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Abstract: Developers using model driven development (MDD) to develop systems lack the ability to specify traces 
that operate at the model level. This results in specification of traces at the generated code level. In this 
paper, we are proposing trace directives that operate at the model level to specify the tracing of UML 
attributes and state machines. Trace directives are implemented as part of the Umple textual modeling 
language, thus these directives can be expressed in a textual form. Trace code will be injected into system 
source code that corresponds to trace directives specified at the model level.  

1 INTRODUCTION 

Over the history of software, software development 
has been continuously becoming more complex. 
Many researchers and software practitioners have 
strived to simplify the process of software 
development by introducing levels of abstraction. In 
the early days of the software industry, software 
developers created software using assembly 
languages and machine code. As these languages 
became inadequate, successively higher-level 
programming languages were introduced as 
abstraction layers over machine code. Nowadays, as 
software complexity increases, researchers are 
directing their attention to model driven 
development (MDD).  

Huge advantages are gained when software 
developers adopt the MDD approach (Selic 2003, 
Sendall, Kozaczynski 2003), with models 
representing the main artifact in the development 
cycle. One of the biggest advantages is the ability to 
view targeted systems at a high level of abstraction 
as compared to programming languages. 

Tracing is used to understand the behaviour of 
systems in order to debug or monitor them. Data 
collected while tracing ranges from the output of 
simple programmed log commands to more 
sophisticated traces containing lower-level events 
triggered by tools that dynamically instrument user 
and kernel spaces. However, injecting trace code 
into a system is not a trivial task and controlling 

tracing so it is both effective and efficient is even 
more difficult. 

Historically, developers have traced software 
using techniques such as adding simple print 
statements, breakpoints in a debugger, or more 
sophisticated tracing tools such as Dtrace  (Cantrill 
2006, Cantrill, Shapiro & Leventhal 2004)  or Linux 
Linux Trace Toolkit - next generation 
(LTTNG)(Desnoyers, Dagenais 2009, Desnoyers et 
al. 2012) that allows tracing to be initiated either at 
compile time or run time. In situations where code is 
generated, such as when a pre-processor or model 
driven development is involved, these tracing 
techniques tend to be limited to working with 
generated code. They therefore require the 
understanding of the generated code’s structure, and 
require extra work to map changes and 
understanding to the original source. Furthermore, 
tracing code needs replacing when the code is re-
generated. Tracing thus occurs at a level of 
abstraction below the level at which the system is 
implemented. 

Existing techniques focus on tracing at the code 
level: tracing function/method calls, lines executed, 
variables being set, etc. There has been little or no 
research into tracing at the model level. In this 
paper, we propose the notion of trace directives that 
operate at the model level by defining its syntax, 
implementing the parser, code generator and tests. 
Our tracing language, which we call Model Oriented 
Tracing Language (MOTL) is incorporated into the 
Umple technology for model-oriented programming  
(Forward, Lethbridge & Brestovansky 2009, 
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Forward et al. 2012, Lethbridge, Forward & 
Badreddin 2010, Lethbridge et al. 2011) . Trace 
directives will allow developers to gain the ability to 
specify traces of different UML entities at the model 
level without the need to modify the generated code. 
This field, which we call model-oriented tracing, is 
currently immature, so there are tremendous 
opportunities to make contributions. 

The remainder of this paper is as follows: 
Section 2 sheds light on the model oriented tracing 
research area and specifies the research problem we 
are addressing. Section 3 provides technical 
background necessary for our proposed tracing 
directives. Section 4 explores the details of our 
proposed trace directives. Section 5 illustrates the 
usage of trace directives by example. Section 6 
presents related work in the literature. Finally, the 
paper is concluded in Section 7.  

2 MODEL-ORIENTED TRACING 

The concept of model-oriented tracing is the 
following: A developer modeling in UML, and 
generating much of their system directly from the 
UML model, should be able to indicate that they 
want any of the UML entities to be traced. The 
developer should not be forced to inject tracing into 
generated code, which he or she may never 
otherwise look at, and which is subject to re-
generation every time the system changes. 

Examples of UML entities to trace include: 
 

• Attributes: Tracing attributes is conceptually 
similar to tracing variables, except that the level 
of abstraction is higher because the 
implementation of the attribute is deferred to the 
code generator, and the attribute may have 
automatically managed constraints, specialized 
initialization conditions, and triggers such that 
changes to the attribute cause system events. 

• State machines: Tracing can be performed at 
state entry and exit, as well when particular 
transitions occur or when named events occur. 
Since state machines can be nested at several 
levels of depth, tracing can be scoped to certain 
substates. Tracing of attributes can be 
constrained to occur in specific states. 
 
The above examples are the focus of this paper, 

but we are working on tracing UML associations, 
and it would still be possible to trace functions, 
methods and lines of code as has been traditionally 
possible. The key is that model-oriented tracing adds 

another level of abstraction to the elements that can 
be traced. 

2.1 Problem Statement 

The problem statement for this research is as follows 
(Aljamaan, Lethbridge 2012): 

Developers frequently need to deploy tracing to 
debug programs, to test them in a white-box manner, 
to understand their internal behaviour and to detect 
anomalies such as hacker intrusion or performance 
degradation. Current technologies, however, only 
allow injecting traces into functions (procedures or 
methods) and data items. The ability to 
systematically trace at the model level is missing, 
since there are no tools available to meet this need. 

3 UMPLE 

Umple  (Timothy C. Lethbridge et al. 2011, 
Badreddin, Forward & Lethbridge 2012, Forward, 
Badreddin & Lethbridge 2010, Forward et al. 2011) 
is a technology for modeling textually in UML and 
can be seen as both a modeling and a programming 
language. Software developers can represent UML 
concepts such as classes, attributes, associations and 
state machines in Umple, and can embed ordinary 
methods in an Umple class. As a result, an Umple 
program looks like a standard program (e.g. in Java) 
with some extra features added. 

Part of the Umple philosophy is that software 
developers describing the system at a high level of 
abstraction will have less code to write and hence 
will have higher productivity. Umple users can 
specify the following high level constructs, most of 
which are based on UML. The Umple user manual 
provided full details  (Cruise 2013) : 

 
• Classes and Interfaces 
• Attributes 
• State Machines: Umple provides a complete and 

powerful textual specification of state machines 
at the model level. Umple supports nested or 
concurrent states, transitions with guards, entry 
or exit actions, and interruptible activities. 

• Associations: These specify the sets of links 
among objects that can exist at run time. 

• Patterns: Umple supports the singleton and 
immutable patterns plus the definition of 
database-style keys. 

• Aspect Orientation: Umple users can insert 
code to be run before (i.e. as a precondition) or 



 

after (i.e. as a postcondition) Umple-defined 
actions on attributes, associations and the 
components of state machines. 
 
Developing in Umple can be performed using 

standard command-line tools  (Lethbridge, Forward 
& Badreddin 2012) , using an Eclipse plugin, or, for 
small systems, with UmpleOnline  (Lethbridge T.C., 
Forward & Badreddin 2012) . Programmers can use 
Umple in the manner they are accustomed, adding 
UML constructs as they gain confidence. On the 
other hand, modelers can take the opposite approach, 
starting with high-level models and then adding 
methods to specify detailed algorithms and in order 
to fully implement other details of the system not 
covered by the modeling constructs. Readers are 
referred to UmpleOnline  (Lethbridge T.C., Forward 
& Badreddin 2012)  for a list of systems modeled in 
Umple. 

4 TRACE DIRECTIVES 

Tracing is specified using structured trace directives 
that can be placed anywhere in Umple code 
describing a model. Generally, a trace directive is 
structured as follows: 
 

trace <UMLconstruct> <Constraints>  ; 
 

Trace directives start with a keyword ‘trace’ and 
end with a semicolon ‘;’. After the trace keyword, a 
UML construct to be traced is specified (attribute, 
association, state, etc.). The scope of tracing can be 
limited using appropriate optional constraints and 
conditions that can switch tracing on or off in certain 
situations. In addition, constraints can be used to 
specify data that will be outputted. 

4.1 Attribute Tracing 

Trace directives allow the tracing of attributes at the 
model level; trace output can be generated whenever 
an attribute value is changed (i.e. a setter is called) 
or/and when the value is accessed (i.e. the getter 
method is called). Moreover, attribute tracing can be 
limited based on constraints such as a condition 
being true or a maximum number of trace 
occurrences being reached. 

Attribute tracing can occur in three modes: when 
the attribute value is accessed, changed, or both. 
Therefore, a selection of three keywords for each 
mode can be used as follows: 

 

• Attribute value changed: When ‘set’ keyword 
is specified before the traced attribute, tracing 
occurs when the attribute setter method is 
executed. This is also the default case when no 
keyword is specified before the traced attribute 
in a trace directive. 

• Attribute value accessed: When ‘get’ keyword 
is specified before the traced attribute, tracing 
occurs when the attribute getter method is 
executed. 

• Attribute value accessed or changed: When 
both keywords ‘set’ and ‘get’ separated by ‘,’ are 
used, tracing occurs either when getter or setter 
methods are executed.  

4.2 State Machine Tracing 

Developers can specify that they want a certain state, 
transition, or event to be traced, and have the ability 
to limit the scope of tracing to a certain level of 
substates, or trigger tracing when certain trace-based 
conditions become true. The following are some 
details: 
• State: Tracing a state means trace output will be 

recorded for each incoming and outgoing 
transition. In addition, substates are traced, 
recursively. But, if tracing of substates is not 
desired and tracing scope should be limited to a 
certain level, then the ‘level’ keyword can be 
specified followed by an integer to represent the 
tracing level (i.e. recursion depth); level 0 would 
mean trace the current level and no substates. 

• Limiting to entry and exit: Tracing a state 
normally involves the tracing of its entries and 
exits, but tracing can be limited to either case. In 
a trace directive, we can use the ‘entry’ keyword 
before a traced state to indicate tracing of its 
entries only, or the ‘exit’ keyword to indicate 
tracing of its exits.   

• Transitions: A trace directive can trace a 
specific transition by using keyword ‘transition’ 
which involves the tracing of the original state, 
the destination state and the triggering event.  

• Events: All occurrences of an event name may 
be traced too. 

4.3 Trace Control with Constraints 

We identified various ways to control the scope of 
tracing and what needs to be traced. Tracing can be 
controlled by specifying post- or pre-conditions that 
need to be satisfied before tracing triggers. In 
addition, just as with attributes, tracing can be 



 

controlled by time manipulation and the 
specification of number occurrences. 

4.3.1 Basic conditions 

Basic conditions are used to control tracing by 
injecting code that outputs trace data only upon 
condition satisfaction. Conditions can be either pre-
conditions or post-conditions. The ‘where’ keyword 
is used to inject tracing code with a pre-condition. 
The ‘giving’ keyword is used to inject tracing code 
with a post-condition. Note that these condition 
expressions work the same regardless of the entity 
being traced – i.e. they apply to state machines and 
methods. The ‘giving’ keyword is so-named because 
the tracing occurs when the operation ‘gives’ a 
certain result. 

4.3.2 Occurrences 

In addition to basic conditions, the functionality of 
tracing for a certain number of occurrences (i.e. 
appearances) of trace output is implemented. This is 
achieved by using the ‘for’ keyword followed by an 
integer to specify the number of trace output 
occurrences desired. 

4.3.3 Timeline 

Tracing can be limited for a period bracketed by a 
condition. Two keywords were designated for this 
purpose: The ‘until’ keyword triggers tracing to start 
and continues tracing until a given condition is 
satisfied, after which tracing stops permanently. The 
‘after’ keyword provides the opposite behaviour; 
tracing will start once a given condition is satisfied 
and then continues indefinitely without any 
interruption. 

4.3.4 Record 

There are situations where tracing may necessitate 
the monitoring of other UML constructs for 
debugging and analysis purposes such as the tracing 
of additional attributes, state machines etc. We have 
provided the ability to specify these using the 
‘record’ keyword. In addition, this record statement 
can be used to record an arbitrary string. 

4.4 Trace Output 

Trace directives written at the model level will inject 
traces in the source code generated from the model. 
Data collected from these injected traces depends on 

the tracing technology being used. We implemented 
two primitive tracers that collect a wide variety of 
information during run time. These tracers are: 
 
• Console: Tracing using print statements has been 

used since the beginning of software. It forms the 
most basic and primitive type of debugging. 
However, being primitive doesn’t necessarily 
mean that it’s of no importance. It can be used 
for educational purposes or in situations where 
no deep tracing is needed. The console tracer 
directs trace output to standard error. 

• File: Tracing output is stored in a specific file, 
which can act as a trace log file. Such files are 
stored for later analysis. 
 
Information collected once a trace is triggered 

during run time consists of static, dynamic, and hard 
coded values as shown in Table 1. Dynamic values 
indicate that values differ for different traces (e.g. 
traces are triggered in different points of time). On 
the other hand, there some static values are recorded 
once a trace triggers (e.g. trace directive information 
that relates to triggered trace). Finally, we have 
identified a list of hard coded values to indicate what 
kind of operation triggered this trace (e.g. at_s 
means trace is triggered by an attribute set). 

 
Table 1: Trace output components 

Output component Value 
Timestamp Dynamic 
Thread Dynamic 
Name of Umple File Static 
Line number Static 
Class name Static 
Object hash code Dynamic 
Operation Hard coded 

 
We plan to add tracers for tools like Dtrace and 

LTTNG. Tracer selection is done using a tracer 
statement, which is structured as follows: 

 
tracer <TracerType> ; 

 
The tracer statement starts with ‘tracer’ keyword 

followed by the tracer chosen and ends with a 
semicolon ‘;’. If no tracer statement is included in 
the model, then trace output is directed to standard 
error. 



 

5 EXAMPLE 

In this section we present a student registration 
system to show capabilities and expressiveness of 
our proposed trace directives in specifying tracing at 
the model level. The student registration system 
consists of four classes with attributes and 
associations between them. In addition, a state 
machine is defined inside class CourseSection to 
handle and capture the desired dynamic behaviour of 
our system. Umple code for the student registration 
system is provided in the Appendix. 

Figure 1 shows the class diagram for the student 
registration system. Each course has a unique course 
code with course description. Each course can have 
zero to many course sections, but a course section 
can be assigned to one course. Each course section 
has attributes to hold the information related to a 
course section such as minimum and maximum 
number of students allowed in the class if it is to be 
taught, the current class size, and the section id. A 
course section can have zero to many registration 
with a single student assigned to each registration. 

 

 
Figure 1: Student registration system class diagram 
 

Figure 2 shows the state machine diagram for the 
student registration system. There are five states 
with different events to transit between states. For 
example, the initial state is the Planned state and the 
event openRegistration triggers a transition from 
state Planned to state OpenNotEnoughStudents. 
Some events are guarded, such as the register event 
from state OpenNotEnoughStudents to state 
OpenEnoughStudents. 

 
Figure 2: Student registration system state machine 

 
Now, developers can utilize the expressiveness 

of trace directives to specify traces at the model 
level for any debugging, monitoring, or analysis 
purposes. Using code mixins in Umple, trace 
directives can be written as a tracing script and seen 
as independent from the model. The Next code 
snippet shows a wide range of possible trace 
directives, followed by their description: 

 
class CourseSection 
{ 
  // Trace directive 1 
  trace classSize record sectionId; 
  // Trace directive 2 
  trace sectionId where [classSize 
== maximumClassSize]; 
  // Trace directive 3 
  trace CourseSectionStm; 
  // Trace directive 4 
  trace entry Cancelled record 
classSize; 
  // Trace directive 5 
  trace Closed record classSize; 
} 
Listing 1: Student registration system trace directives 

 
• Trace directive 1. Developer wants to keep 

track of any changes to class size in a course 
section. Trace of class size and course section id 
will trigger when the value of class size is 
changed (i.e. the class size set method is called). 

• Trace directive 2. Trace ids of course sections 
with their class size reaching the maximum 
capacity.  

• Trace directive 3. Trace the whole state 
machine that includes all states with any events 
and transitions. 

• Trace directive 4. The developer might want to 
check the class size of cancelled sections for 
debugging and analysis purposes. 

• Trace directive 5. Developer would like to track 
the class size of closed sections. 



 

6 RELATED WORK 

Limited research has been found that tackles the 
problem of specifying traces at the model level. 
Different approaches have been proposed to allow 
developers to trace models either through executable 
models, or by executing generated code from 
models. Each approach has its advantages and 
disadvantages. However, none of them provided a 
complete specification of traces at the model level. 

G. Eakman (Eakman 2000) introduced the idea 
of instrumenting UML models for debugging 
purposes. Systems are more visible at the model 
level than at the code where it’s difficult to visualize 
systems due to implementation details. The main 
objective of this idea is that model level 
instrumentation will provide full access to the 
system under test at the level of UML modeling, 
allowing a glass box approach to testing with greater 
observability, controllability, and testability. The 
proposed instrumentation will occur at the 
translational process where UML models are 
mapped to the implementation (i.e. targeted 
programming language) by the model compiler. 
Hence, the model compiler will be responsible for 
the insertion of instrumentation into generated code 
and ensuring that instrumentation will not add any 
additional functionality to the software, other than 
enhanced testability. 

In Eakman’s proposed instrumentation approach, 
important data values, attributes, inputs, and control 
points must be identified and appropriate 
instrumentation added. Instrumentation can be 
triggered based on data access and/or dynamic 
behaviour. In data access situations, attributes values 
can be monitored and state machines response to an 
event can be recorded, while in dynamic behaviour, 
creation and deletion of instances and/or 
associations are monitored. 

A. Derezinska and M. Szczykulski (Derezinska, 
Szczykulski 2013) presented a framework for 
executable UML, called FXU, that performs 
transformation from a UML class and state machine 
model into a C# implementation. Their framework 
consists of two main components: a code generator 
that assumes direct model transformation to the 
target code, and a runtime library that contains 
realization of different UML meta-model elements. 
As an extension to this framework, the FXU tracer 
(Derezinska, Szczykulski 2010) was designed to 
allow the tracing of state machine execution 
generated in C# code. Tracing will be specified and 
commence after the state machine execution using 
log files created in the FXU environment. The FXU 

tracer is intended to help increase state machine 
comprehension and verify state machines 
behavioural correctness. Many disadvantages and 
drawbacks can be seen from this tool design: 
• Specification of traces can only be done after the 

execution of the application and not 
simultaneously as the application is being 
executed. 

• The FXU tracer can only use trace logs produced 
by the FXU environment. 

• There is no control of information collected 
during state machine execution, which results in 
collecting irrelevant information and producing 
massive files. 

• The authors indicate that not all events can be 
traced since the FXU environment doesn’t log all 
events that occur during state machines 
execution. 

• Tracing of state machines can’t be specified in 
terms of other UML constructs (e.g. tracing a 
state when an attribute has a certain value). 

• This tool is limited to C# 
K. Mehner (Mehner 2002) developed the JaVis 

environment for visualizing and debugging of 
concurrent and sequential Java programs. Their 
motivation is that debugging of concurrent Java 
programs is complex due to usage of threads. The 
JaVis environment consists of three stages: 
collecting traces while executing, visualizing these 
traces, and performing thread deadlock detection and 
analysis. 

The tracing component of JaVis uses the Java 
Debug Interface (JDI) of the Java Platform 
Debugger Architecture to allow the collection of 
debugging and tracing information from a running 
Java programs. Traces are represented in a textual 
format with each trace entry consisting of a single 
line. Each trace line contains a method entry, a 
method exit, object IDs, calling thread, and other 
information that can be used for deadlock detection. 
Usage of JDI provides advantages when used for 
tracing such as it allows tracing of remote and 
already running Java programs and does not require 
the source code to be modified. After the generation 
of traces, they are visualized using UML 1.6 
sequence and collaboration diagrams. These 
diagrams will show dependencies between different 
program threads to help detect deadlocks. 

To conclude, a limited number of research papers 
have been found that directly relate to our work, 
which is an indication that this area needs further 
investigation. One paper (Eakman 2000) shared the 
same research objectives as ours but didn’t provide 
any deep details or any sort of implementation 



 

strategies. Our trace directives should significantly 
contribute to the area of model-driven development. 

7 CONCLUSIONS  

This paper explored and presented the notion of 
trace directives that allows modelers to specify 
traces of UML attributes and state machines at the 
model level. Syntax of proposed directives is 
explained and implementation is incorporated as part 
of the Umple technology. Trace directives are 
expressed in a textual form with a simplified syntax 
and can be written as a trace script independent of 
the model. Usage of these directives is described by 
an example. Currently, the proposed trace directives 
are limited by the capabilities of the modeling 
language (Umple). 

We foresee many directions for our research. 
Next in our research roadmap, we plan to implement 
tracing of associations by allowing modelers to 
specify tracing of associations and base tracing 
constraints on the cardinalities of associations. 
Support of additional tracers (e.g. LTTNG) is 
planned. Experiments will be conducted to evaluate 
the usability and usefulness of our proposed trace 
directives. 
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 APPENDIX 

// **** Description 
// In this Appendix, we present the  
// Umple code written to model the  
// Student registration system 
// **** Information 
// 4 classes 
// 1 State Machine 
class Course { 
  code; 
  description; 
  1 -- * CourseSection; 
} 

 
class CourseSection 
{ 
  sectionId; 
  Integer classSize = 0; 
  Integer minimumClassSize = 10; 
  Integer maximumClassSize = 100; 

   
  // State machine 
  CourseSectionStm 
  { 
   Planned  
   { 

  openRegistration ->         
  OpenNotEnoughStudents; 
} 
OpenNotEnoughStudents  
{       
  closeRegistration -> Cancelled; 
  cancel -> Cancelled;  
  register [getClassSize() >   
       getMinimumClassSize()]  
      -> OpenEnoughStudents;  
  }   
  OpenEnoughStudents { 
      closeRegistration -> Closed; 
      cancel -> Cancelled; 
      register [getClassSize() >  

      getMaximumClassSize()] ->  
      Closed; 
  } 
  Cancelled {} 
  Closed {} 
} 
 

  // Code mixins 
  boolean requestToRegister(Student    
  aStudent) 
  {    
    register(); 
    setClassSize(getClassSize() + 1); 
  } 
} 
 
class Student {} 
 
class Registration { 
  grade; 
  * -- 1 CourseSection; 
  * -- 1 Student; 
} 

 

 


