
Specifying Trace Directives for UML Attributes and State Machines

Hamoud Aljamaan, Timothy C. Lethbridge, Omar Badreddin, Geoffrey Guest, Andrew Forward
School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, Canada

hjamaan@uottawa.ca, tcl@eecs.uottawa.ca, obadr024@uottawa.ca, ggues044@uottawa.ca, aforward@gmail.com

Keywords: Tracing, UML, Trace directive, Attributes, State machines, Umple.

Abstract: Developers using model driven development (MDD) to develop systems lack the ability to specify traces
that operate at the model level. This results in specification of traces at the generated code level. In this
paper, we are proposing trace directives that operate at the model level to specify the tracing of UML
attributes and state machines. Trace directives are implemented as part of the Umple textual modeling
language, thus these directives can be expressed in a textual form. Trace code will be injected into system
source code that corresponds to trace directives specified at the model level.

1 INTRODUCTION

Over the history of software, software development
has been continuously becoming more complex.
Many researchers and software practitioners have
strived to simplify the process of software
development by introducing levels of abstraction. In
the early days of the software industry, software
developers created software using assembly
languages and machine code. As these languages
became inadequate, successively higher-level
programming languages were introduced as
abstraction layers over machine code. Nowadays, as
software complexity increases, researchers are
directing their attention to model driven
development (MDD).

Huge advantages are gained when software
developers adopt the MDD approach (Selic 2003,
Sendall, Kozaczynski 2003), with models
representing the main artifact in the development
cycle. One of the biggest advantages is the ability to
view targeted systems at a high level of abstraction
as compared to programming languages.

Tracing is used to understand the behaviour of
systems in order to debug or monitor them. Data
collected while tracing ranges from the output of
simple programmed log commands to more
sophisticated traces containing lower-level events
triggered by tools that dynamically instrument user
and kernel spaces. However, injecting trace code
into a system is not a trivial task and controlling

tracing so it is both effective and efficient is even
more difficult.

Historically, developers have traced software
using techniques such as adding simple print
statements, breakpoints in a debugger, or more
sophisticated tracing tools such as Dtrace (Cantrill
2006, Cantrill, Shapiro & Leventhal 2004) or Linux
Linux Trace Toolkit - next generation
(LTTNG)(Desnoyers, Dagenais 2009, Desnoyers et
al. 2012) that allows tracing to be initiated either at
compile time or run time. In situations where code is
generated, such as when a pre-processor or model
driven development is involved, these tracing
techniques tend to be limited to working with
generated code. They therefore require the
understanding of the generated code’s structure, and
require extra work to map changes and
understanding to the original source. Furthermore,
tracing code needs replacing when the code is re-
generated. Tracing thus occurs at a level of
abstraction below the level at which the system is
implemented.

Existing techniques focus on tracing at the code
level: tracing function/method calls, lines executed,
variables being set, etc. There has been little or no
research into tracing at the model level. In this
paper, we propose the notion of trace directives that
operate at the model level by defining its syntax,
implementing the parser, code generator and tests.
Our tracing language, which we call Model Oriented
Tracing Language (MOTL) is incorporated into the
Umple technology for model-oriented programming
(Forward, Lethbridge & Brestovansky 2009,

Timothy Lethbridge
See http://www.modelsward.org/Abstracts/2014/MODELSWARD_2014_Abstracts.htm

Forward et al. 2012, Lethbridge, Forward &
Badreddin 2010, Lethbridge et al. 2011) . Trace
directives will allow developers to gain the ability to
specify traces of different UML entities at the model
level without the need to modify the generated code.
This field, which we call model-oriented tracing, is
currently immature, so there are tremendous
opportunities to make contributions.

The remainder of this paper is as follows:
Section 2 sheds light on the model oriented tracing
research area and specifies the research problem we
are addressing. Section 3 provides technical
background necessary for our proposed tracing
directives. Section 4 explores the details of our
proposed trace directives. Section 5 illustrates the
usage of trace directives by example. Section 6
presents related work in the literature. Finally, the
paper is concluded in Section 7.

2 MODEL-ORIENTED TRACING

The concept of model-oriented tracing is the
following: A developer modeling in UML, and
generating much of their system directly from the
UML model, should be able to indicate that they
want any of the UML entities to be traced. The
developer should not be forced to inject tracing into
generated code, which he or she may never
otherwise look at, and which is subject to re-
generation every time the system changes.

Examples of UML entities to trace include:

• Attributes: Tracing attributes is conceptually
similar to tracing variables, except that the level
of abstraction is higher because the
implementation of the attribute is deferred to the
code generator, and the attribute may have
automatically managed constraints, specialized
initialization conditions, and triggers such that
changes to the attribute cause system events.

• State machines: Tracing can be performed at
state entry and exit, as well when particular
transitions occur or when named events occur.
Since state machines can be nested at several
levels of depth, tracing can be scoped to certain
substates. Tracing of attributes can be
constrained to occur in specific states.

The above examples are the focus of this paper,

but we are working on tracing UML associations,
and it would still be possible to trace functions,
methods and lines of code as has been traditionally
possible. The key is that model-oriented tracing adds

another level of abstraction to the elements that can
be traced.

2.1 Problem Statement

The problem statement for this research is as follows
(Aljamaan, Lethbridge 2012):

Developers frequently need to deploy tracing to
debug programs, to test them in a white-box manner,
to understand their internal behaviour and to detect
anomalies such as hacker intrusion or performance
degradation. Current technologies, however, only
allow injecting traces into functions (procedures or
methods) and data items. The ability to
systematically trace at the model level is missing,
since there are no tools available to meet this need.

3 UMPLE

Umple (Timothy C. Lethbridge et al. 2011,
Badreddin, Forward & Lethbridge 2012, Forward,
Badreddin & Lethbridge 2010, Forward et al. 2011)
is a technology for modeling textually in UML and
can be seen as both a modeling and a programming
language. Software developers can represent UML
concepts such as classes, attributes, associations and
state machines in Umple, and can embed ordinary
methods in an Umple class. As a result, an Umple
program looks like a standard program (e.g. in Java)
with some extra features added.

Part of the Umple philosophy is that software
developers describing the system at a high level of
abstraction will have less code to write and hence
will have higher productivity. Umple users can
specify the following high level constructs, most of
which are based on UML. The Umple user manual
provided full details (Cruise 2013) :

• Classes and Interfaces
• Attributes
• State Machines: Umple provides a complete and

powerful textual specification of state machines
at the model level. Umple supports nested or
concurrent states, transitions with guards, entry
or exit actions, and interruptible activities.

• Associations: These specify the sets of links
among objects that can exist at run time.

• Patterns: Umple supports the singleton and
immutable patterns plus the definition of
database-style keys.

• Aspect Orientation: Umple users can insert
code to be run before (i.e. as a precondition) or

after (i.e. as a postcondition) Umple-defined
actions on attributes, associations and the
components of state machines.

Developing in Umple can be performed using

standard command-line tools (Lethbridge, Forward
& Badreddin 2012) , using an Eclipse plugin, or, for
small systems, with UmpleOnline (Lethbridge T.C.,
Forward & Badreddin 2012) . Programmers can use
Umple in the manner they are accustomed, adding
UML constructs as they gain confidence. On the
other hand, modelers can take the opposite approach,
starting with high-level models and then adding
methods to specify detailed algorithms and in order
to fully implement other details of the system not
covered by the modeling constructs. Readers are
referred to UmpleOnline (Lethbridge T.C., Forward
& Badreddin 2012) for a list of systems modeled in
Umple.

4 TRACE DIRECTIVES

Tracing is specified using structured trace directives
that can be placed anywhere in Umple code
describing a model. Generally, a trace directive is
structured as follows:

trace <UMLconstruct> <Constraints> ;

Trace directives start with a keyword ‘trace’ and
end with a semicolon ‘;’. After the trace keyword, a
UML construct to be traced is specified (attribute,
association, state, etc.). The scope of tracing can be
limited using appropriate optional constraints and
conditions that can switch tracing on or off in certain
situations. In addition, constraints can be used to
specify data that will be outputted.

4.1 Attribute Tracing

Trace directives allow the tracing of attributes at the
model level; trace output can be generated whenever
an attribute value is changed (i.e. a setter is called)
or/and when the value is accessed (i.e. the getter
method is called). Moreover, attribute tracing can be
limited based on constraints such as a condition
being true or a maximum number of trace
occurrences being reached.

Attribute tracing can occur in three modes: when
the attribute value is accessed, changed, or both.
Therefore, a selection of three keywords for each
mode can be used as follows:

• Attribute value changed: When ‘set’ keyword
is specified before the traced attribute, tracing
occurs when the attribute setter method is
executed. This is also the default case when no
keyword is specified before the traced attribute
in a trace directive.

• Attribute value accessed: When ‘get’ keyword
is specified before the traced attribute, tracing
occurs when the attribute getter method is
executed.

• Attribute value accessed or changed: When
both keywords ‘set’ and ‘get’ separated by ‘,’ are
used, tracing occurs either when getter or setter
methods are executed.

4.2 State Machine Tracing

Developers can specify that they want a certain state,
transition, or event to be traced, and have the ability
to limit the scope of tracing to a certain level of
substates, or trigger tracing when certain trace-based
conditions become true. The following are some
details:
• State: Tracing a state means trace output will be

recorded for each incoming and outgoing
transition. In addition, substates are traced,
recursively. But, if tracing of substates is not
desired and tracing scope should be limited to a
certain level, then the ‘level’ keyword can be
specified followed by an integer to represent the
tracing level (i.e. recursion depth); level 0 would
mean trace the current level and no substates.

• Limiting to entry and exit: Tracing a state
normally involves the tracing of its entries and
exits, but tracing can be limited to either case. In
a trace directive, we can use the ‘entry’ keyword
before a traced state to indicate tracing of its
entries only, or the ‘exit’ keyword to indicate
tracing of its exits.

• Transitions: A trace directive can trace a
specific transition by using keyword ‘transition’
which involves the tracing of the original state,
the destination state and the triggering event.

• Events: All occurrences of an event name may
be traced too.

4.3 Trace Control with Constraints

We identified various ways to control the scope of
tracing and what needs to be traced. Tracing can be
controlled by specifying post- or pre-conditions that
need to be satisfied before tracing triggers. In
addition, just as with attributes, tracing can be

controlled by time manipulation and the
specification of number occurrences.

4.3.1 Basic conditions

Basic conditions are used to control tracing by
injecting code that outputs trace data only upon
condition satisfaction. Conditions can be either pre-
conditions or post-conditions. The ‘where’ keyword
is used to inject tracing code with a pre-condition.
The ‘giving’ keyword is used to inject tracing code
with a post-condition. Note that these condition
expressions work the same regardless of the entity
being traced – i.e. they apply to state machines and
methods. The ‘giving’ keyword is so-named because
the tracing occurs when the operation ‘gives’ a
certain result.

4.3.2 Occurrences

In addition to basic conditions, the functionality of
tracing for a certain number of occurrences (i.e.
appearances) of trace output is implemented. This is
achieved by using the ‘for’ keyword followed by an
integer to specify the number of trace output
occurrences desired.

4.3.3 Timeline

Tracing can be limited for a period bracketed by a
condition. Two keywords were designated for this
purpose: The ‘until’ keyword triggers tracing to start
and continues tracing until a given condition is
satisfied, after which tracing stops permanently. The
‘after’ keyword provides the opposite behaviour;
tracing will start once a given condition is satisfied
and then continues indefinitely without any
interruption.

4.3.4 Record

There are situations where tracing may necessitate
the monitoring of other UML constructs for
debugging and analysis purposes such as the tracing
of additional attributes, state machines etc. We have
provided the ability to specify these using the
‘record’ keyword. In addition, this record statement
can be used to record an arbitrary string.

4.4 Trace Output

Trace directives written at the model level will inject
traces in the source code generated from the model.
Data collected from these injected traces depends on

the tracing technology being used. We implemented
two primitive tracers that collect a wide variety of
information during run time. These tracers are:

• Console: Tracing using print statements has been

used since the beginning of software. It forms the
most basic and primitive type of debugging.
However, being primitive doesn’t necessarily
mean that it’s of no importance. It can be used
for educational purposes or in situations where
no deep tracing is needed. The console tracer
directs trace output to standard error.

• File: Tracing output is stored in a specific file,
which can act as a trace log file. Such files are
stored for later analysis.

Information collected once a trace is triggered

during run time consists of static, dynamic, and hard
coded values as shown in Table 1. Dynamic values
indicate that values differ for different traces (e.g.
traces are triggered in different points of time). On
the other hand, there some static values are recorded
once a trace triggers (e.g. trace directive information
that relates to triggered trace). Finally, we have
identified a list of hard coded values to indicate what
kind of operation triggered this trace (e.g. at_s
means trace is triggered by an attribute set).

Table 1: Trace output components

Output component Value
Timestamp Dynamic
Thread Dynamic
Name of Umple File Static
Line number Static
Class name Static
Object hash code Dynamic
Operation Hard coded

We plan to add tracers for tools like Dtrace and

LTTNG. Tracer selection is done using a tracer
statement, which is structured as follows:

tracer <TracerType> ;

The tracer statement starts with ‘tracer’ keyword

followed by the tracer chosen and ends with a
semicolon ‘;’. If no tracer statement is included in
the model, then trace output is directed to standard
error.

5 EXAMPLE

In this section we present a student registration
system to show capabilities and expressiveness of
our proposed trace directives in specifying tracing at
the model level. The student registration system
consists of four classes with attributes and
associations between them. In addition, a state
machine is defined inside class CourseSection to
handle and capture the desired dynamic behaviour of
our system. Umple code for the student registration
system is provided in the Appendix.

Figure 1 shows the class diagram for the student
registration system. Each course has a unique course
code with course description. Each course can have
zero to many course sections, but a course section
can be assigned to one course. Each course section
has attributes to hold the information related to a
course section such as minimum and maximum
number of students allowed in the class if it is to be
taught, the current class size, and the section id. A
course section can have zero to many registration
with a single student assigned to each registration.

Figure 1: Student registration system class diagram

Figure 2 shows the state machine diagram for the
student registration system. There are five states
with different events to transit between states. For
example, the initial state is the Planned state and the
event openRegistration triggers a transition from
state Planned to state OpenNotEnoughStudents.
Some events are guarded, such as the register event
from state OpenNotEnoughStudents to state
OpenEnoughStudents.

Figure 2: Student registration system state machine

Now, developers can utilize the expressiveness

of trace directives to specify traces at the model
level for any debugging, monitoring, or analysis
purposes. Using code mixins in Umple, trace
directives can be written as a tracing script and seen
as independent from the model. The Next code
snippet shows a wide range of possible trace
directives, followed by their description:

class CourseSection
{
 // Trace directive 1
 trace classSize record sectionId;
 // Trace directive 2
 trace sectionId where [classSize
== maximumClassSize];
 // Trace directive 3
 trace CourseSectionStm;
 // Trace directive 4
 trace entry Cancelled record
classSize;
 // Trace directive 5
 trace Closed record classSize;
}
Listing 1: Student registration system trace directives

• Trace directive 1. Developer wants to keep

track of any changes to class size in a course
section. Trace of class size and course section id
will trigger when the value of class size is
changed (i.e. the class size set method is called).

• Trace directive 2. Trace ids of course sections
with their class size reaching the maximum
capacity.

• Trace directive 3. Trace the whole state
machine that includes all states with any events
and transitions.

• Trace directive 4. The developer might want to
check the class size of cancelled sections for
debugging and analysis purposes.

• Trace directive 5. Developer would like to track
the class size of closed sections.

6 RELATED WORK

Limited research has been found that tackles the
problem of specifying traces at the model level.
Different approaches have been proposed to allow
developers to trace models either through executable
models, or by executing generated code from
models. Each approach has its advantages and
disadvantages. However, none of them provided a
complete specification of traces at the model level.

G. Eakman (Eakman 2000) introduced the idea
of instrumenting UML models for debugging
purposes. Systems are more visible at the model
level than at the code where it’s difficult to visualize
systems due to implementation details. The main
objective of this idea is that model level
instrumentation will provide full access to the
system under test at the level of UML modeling,
allowing a glass box approach to testing with greater
observability, controllability, and testability. The
proposed instrumentation will occur at the
translational process where UML models are
mapped to the implementation (i.e. targeted
programming language) by the model compiler.
Hence, the model compiler will be responsible for
the insertion of instrumentation into generated code
and ensuring that instrumentation will not add any
additional functionality to the software, other than
enhanced testability.

In Eakman’s proposed instrumentation approach,
important data values, attributes, inputs, and control
points must be identified and appropriate
instrumentation added. Instrumentation can be
triggered based on data access and/or dynamic
behaviour. In data access situations, attributes values
can be monitored and state machines response to an
event can be recorded, while in dynamic behaviour,
creation and deletion of instances and/or
associations are monitored.

A. Derezinska and M. Szczykulski (Derezinska,
Szczykulski 2013) presented a framework for
executable UML, called FXU, that performs
transformation from a UML class and state machine
model into a C# implementation. Their framework
consists of two main components: a code generator
that assumes direct model transformation to the
target code, and a runtime library that contains
realization of different UML meta-model elements.
As an extension to this framework, the FXU tracer
(Derezinska, Szczykulski 2010) was designed to
allow the tracing of state machine execution
generated in C# code. Tracing will be specified and
commence after the state machine execution using
log files created in the FXU environment. The FXU

tracer is intended to help increase state machine
comprehension and verify state machines
behavioural correctness. Many disadvantages and
drawbacks can be seen from this tool design:
• Specification of traces can only be done after the

execution of the application and not
simultaneously as the application is being
executed.

• The FXU tracer can only use trace logs produced
by the FXU environment.

• There is no control of information collected
during state machine execution, which results in
collecting irrelevant information and producing
massive files.

• The authors indicate that not all events can be
traced since the FXU environment doesn’t log all
events that occur during state machines
execution.

• Tracing of state machines can’t be specified in
terms of other UML constructs (e.g. tracing a
state when an attribute has a certain value).

• This tool is limited to C#
K. Mehner (Mehner 2002) developed the JaVis

environment for visualizing and debugging of
concurrent and sequential Java programs. Their
motivation is that debugging of concurrent Java
programs is complex due to usage of threads. The
JaVis environment consists of three stages:
collecting traces while executing, visualizing these
traces, and performing thread deadlock detection and
analysis.

The tracing component of JaVis uses the Java
Debug Interface (JDI) of the Java Platform
Debugger Architecture to allow the collection of
debugging and tracing information from a running
Java programs. Traces are represented in a textual
format with each trace entry consisting of a single
line. Each trace line contains a method entry, a
method exit, object IDs, calling thread, and other
information that can be used for deadlock detection.
Usage of JDI provides advantages when used for
tracing such as it allows tracing of remote and
already running Java programs and does not require
the source code to be modified. After the generation
of traces, they are visualized using UML 1.6
sequence and collaboration diagrams. These
diagrams will show dependencies between different
program threads to help detect deadlocks.

To conclude, a limited number of research papers
have been found that directly relate to our work,
which is an indication that this area needs further
investigation. One paper (Eakman 2000) shared the
same research objectives as ours but didn’t provide
any deep details or any sort of implementation

strategies. Our trace directives should significantly
contribute to the area of model-driven development.

7 CONCLUSIONS

This paper explored and presented the notion of
trace directives that allows modelers to specify
traces of UML attributes and state machines at the
model level. Syntax of proposed directives is
explained and implementation is incorporated as part
of the Umple technology. Trace directives are
expressed in a textual form with a simplified syntax
and can be written as a trace script independent of
the model. Usage of these directives is described by
an example. Currently, the proposed trace directives
are limited by the capabilities of the modeling
language (Umple).

We foresee many directions for our research.
Next in our research roadmap, we plan to implement
tracing of associations by allowing modelers to
specify tracing of associations and base tracing
constraints on the cardinalities of associations.
Support of additional tracers (e.g. LTTNG) is
planned. Experiments will be conducted to evaluate
the usability and usefulness of our proposed trace
directives.

ACKNOWLEDGEMENTS

Hamoud Aljamaan would like to thank King Fahd
University of Petroleum and Minerals (KFUPM) for
their financial support during his PhD studies. We
also thank Ericsson, Defence Research and
Development Canada (DRDC), and NSERC for
sponsoring this research.

REFERENCES

Aljamaan, H. & Lethbridge, T.C. 2012, "Towards Tracing
at the Model Level", 19th Working Conference on
Reverse Engineering (WCRE), 2012, 15-18 Oct.
2012, pp. 495.

Badreddin, O., Forward, A. & Lethbridge, T.C. 2012,
"Model oriented programming: an empirical study
of comprehension", Proceedings of the 2012
Conference of the Center for Advanced Studies on
Collaborative Research, , pp. 73-86.

Cantrill, B. 2006, "Hidden in Plain Sight", Queue, vol. 4,
no. 1, pp. 26-36.

Cantrill, B.M., Shapiro, M.W. & Leventhal, A.H. 2004,
"Dynamic instrumentation of production systems",
Proceedings of the annual conference on USENIX
Annual Technical ConferenceUSENIX Association,
, pp. 2.

Cruise 2013, Umple User manual. Available:
http://cruise.site.uottawa.ca/umple/UsingUmpleOnli
ne.html.

Derezinska, A. & Szczykulski, M. 2013, "Towards C#
Application Development Using UML State
Machines: A Case Study" in Emerging Trends in
Computing, Informatics, Systems Sciences, and
Engineering, eds. T. Sobh & K. Elleithy, Springer
New York, , pp. 793-803; 68.

Derezinska, A. & Szczykulski, M. 2010, "Tracing of state
machine execution in the model-driven development
framework", 2nd International Conference on
Information Technology (ICIT), 2010, 28-30 June
2010, pp. 109.

Desnoyers, M. & Dagenais, M. 2009, "LTTng, Filling the
Gap Between Kernel Instrumentation and a Widely
Usable Kernel Tracer", Linux Foundation
Collaboration Summit.

Desnoyers, M., McKenney, P.E., Stern, A.S., Dagenais,
M.R. & Walpole, J. 2012, "User-Level
Implementations of Read-Copy Update", IEEE
Transactions on Parallel and Distributed Systems,
vol. 23, no. 2, pp. 375-382.

Eakman, G. 2000, "Strategies for Debugging Embedded
Systems", Embedded Systems Programming, , pp.
139-147.

Forward, A., Badreddin, O., Lethbridge, T.C. & Solano, J.
2011, "Model!driven rapid prototyping with
Umple", Software: Practice and Experience, .

Forward, A., Badreddin, O. & Lethbridge, T.C. 2010,
"Umple: Towards Combining Model Driven with
Prototype Driven System Development", IEEE
International Symposium on Rapid System
Prototyping (RSP).

Forward, A., Lethbridge, T.C. & Brestovansky, D. 2009,
"Improving program comprehension by enhancing
program constructs: An analysis of the Umple
language", IEEE 17th International Conference on
Program Comprehension, 2009 (ICPC '09), pp. 311.

Forward, A., Badreddin, O., Lethbridge, T.C. & Solano, J.
2012, "Model-driven rapid prototyping with
Umple", Software Practice and Experience, vol. 42,
no. 7, pp. 781-797.

Lethbridge T.C., Forward, A. & Badreddin, O. 2012, ,
Umple language online. Available:
http://try.umple.org [2013, October/20].

Lethbridge, T.C., Forward, A. & Badreddin, O. 2012,
Umple Google Code project.

Lethbridge, T.C., Forward, A. & Badreddin, O. 2010,
"Umplification: Refactoring to Incrementally Add
Abstraction to a Program", 17th Working
Conference on Reverse Engineering (WCRE), 2010,
pp. 220.

Lethbridge, T.C., Mussbacher, G., Forward, A. &
Badreddin, O. 2011, "Teaching UML using umple:
Applying model-oriented programming in the
classroom", Proceedings of the 2011 24th IEEE-CS
Conference on Software Engineering Education and
Training, IEEE Computer Society, pp. 421.

Mehner, K. 2002, "JaVis: A UML-Based Visualization
and Debugging Environment for Concurrent Java
Programs", Revised Lectures on Software
Visualization, International Seminar, Springer-
Verlag, pp. 163.

Selic, B. 2003, "The pragmatics of model-driven
development", IEEE Software, vol. 20, no. 5, pp.
19-25.

Sendall, S. & Kozaczynski, W. 2003, "Model
transformation: the heart and soul of model-driven
software development", IEEE Software, vol. 20, no.
5, pp. 42-45.

Timothy C. Lethbridge, Gunter Mussbacher, Andrew
Forward & Omar Badreddin 2011, "Teaching UML
Using Umple: Applying Model-Oriented
Programming in the Classroom", CSEE&T, , pp.
421-428.

 APPENDIX

// **** Description
// In this Appendix, we present the
// Umple code written to model the
// Student registration system
// **** Information
// 4 classes
// 1 State Machine
class Course {
 code;
 description;
 1 -- * CourseSection;
}

class CourseSection
{
 sectionId;
 Integer classSize = 0;
 Integer minimumClassSize = 10;
 Integer maximumClassSize = 100;

 // State machine
 CourseSectionStm
 {
 Planned
 {

 openRegistration ->
 OpenNotEnoughStudents;
}
OpenNotEnoughStudents
{
 closeRegistration -> Cancelled;
 cancel -> Cancelled;
 register [getClassSize() >
 getMinimumClassSize()]
 -> OpenEnoughStudents;
 }
 OpenEnoughStudents {
 closeRegistration -> Closed;
 cancel -> Cancelled;
 register [getClassSize() >

 getMaximumClassSize()] ->
 Closed;
 }
 Cancelled {}
 Closed {}
}

 // Code mixins
 boolean requestToRegister(Student
 aStudent)
 {
 register();
 setClassSize(getClassSize() + 1);
 }
}

class Student {}

class Registration {
 grade;
 * -- 1 CourseSection;
 * -- 1 Student;
}

