbridge et al, 2012). MLTDD has been
extensively tested in Umple development and has
helped to keep Umple’s overall quality high, and
to facilitate its evolution.

The paper is organized as follows. We first
introduce the components of a language processor
and describe how TDD can be streamlined for
each component. We explain how this manages
defects and reduces regression by presenting a
hypothetical bug scenario. We then explain how
this approach was applied in practice.

2 DESIGN A NEW LANGUAGE
BY TESTING: MLTDD

The number of domain specific and general-
purpose software languages is increasing. There
are several reasons for creating such languages
(Gronback, 2009). An approach to building new
languages is shown in Figure 1. The exact
architecture of each language processor may
differ, but this workflow provides a typical view.
Variations of this architecture were used in
developing Umple, Appstats, and Osl.

2

Figure 1: Building a new language

The four common steps in processing a
language are given below. Each step can be
encapsulated in a component in the language
processing architecture:

• Parse the source – Processing occurs
according to a grammar that finds matches for
the language constructs. The language text (or
textual representation of a visual language) is
consumed by the parser, which translates it into
an an abstract syntax tree (AST). The AST
remains a syntactic view of the system.

• Populate the Metamodel – The AST is
analyzed and an instance of the language’s
metamodel is constructed. The metamodel
includes additional semantic details.

• Generate Artifacts – The metamodel instance
is used to generate work products of the
language, which may include code generation
(e.g. for preprocessor languages like
CoffeeScript, Sass, or Umple), or runtime code
for virtual machines (e.g. Java object-code, or
ASP.Net CLI). Alternatively, runtime
interpretation of the metamodel instance may
occur (e.g. Ruby, Bash, or SQL).

• Build Systems – Now that we have a new
language, we build real systems (the purpose
for creating the language). For general purpose
programming languages this may include using
the new language to build itself (i.e. using the
Umple language to create the Umple compiler).

For simple languages, generating language
artifacts could be performed directly against the
AST, skipping the second step . But in practice it
is worthwhile to introduce an intermediate stage
(the metamodel) to decouple the semantics of the
language from its specific syntax.

More complex languages may include
modules such as a debugger, integrated-
development tools and meta-language extension
mechanisms. The focus of this paper remains on
the four steps above and the components that

implement these steps. These form a general
architecture for software language development.

The following sections investigate each of the
four components and demonstrates how TDD is
applied, using Umple as a case study.

2.1 Parser Testing

The primary intent of the parser is to correctly
interpret the source code according to the
language’s syntax. Driving parser design through
tests requires explicit test cases to make these
assertions: a) Asserting the parser properly
tokenizes the input, and b) Asserting the parser
properly populates the metamodel instance

A template for testing parser in JUnit is:

@Test
 public void someSyntaxToVerify() {
 // Step 1: Load the source code
 // Step 2: Parse file and assert its success
 // Step 3: Assert correct tokenization
 // Step 4: Clean up }

A simplified excerpt from the Umple

codebase is shown below that demonstrates the
proper parse of a simple Umple class.

@Test
public void emptyClass() {
 String input = "class Student{}";
 String expectedOutput =
 "[classDefinition][name:Student]";
 UmpleModel model = new
 UmpleModel(new UmpleFile("empty.ump"));
 UmpleParser parser = new UmpleParser(model);
 boolean answer = parser.parse(
 "program", input).getWasSuccess();
 Assert.assertEquals(true, answer,
 "Unable to parse Umple code");
 answer = parser.analyze(false).getWasSuccess();
 Assert.assertEquals(true, answer,
 "Unable to analyze Umple code");
 Assert.assertEquals(expectedOutput,
 parser.toString()); }

3

This tests the empty class case; a class with no

content except possibly white spaces and new line
characters.

The parser testing must also handle invalid
input, or negative cases. The extent of negative
test cases depends on the proficiency of the target
audience, the complexity of the language and the
desired debugger feature set. A template for
testing invalid input is shown below:

@Test
public void someSyntaxErrorToVerify()
{
 // Step 1: Load the source code
 // Step 2: Parse file and assert its failure
 // Step 3: Assert correct error in formation
 // Step 4: Clean up }

2.2 Metamodel Testing

The objective of metamodel testing is to ensure
that the compiler is able to maintain a valid
internal representation of the input language. It
can be argued that parser testing (above) and
artifacts generation testing (discussed on the next
section) are sufficient. However, from experience
we find that testing the metamodel instance is
crucial step to help maintain the language as it
evolves, and facilitates debugging by isolating
issues into either problems with syntax analysis
(testing the parser) or language metamodel
semantics (testing the metamodel).

Metamodel tests use the following standard
unit testing pattern.

@Test
public void someSpecification() {
 // Step 1: SetUp
 // Step 2: Execute
 // Step 3: Verify
 // Step 4: TearDown }

It is important to document not only how the

system behaves under normal conditions, but also
how it behaves in abnormal scenarios where, for
example, preconditions are not satisfied.

Here is a sample test case for the Multiplicity
metamodel class. Below we see that setting the
range on a Multiplicity properly sets both the
upper and lower bound.

@Test
public void setRange_ExplicitBounds() {
 Multiplicity m = new Multiplicity();
 m.setRange("1","2");
 Assert.assertEquals(1,m.getLowerBound());
 Assert.assertEquals(2,m.getUpperBound());
}

Some may question the value of such

simplistic tests. It should be noted that the test is
merely an example to demonstrate the structure of
a metamodel test. But, more importantly, the spirit
of following test-driven design (as well other
driven approaches) is the concept of evolving
design through tests. By following a test-driven
approach, the tests (and the ability to run them
over and over again in an automated fashion) is a
welcome side effect, but the true power of the
approach is in the initial design whereby you first
exploit the common uses of your metamodel and
only then do you concern yourself with the
implementation.

2.3 Artifact Generation Testing

The end result of any language compiler is a set of
generated artifacts. Take Java for example, the
Java interpreter generates byte code. Even for
visual languages such as UML, the generated
artifacts can be either high level programming
language code (such as Java or C++), or XML
based artifacts (such as XMI) that are used for
saving and interchanging models. The objective
of this category of tests is to ensure that the
compiler is able to generate artifacts that match
what is expected.

Many of the defects of the language processor
are likely to be discovered against these types of
tests. While parser and metamodel tests (are
related code) are important to continued success
of your project, the desired output of your
language is really the generated artifacts (e.g. byte
code).

Umple generates a wide range of artifacts.
Given an Umple source, the compiler generates a
number of high level programming languages
code (Java, PhP, Ruby, and C++). The compiler
also generates XML based artifacts, such as
Ecore, and Papyrus XMI, as well as other artifacts
such as SQL and TextUML. We explain here the
testing platform to support this wide range of
artefact types.

4

The code generator typically takes a populated
metamodel instance as input. The output is one or
more target artifacts or a transformation into
another modeling syntax. In addition to overall
setup and tear down, the high-level approach to
testing code generation is shown below.

@Test
public void verifyGeneratedCode() {
 // Step 1: Prepare Metamodel
 // Step 2: Run Code Generator
 // Step 3: Verify results }

To prepare the metamodel instance, there are

two approaches: populating the model by direct
calls to the available API of the metamodel (or
perhaps using a mock object facility; or, parsing
source code using the existing infrastructure.

The first approach (to populate the metamodel
instance directly using the API) has several
drawbacks: The setup code can become quite
cumbersome and complex, which could make the
test code less readable and maintainable. And, it
can also be error prone, as the testing developer
must properly populate the metamodel prior to
testing. The primary benefit of this approach is
the isolation of the code generator's behaviour
from that of the code that parsed the source and
generated the metamodel instance. Issues related
to the parsing phase (translating code into a
populated metamodel instance) would not
interfere with testing the code generator.

For example, the following code creates a
Student class with three attributes (id, name, and
program).

UmpleModel m = new UmpleModel(null);
UmpleClass student = m.addUmpleClass("Student");
student.addAttribute(
 new Attribute("id","Integer", null,null,true));
student.addAttribute(
 new Attribute("program","String", null,"SEG",false));

The second approach where the test uses raw

source code that is then parsed into the
Metamodel instance (which is then used as input
to the code generators) has two primary benefits.
First, it is easier to express a system in its own
syntax as opposed to building it using a
metamodel's API. Second, you provide an
important integration between the external inputs
and outputs of your language. The obvious

drawback is that these tests are no longer pure
unit tests, and that failing tests in this component
could be resulting from the parser or the code
generator.

Here is the same example from above written
using the source language (Umple) syntax
directly.

class Student {
 Integer id;
 name;
 program = "SEG"; }

Regardless of the approach, the metamodel

instance must be populated before the code
generation can be tested. Instead of crafting a new
means to populate that model, we favour the more
pragmatic approach of simply reusing the existing
(and tested) parsing approach as described in the
previous section.

By parsing the model code directly, an added
benefit is that you can create a generic
TemplateTest to manage the test artefacts (i.e.
input model code, expected output system code);
leaving the testing mostly boilerplate-code free.

The outline of such a template class is shown
below.

public class TemplateTest {
@Before
public void setUp()
{
 // configure paths to Umple data files
 // this can be configured to support
 // multiple languages }
@After
public void tearDown() {
 // clean up any temporary or generated files }
public void assertTemplate (
 String modelFile,
 String expectedGeneratedFile) {
 // Parse / tokenize modelFile
 // Create an instance of meta model
 // Generate code for the underlying system
 // Compare the actual generated code
 // with the expectedGeneratedFile } }

The method signatures will vary slightly

depending on the type of code generator that is
being created; but the overall structure remains
intact.

With the infrastructure shown above in place,
adding new code generation tests is
straightforward, as the template encapsulates the

5

distracting elements of the test setup. A sample
code generator test is shown below.

@Test
public void Association() {
 assertUmpleTemplateFor("AttributeTest.ump",
 languagePath + "/ AttributeTest."
 + languagePath +".txt","Student"); }

The test above requires a model file

(AttributeTest.ump), as well as a source code file
based on the selected language. In Umple, we
currently support Java, PHP, Ruby, and C++.
Using the test case above, the same model file can
be reused to test against all the supported
languages. This infrastructure can easily be
extended to add testing for other generated
artifacts.

2.4 Testing of End-User Systems

The previous sections described testing the
language compiler / code generator itself in what
can be termed white-box testing. So far, we only
asserted that the system outputs what we expect,
but not necessarily what the target platform
requires. This class of testing only applies if the
language compiler generates either executable
artifacts (i.e, bytecode), or artifacts that
themselves can generate executable artifacts (i.e,
Java or C++), or artifacts that serves a tangible
purpose (i.e, an XMI artifact that is used for
model versioning or interchanging).

The objective of this category of tests is to
ensure the appropriate behaviour of the resulting
system. This is a powerful concept because it
enables the language developer to assert the
semantics of the generated system (not just its
syntax).

The semantics of Umple’s modeling
components are quite rich so it is important to
provide adequate testing of generated systems to
ensure that the semantics of an Umple model is
upheld in the underlying base language (i.e. Java,
PHP or Ruby). This level of testing ensures the
appropriate behaviour of the generated Umple
executable artefacts, which is essential to support
our industrial case studies.

Let us consider a simple example of testing
the semantics of a class attribute.

class Student { name; }

The specifications for an attribute as defined

above include the following properties and
behaviours: the attribute is included as a
constructor argument, the attribute can also be
modified and retrieved. Based on the above
description of an attribute, we could write the
following tests (the tests are written using JUnit4
syntax).

@Test
public void attributeBehaviour() {
 Student s = new Student("james");
 Assert.assertEquals("james",s.getName());
 s.setName("henry");
 Assert.assertEquals("henry",s.getName()); }

This test can be equally expressed in PHP
using PHPUnit (an xUnit testing framework for
PHP applications) as shown below.

public function test_attributeBehaviour() {
 $s = new Student("james");
 $this->assertEqual("james",
 $s->getName());
 $s->setName("henry");
 $this->assertEqual("henry",
 $s->getName()); }

By capturing the properties and behaviour of

systems built with Umple, we are able to build up
an extensive library of executable specifications
which more concretely demonstrate the realized
behaviour of the system, as opposed to its
documented behaviour (and as is common
knowledge amongst most software practitioners, it
is common for documentation to quickly get stale
and out of sync).

Tests under this class are not limited to simple
systems. In the case of Umple for example, the
whole of Umple compiler and development
environment are implemented using Umple itself.
In that sense, Umple provides itself is a very large
system test case (as each new version of Umple is
re-tested against itself to ensure it continues to
abide by it’s own semantics).

Tests in this category provide both an
excellent test-bed for experimenting with code
generation techniques (i.e. testing the effects of
changing the code generation on the resulting
system), as well provided added confidence
generated systems (not just your own language
platform) work as expected. Meanwhile, test
failures in this category potentially identify issues

6

in any of the previous test categories and will
most likely require additional exploratory tests to
uncover the true cause of the semantic error.

3 MANAGING DEFECTS AND
MINIMIZING REGRESSION

Despite having over 2,500 automated Umple tests
that span all facets of the toolset from parsing to
code generation, any compiler inevitably will
contain defects. In this section, we discuss how
the testing infrastructure described above allows
for better defect management by representing
bugs as failing tests, effectively diminishing the
time and effort required to perform regression
testing.

When a defect is uncovered, it might be one of
the following:

1. Defects in the way in which the language
is tokenized into an abstract syntax tree

2. Incorrect population of the metamodel
instance from the tokenized language.

3. Inappropriate behaviour of the
metamodel classes.

4. Syntax errors in the generated artefacts.
5. Semantic errors (i.e. incorrect behaviour)

in the generated base code
6. Execution errors in the generated

systems.
In addition to the defect scenarios above, there

is always the possibility of usability defects.
Dealing with this type of defect is outside the
scope of our work, and instead, we focus our
attention on well-defined, repeatable issues.

As defects are uncovered, it is not always
apparent which category of defects has been
uncovered. Where the root cause of a defect is
unknown, it is recommended to resort to bottom-
up defect resolution. We start by verifying the
tokenization, then the metamodel, followed by the
generated artifact, and finally, the system level
testing.

3.1 Step 1: Identify the problematic

input language code and expose it
with a failing test

The first step is to identify the component
responsible for the problematic output. This

process may involve a few iterations to isolate the
exact symptoms causing the issue, but that is not
always necessary.

For illustration purposes, our sample defect is
that un-typed Umple attributes are not reflected in
the generated code. The following code shows the
potentially problematic Umple code.

class Student { id; }

The test case would perform an end-to-end

high level test that properly documents the
identified issue with a failing test.

3.2 Step 2: Verify the tokenization of

the problematic Umple code

With our high-level failing test in place, we now
analyze each step of the process to identify the
root cause of the problem. We start with the
Umple parser.

The process for verifying the parser is already
available. We simply add an additional test using
the problematic Umple code as the input and we
verify the output.

To continue with the example above, we first
make sure that un-typed attributes are properly
parsed and tokenized. The expected result
[class][name:Student][attribute][name:id]
represents a toString view of the tokenization
sequence used to assert equality in a human
readable form.

@Test
public void untypedAttributes() {
 assertParse("untyped.ump",
 "[class][name:Student]"+
 "[attribute][name:id]"); }

If this test fails, we resolve it and re-run our

test from Step 1. If that test succeeds, then it is
likely that the problem is now properly resolved
and the debugging process is complete. If not,
then we move on to the next step.

3.3 Step 3: Verify the instance of the

Umple metamodel

Once the Umple source has been shown to parse
correctly (but that the observed issue persists), we
then validate that the instance of the Umple
metamodel is consistent with the Umple input.

7

Here, we are ensuring that the metamodel was
properly populated following the parser
tokenization process.

To test the metamodel, we enhance the test
identified in Step 2 as follows.

@Test
public void untypedAttributes() {
 assertParse("untyped.ump", "[class][name:Student]"+
 "[attribute][name:id]");

 UmpleClass aClass = model.getUmpleClass(
 "Student");
 Assert.assertEquals("Student", aClass.getName());
 Attribute attr = aClass.getAttribute("id");
 Assert.assertEquals("id", attr.getName());
 Assert.assertEquals("String", attr.getType()); }

Here, we assert that the Student class is

created, and that it has an attribute of type String
with the name id. If this test fails, we follow the
same procedure starting from the previous step:
re-test our high-level test and proceed to the next
step only if that test still fails.

3.4 Step 4: Validate the proper

behaviour of the metamodel

Once the Umple code appears to be parsed
correctly, and the metamodel is properly
populated, we then investigate if there is any
special behaviour that is performed by the
metamodel instance that may not be handled
properly.

For example, an Attribute has an operation
isPrimitive which checks for the Umple
predefined types, and perhaps this operation is not
functioning as expected. Below is a test case
demonstrating the expected behaviour.

@Test
public void isPrimitive() {
 Attribute av;
 av = new Attribute("a",null,null,null,false);

 Assert.assertEquals(true, av.isPrimitive());
 av.setType("String");

 Assert.assertEquals(true, av.isPrimitive());
 av.setType("Address");

 Assert.assertEquals(false, av.isPrimitive()); }

Dealing with this type of testing is difficult to
categorize, and each scenario will need to be
analyzed individually. If the behaviour of the
metamodel appears to be working correctly (but
our high-level test still fails), we continue to the
next step.

3.5 Step 5: Compare the expected

versus actual generated code

Next, we analyze the expected code versus actual
generated code. Here, we are testing that the
syntactic translation of the Umple metamodel
instance into the generated base language is
correct.

The example test case would resemble the
following code.

@Test
public void untypedAttributes() {
 assertUmpleTemplateFor("attribute.ump",
 "attribute.java.txt”, "Student"); }

Where the “attribute.ump” would be the

problematic Umple code and the
“attribute.java.txt” would contain the desired Java
code to be generated from the model.

3.6 Step 6: Test the behaviour of the

generated code

If all other tests are passing successfully, the final
aspect to testing the Umple system is that the
generated code conforms to the semantics of the
model. It might be the case where we are
producing what is believed to be the correct code,
when in fact the generated code does not behave
as the intended by the model.

In our on-going example presented above, we
write unit tests against a sample application that
contains a Student with an id attribute.

@Test
public void constructor() {
 Student s = new Student("x");
 Assert.assertEquals("x",s.getId()); }

@Test
public void setAndGetStringAttribute() {
 Student s = new Student("x");
 s.setId("y");
 Assert.assertEquals("y",s.getId()); }

8

The steps outlined above provide a high-level
approach to deal with issues as they arise. The
most important first step is to create a failing test
that exhibits the invalid behaviour of the system.
The granularity of this test is not that important,
as we have developed a systematic approach to
verify each step of the Umple compiler to help
determine the root cause of the issue.

By adopting a test-driven approach, the
regression test suite continues to grow to deal
with new issues and at the same time mitigate the
risk of regressing on existing functionality. In the
next section, we look at how the current
infrastructure supports future potential
enhancements.

4 APPLYING MLTDD TO A
LANGUAGE WRITTEN IN
ITSELF

As the core features of the language become
available, a new feature can be described as a
defect; in other words, something is missing that
should not be missing. The approach of adding
new features should follow a similar path as
described in the previous sections whenever
possible. In this section, we describe how to
manage new features by means of ‘dog-feeding’
examples.

By following the steps described above, it is
possible to specify the desired behaviour of a new
language feature without that feature being
available yet. And if the language is written in
itself, it is required to implement most behaviour
using the existing language constructs.

In the example below, we demonstrate this
process using Umple. The example illustrates
adding an OCL-like constraint syntax to be
specified against attributes. The semantic test
below assumes the OCL constraint that age >= 18
for any Student.

Before implementing the change, we first
write a test in the base language demonstrating the
desired functionality. This test would need to be
translated into each language supported. Below is
a sample test written for Java.

@Test
public void cannotSetTo17() {
 Student s = new Student(18);
 Assert.assertEquals(18,m.getAge());
 Assert.assertEquals(false,s.setAge(17));
 Assert.assertEquals(18,m.getAge()); }

Next, we use Umple itself to implement the
feature using existing constructs.

class Student {
 Integer age; before setAge {
 if (aAge < 18) { return false; }
 }
 after getAge {
 if (age < 18) {
 throw new RuntimeException("Age must be >= 18")
 }
 } }

Once the behaviour is validated with sufficient

(and passing) tests within our base languages, we
then enhance the parser and metamodel with the
new language constructs.

The potential Umple syntax might look like
the following.

class Student {
 Integer x;
 // this is the potential invariant syntax
 [x >= 18] }

Next, we migrate the custom code written in

the behaviour tests into the code generation
process to validate the generated syntax.
Following that, we deploy a new version of
Umple itself and update the original behaviour
tests to use the new language constructs (as
opposed to having to write the behaviour by hand,
as was required before the feature was available).
These tests themselves remain relatively
unchanged; we simply update the tests to use the
new language constructs.

In pure TDD methodology, the process is not
just about testing; but rather about designing the
system in a modular fashion maintaining low
coupling and well-defined interfaces. The process
is also about capturing the intention of the
software (i.e. automated tests) that can be easily
verified (i.e. re-running the test suite) effectively
enhancing reusability.

For example, the act of manually testing and
modifying (i.e. debugging) an application until it
works benefits only the developer performing the
task. It cannot be replicated easily, as the

9

debugging steps are not documented and are lost
once the debugging exercise is complete.
Conversely, by capturing the testing process
through automation, all developers can benefit as
knowledge is gained about the true behaviour of
the system that can be easily re-run and re-
verified.

In the case of building a new programming
language (or in the case of Umple, extending
existing base languages), we first need to be
concerned with testing the tooling itself. But,
because the outputs of such systems are systems
too, they can also be tested (i.e. semantic testing
of systems generated using the new language).

In addition, because Umple is implemented in
itself, we are able to capture the debugging effort
of new code generation behaviour in automated
tests, and then modify the underlying Umple
language to replicate that behaviour natively, as
shown with the OCL constraint example. In
summary, we enhance the Umple language so that
we can refactor Umple (which is written in
Umple) to make use of the enhanced language
elements; ‘eating our own dog food’, so-to-speak.

5 CASE STUDIES

To further explore and validate our MLTDD
approach, we applied it to two industrial projects,
Appstats and OSL. These were undertaken in a
software company specializing in the
development of online process solutions.

5.1 Case study 1: Appstats

Appstats (Forward, 2012) is a small open-source
logging and statistics library that provides a
"counting" framework with features such as built-
in caching, delayed processing, as well as the
creation of ad-hoc and scheduled reporting. The
language provides a simple, yet effective, DSL.
The source code is about 2 KLOCs with 97%
coverage from over 650 tests. The basic structure
of an appstats query is

<action> <timeframe> <host/server> <context
filter> <group filter>

Actions are user defined and could include

things like # logins, # objects created, #
exceptions. Date ranges support several formats

such as "between Mar, 2010 and Mar, 2011",
"today", "last year|month|week|day", etc. The
host/server simply allows the user to grab
statistics from a particular server such as testing,
versus staging versus production. Finally, all data
logged by appstats is tagged with, and is
searchable / groupable by any number of contexts
(as defined by the user - not appstats), examples
include tracking the logged in user, the address
searched, number of results found, duration of
request etc.

By instrumenting an application appstats logs,
you enable very powerful and efficient queries
with a simple DSL. In addition, developers can
write 3rd party plug-ins to augment the "logging"
statistics with other data sources to facilitate a
uniform API between the raw data and any
application reporting functionality.

The approach used to test Appstats was the
same as that used by Umple. Below, we discuss
the unique characteristics of testing the statistics
collection mechanism of Appstats. Just like any
other type of test, you need to emulate the
situation you are testing, and then verify that the
right things has occurred. For Appstats statistics,
there are a few items that require configuration,
otherwise it is no different than testing other
aspects of the system.

The examples below are written in Ruby using
the RSpec testing framework.

1) Reset the logged and simulate the current
time. This will ensure the log starts empty, and
that your logs will occur at a specific (and
testable) time. You will also want to remove the
log file after each test to ensure all tests start with
a clean slate.

before(:each) do
 Appstats::Logger.reset
 Appstats::Logger.filename_template =
 "test_appstats_lookup_controller"
 Time.stub!(:now).and_return(
 Time.parse('2010-09-21 23:15:20 UTC'))
 end
 after(:each)do
 File.delete(Appstats::Logger.filename)
If File.exists?(Appstats::Logger.filename)
 end

2) Write the test that should "gather" some
type of statistic.

10

get :lookup, :address =>
 "123 Victoria Ave, Ottawa, K1P 1P2",
 :radius => "0.05"
 Appstats::Logger.raw_read.should ==
 Appstats::Logger.entry_to_s(
 "buyer-address-lookup",
 :accuracy => "4",
 :area => "Ottawa area",
 :total_results => 123)
 end end

Each project requires unique testing, and the

above demonstrates the use of the appstats API.
Such testing is not (yet) required in Umple as
Umple exposes itself only as a language (and
related tools), whereas Appstats is both a
language and an API.

5.2 Another Case Study: OSL

Another language that has benefited from the
TDD approach described in this paper is OSL.
OSL is a proprietary language developed by
CENX Inc. to manage the inventory, ordering and
monitoring of Ethernet back-haul networks. OSL
is comprised of a mark-up language, using YAML
as its base as well as a runtime environment
which is its own set of commands. The
description language provides the building blocks
to describe network topologies whereas the
runtime language helps to compile telecom
planning spreadsheets into actual network assets.
OSL has also been used to help large telecom
companies properly complete circuit orders.

OSLs use of dynamic language constructs
such as multiple inheritance, object mix-ins and
duck-typing have allowed network engineers to
build various network topologies between various
organizations with little duplication. To date, OSL
is about 7 KLOCs of production code and are
96% covered by 1100 automated tests, structured
using MLTDD.

6 RELATED WORK

Since agile methodologies emphasize the delivery
of working executable code in a repeatable
manner, the notion of automatically testing these
deliverables is appealing. Since the emergence of
such methodologies, one can notice the increase
of work on the value of TDD. The literature is

rich with work reporting and assessing the
benefits of test driven development
methodologies. One study in IBM reported that
adoption of TDD has reduced the number of
defects by 50% (Maximilien & Williams, 2003).
Our work goes beyond arguing for or against
TDD, but rather studies how TDD can be applied
to a specific application domain (Forward &
Lethbridge, 2008), software language
development.

Steel (Steel & Lawley, 2004) reports on a
study of the methodology of TDD of a model
transformation engine. Similar to our work, steel’s
study emphasizes the importance and value of
TDD, emphasises the need of structuring tests.
Steel also concludes that there is a need for
maintaining tests in a structured format (i.e, in
XML) rather than programmatically as we have
done in Umple.

One core difference in approach between our
work and Steel’s is the way tests are structured.
We advocate structuring tests around application
tiers or components (i.e, parsing, metamodel
instance creation, code generation and system
creation). Steel, on the other hand, advocates
structuring tests around features. Our view is that
at the high level, tests must be streamlined and
organized by level. Within each level, tests can be
grouped by feature and sub-features. The benefit
of the high-level grouping by levels is evident in
the following:
• Bugs and features are organized and

reported against levels (parser, etc.).
• A bug report against a feature often spans a

number of levels. Further work is therefore
needed to isolate the concerned level.

• As a language grows, features overlap. If
tests were grouped by feature it is not
always clear which tests belongs to which
feature.

7 CONCLUSION

This paper has presented a methodology we call
multi-level TDD (MLTDD) for applying Test
Driven Development to software languages.
Motivated by the success we achieved with
applying MLTDD to Umple, as well applying it to
other projects including Appstats and OSL, we
strongly believe that MLTDD can and should
easily be applied to all general purpose

11

programming languages, domain languages,
model-to-model transformations and model-to-
code transformations.

REFERENCES

Badreddin, O. "Umple: A Model-Oriented
Programming Language," in Proceedings of the
32nd ACM/IEEE International Conference on
Software Engineering-Volume 2, 2010. pp. 337-
338.

Beck, K. Test Driven Development: By Example.
Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc, 2002.

Forward, A. and Lethbridge, T. C. "A Taxonomy of
Software Types to Facilitate Search and Evidence-
Based Software Engineering," in CASCON '08:
Proceedings of the 2008 Conference of the Center
for Advanced Studies on Collaborative Research,
2008. pp. 179-191.

Forward, A, 2012. Appstats. Accessed 2013.
https://rubygems.org/gems/appstats

Gronback, R. C. "Eclipse Modeling Project: A Domain-
Speci c Language (DSL)Toolkit". 2009. Addison-
Wesley Longman.

Gupta, A. and Jalote, P. "An Experimental Evaluation
of the Effectiveness and Efficiency of the Test
Driven Development". 2007. Empirical Software
Engineering and Measurement, 2007.ESEM
2007.First International Symposium on, pp. 285-
294.

Lethbridge, T. C., Forward, A. and Badreddin, O. "
Umple Language Online.", accessed 2013,
http://try.umple.org..

Lethbridge, T. C., Forward, A. and Badreddin, O.
"Umple Google Code Project". 2012. Available:
code.umple.org

Lethbridge, T. C., Forward, A. and Badreddin, O.
"Umplification: Refactoring to Incrementally Add
Abstraction to a Program," in Working Conference
on Reverse Engineering, 2010. pp. 220-224.

Maximilien, E. M. and Williams, L. "Assessing Test-
Driven Development at IBM," in Software
Engineering, 2003. Proceedings. 25th International
Conference on, 2003. pp. 564-569.

Steel, J and Lawley, M. "Model-Based Test Driven
Development of the Tefkat Model-Transformation
Engine". 2004. 15th International Symposium on
Software Reliability Engineering, pp. 151-160.

