
Investigation And Evaluation Of UML Action Languages

Omar Badreddin, Timothy C. Lethbridge, Andrew Forward
University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada

obadr024@uottawa.ca, tcl@eecs.uottawa.ca, aforward@gmail.com

Keywords: Action Language, Alf, OMG, OCL, UAL, UML.

Abstract: We analyze the current direction of UML Action Language development and provide a classification of the
proposed action language structure and statements. We also present a functioning implementation of an
action language and discuss our platform for experimenting with Action Language based systems. We
propose a novel approach that adopts a bottom-up technique to defining an action language. This approach
embeds the action language into a textual environment that includes the UML modeling elements. Unlike
current action languages that typically address class diagrams only, our proposal includes class and state
machine modeling abstractions as part of the action language. We tackle the problem of modeling-in-text
not by introducing yet another programming language, but instead by providing an increased level of
abstraction to existing high level programming languages. Both, a textual representation of the model and
its visual view represent the same underlying model but from different vantage points.

1 INTRODUCTION

A UML action language (UAL) describes elements
of a system, such as actions, algorithms, and
navigation paths, which are not readily described
by UML diagrams. Snippets of languages like C++
and Java can be used as a UAL, but such languages
are unaware of UML abstractions, resulting in
mixed levels of abstraction and ‘boilerplate’ code.

Current directions in creating UML action
languages (UALs) adopt a top-down approach,
where a new language is defined forming an
additional layer of abstraction. We propose an
alternative approach: iteratively discovering what
is necessary in an action language starting with a
pre-defined object-oriented language, like Java or
Php, and adapting it by adding abstractions.

This paper covers background of UALs and
investigates limitations of existing programming
languages if used as action languages. We give a
classification of UAL constructs, and compare Alf
to our language Umple, which merges action
language with textual models.

2 BACKGROUND

In 2008, the OMG published an RFP for a concrete
syntax for a UML Action Language (UAL) (OMG,

2012). Responses were required to define a textual
language for representing the UML subset defined
in the Foundation Subset for executable UML
Models (fUML).

The OMG required that the UAL be suitable for
use in executable UML models. A proposed UAL
had to meet a number of objectives including:

1. It must be computationally complete,
meaning it must include standard arithmetic
and logical capabilities supported natively or
by the use of libraries.

2. The UAL must allow the invocation of user-
specified external code such as legacy code.

3. It must allow embedding of native code. For
example, if the target platform is Java, the
UAL must allow the embedding of java
statements and constructs.

The OMG received two proposals and merged
them to form the Action Language for
Foundational UML (Alf) (Planas et al, 2012).

2.1 Textual and Visual Modeling

Action languages allow for computational
processes (such as navigation and algorithms) to be
expressed at a similar level of abstraction to the
declarative modeling elements found in UML such
as classes, associations, and state machines.

Timothy Lethbridge
See http://www.modelsward.org/Abstracts/2014/MODELSWARD_2014_Abstracts.htm

Both actions and declarative aspects of a model
can be described as diagrams or in text; however,
in general, diagrams are used for the declarative
aspects and text for actions.

Manipulating visual models can be time
consuming and less efficient than manipulating
text. Effort can be wasted on mouse-centric tasks to
refine layout. This is reflected in increasing
number of textual modeling environments and
standards.

In 2004, OMG proposed Human-Usable
Textual Notation (HUTN) (OMG, 2013), which
defined a textual notation for class diagrams.
However, HUTN has not seen significant adoption,
and development has been discontinued. Other
textual UML modeling tools have emerged (Bock,
2003), (Steel & Raymond, 2001) (Harris, 2012).
For example, TextUML (Chaves, 2012) is a tool
that allows the modeler to create and edit models in
the same manner as one would write code.

Visual models can be appealing to the reader;
they work well as a communication medium since
a diagram can represent the spatial qualities of a
model, whereas text linearizes the view. UML
modeling tools like IBM Rational Software
Modeler (IBM, 2013), or Papyrus (Papyrus, 2013),
fall under this category. Visual modeling tools
typically provide source code generation from
models, and support for reverse engineering to
mange the synchronization of modeling and coding
artifacts, an approach that is not without challenges
(France & Rumpe, 2007).

Because action languages for UML are textual,
and due to the reasons described earlier, it is our
perspective that textual UML modeling provides
added value to traditional visual representations.

2.2 Emergence of Action Languages

Action languages emerged to fill the gap between
abstract and visual model notations to manage
structure and relationships, with more algorithmic
manipulation of the model’s structure (i.e.
programming language-like-statements). This gap,
commonly referred to as ‘execution semantics’, has
not yet been completely formalized. UML action
languages (UALs) can help both modelers and
coders to achieve the following goals.

2.2.1 Define the execution semantics of
models

Models are an abstraction of a system, where
details are purposely left out. To execute the

model, missing details need to be defined using a
Turing-complete language. Executing two versions
of code generated from the same model should
result in the same behavior, in the same way that
different traditional compilers should result in
systems with the same behavior.

2.2.2 Express actions that natively interact
with UML constructs

UML introduces concepts that are more abstract
than what is normally found in programming
languages. This includes associations, state
machines, preconditions, etc. A UAL should define
constructs that interact with, and fill in missing
details of, such modeling constructs. For example,
an action language should define statements to add
or remove objects in an association, execute state
machine actions, and define executable checks for
pre- and post-conditions where appropriate.

2.2.3 Express algorithmic details in a
usable and maintainable way

To support an executable modeling environment,
the need to unambiguously define algorithmic
computations is imperative. A UAL should enable
the modeler to define such algorithmic
computations at a level of abstraction that is as
high as possible and which builds on and
complements modeling elements in a simple and
elegant way.

2.2.4 Avoiding, or delaying, commitment to
an execution platform

A UAL should allow modelers, and developers, to
produce an executable system and, at the same
time, to delay commitment to an execution
platform. For example, a modeler should be able to
define state machine actions in the UAL, and later
in the development life cycle, a developer can
choose to generate or embed Java code (or both),
after committing to a Java execution platform. This
is desirable in a model driven environments, where
the same model may be eventually implemented on
more than one execution platform.

2.2.5 Early verification and enhancement
of reuse

Because a UAL would be defined over an
executable subset of UML, it must be possible to
execute the UML models, along with the
associated action language, early in modeling

activities. Modelers can then see an executable
prototype of their system, and refine their model
accordingly.

2.3 Why not use a programming or
constraint language?

Reasons for not using an existing programming
language can be summarized in the following four
points. These mirror the points expressed by
Mellor et al (Mellor et al, 1999):

2.3.1 Programming languages provide
more than what an action language
needs

Java console I/O statements, and UI frameworks
for Java are examples where the programming
language is too powerful for what is needed from
an action language. A programming language
provides a large number of statements and libraries
to accomplish the tasks like displaying output.
They also provide freedom regarding how instance
variables and methods can be used to represent and
manipulate attributes and associations. Such
concepts therefore have many concrete mappings,
and when presented with implementation code, the
developer has a hard time seeing the abstractions.
A UAL can abstract the most commonly used
concepts and make the algorithmic elements in
models easier to understand.

2.3.2 Commitment to implementation

When programming an abstraction such as an
association in a language like Java, one is forced to
choose the low-level details, such as the names of
methods and the algorithms. It is hard to change
these later. As another example, when
implementing a state machine one may choose to
use a string attribute, but one may later on decide
to change to an enum and hence have to change the
code considerably. On the other hand, if using a
UAL, this decision would be made by the compiler
or code generator, and could be changed simply by
changing the some configuration option, if a need
arises.

2.3.3 Programming languages do not
support concepts such as associations
or states

As mentioned, a language like Java does not have
constructs for the representation of associations or

state machines, and consequently does not promote
abstract thinking on the part of programmers.

2.3.4 Declarative constraint languages lack
support for algorithms

OCL-like languages do a good job in navigating
associations and defining pre and post conditions,
but do not support implementation of algorithms.

3 MOTIVATING EXAMPLE

Our example is comprised of the class and state
machine models illustrated in Figures 1 and 2. The
class diagram describes a simple shopping system.
Class Order has a deliveryAddress attribute, and an
optional one-to-one association with ShoppingCart.
Figure 2 shows the state machine diagram for
instances of the class Order.

Figure 1: UML Class Diagram.

Figure 2: State machine diagram for the order class.

The state machine defines the behavior of the
instances of the class Order. When event

CheckOut() occurs, the order object becomes
instantaneously in EstablishingCustomer state.
Upon entering that state, the entry action is
executed. Additional actions and transitions are
illustrated in Figure 2.

4 CLASSIFICATIONS OF ALF

STATEMENTS

To analyse UML action language, we focus on the
scope, statements, language structure, and assess
the abstraction level. In what follows, and without
loss of generality, we routinely refer to Alf as a
representative UML Action Language.

Alf statements add a level of abstraction to
widely adopted high level programming languages.
Alf aims to maintain similar look and feel to high
level programming languages like Java to enhance
adoptability. For example, comments and blocks
are formed in the same manner.

We present two classifications of Alf
statements; one is based on modeling elements, and
the other on the abstraction level compared to a
common object oriented programming language
like Java.

4.1 Modeling element classification

In this classification, Alf statements are classified
into four categories: 1) statements for manipulation
of local variables; 2) statements for manipulation
of attributes; 3) statements for manipulation and
navigation of associations, and 4) statements for
specifying behavior

The following subsections give an example for
each category and are not meant to be exhaustive.

4.1.1 Manipulation of local variables

Alf allows the modeler to create variables for
intermediate computation. Variables can be
created, assigned, and reassigned in a fashion
similar to programming languages. Expressions in
this category include assignment and comparison
expressions.

In that sense, there is a little difference between
Alf and any other programming language, except
that Alf differentiates between modeling attributes
and local variables.

4.1.2 Manipulation of attributes

To manipulate attributes in a class diagram, Alf
must provide means for navigation of the class

diagram, as well as namespaces. The statements
and expressions in this category bear some
similarity with OCL expressions. For example, the
following statement navigates from
CreditCardCharge, to Order, to ShoppingCart:

CreditCardCharge::Order::ShoppingCart

Because many existing languages use the dot
notation, Alf considers the following to be
semantically equivalent:

CreditCardCharge.Order.ShoppingCart
In addition, Alf supports common high level

programming statements, like:
• Boolean operations (And, Or, etc)
• Increment and decrement of attributes
• Additions and subtractions

4.1.3 Manipulation and navigation of
associations

Expressions for manipulating associations are
performed similarly to navigation expressions in
OCL. One difference is that collections in Alf are
flat; a collection cannot itself contain collections.

UAL defines link statements to add and remove
objects to and from association ends. For example,
to add Credit Card to the Order-CreditCardCharge
association, the UAL syntax is similar to:
order ->add(new_creditCard)

4.1.4 Specifying Behaviour

This category encompasses a wide range of the
statements. All statements for manipulation of
local variables and attributes also fall under this
category, since the definition of behavior inevitably
includes manipulation of variables and attributes.

Similar to high level programming languages, a
curly bracket can be used to group a number of
statements into a block. Alf statements and blocks
can be associated with annotations that define
execution semantics using the keyword @. For
example, such an annotation can define whether
the statement, or block, is executing in the same or
separate thread.

Most importantly, Alf supports the so called in-
line statement, where a native code of a
programming language can be embedded. Alf
passes the in-line statements to the underlying
platform for execution., Platform independence is
compromised as soon as an inline code is inserted.

Lastly, under this category is Alf control
structures (if, switch, while, do, for, break and
return). The syntax and semantics for such

statement is very similar to traditional
programming languages.

4.2 Abstraction level classification

Action languages are, by definition, at a higher
abstraction level compared to common object
oriented programming languages. However, as we
have illustrated, some Alf statements are at the
same abstraction level as a classic programming
language. We therefore use two categories for this
classification; common abstraction level, an
abstraction level common to modern programming
languages, and a high abstraction level, an
abstraction level higher than this. For example,
when a UAL statement can be implemented in one
object-oriented programming language statement,
the UAL statement is categorized under common
abstraction level. However, when the UAL
statement requires more than one programming
language statement, the UAL statement is
categorized under high abstraction level.

4.2.1 Common abstraction level

Alf statements concerned with manipulation of
local variables and attributes, as well as Alf’s
control structure statements, largely fall under this
category. A language such as Java makes available
syntax for manipulating attributes as well as logical
and comparison operations similar to that of Alf.
At times, the syntax of Alf is identical to that of
Java, in an attempt to enhance the action language
familiarity and adoption.

4.2.2 High abstraction level

Three main aspects of Alf’s syntax fall under this
category, namely:

1. Manipulation of Associations
2. Annotation
3. Mixin of inline native code

These three aspects are not typically available in an
object oriented programming language, without the
use of libraries. In that sense, Alf’s syntax is of a
higher level of abstraction.

4.3 Challenges in the current Alf
approach

The current top-to-bottom approach to defining an
action language gives rise to the following issues.

Firstly, a considerable number of constructs in
the action language are indeed identical to

programming languages. This might be desirable
but does raise the question about to what extent an
Action Language is different than a programming
language? Does the difference justify the overhead
of creating a yet another programming language?

Secondly, there is no evidence that the scope
and depth of the current statements are sufficient to
satisfactorily produce executable systems. Any
action language needs to support wide variety of
domains and be able to sufficiently support the
development of wide variety of applications. An
action language should support constructs that are
most valuable in a modeling environment, and do
so in a way that has been shown to be usable by
programmers.

Thirdly, do the newly-defined constructs blend
well in a modeling environment? An action
language should eventually generate executable
artifacts. It is still unclear to what extent the
existing UAL statements will help in generating
error-free artifacts. In a typical modeling
environment, models generate different patterns of
code; action languages should be able to deal with
this complexity by generating code that overall
behaves as expected.

Finally, the design of the action languages, we
observe, is based on best guess effort to define
what constitutes an action language, and what not.

We are not aware of any empirical evidence
that Alf statements actually reflect existing patterns
in software development sources across platforms
and domains. Moreover, because an action
language will execute in a modeling environment,
the evidence needs to be based on patterns
prevalent in an executable modeling environment,
which to date, is not widely adopted.

In our efforts to avoid some of the challenges in
the top-bottom approach of defining action
languages, we have built a platform that supports
incremental definition of an action language in a
modeling environment. Our bottom-up approach
compliments the effort to formalize and
standardize action languages and avoids some of
those challenges.

5 THE UMPLE ACTION

LANGUAGE PLATFORM

The Umple approach to implementing a UML
action language is distinct from the official OMG
approach in three aspects. First, Umple makes a
textual representation available for UML modeling
elements and integrates the textual action language

with the textual modeling constructs. This is done
without loss of the visual representation of UML
models. Modelers can create and edit models
diagrammatically or textually, and can embed the
action language textually. This allows modelers
and the developers to reason uniformly about
models and action language statements. Second,
Umple’s bottom-up approach attempts to raise the
abstraction level of the widely adopted
programming languages to include modeling
abstractions and action semantics, effectively
overcoming limitations associated with
programming languages use as action languages in
UML models. Such an approach enabled the team
to continuously use the UML and the Action
Language in building real systems of considerable
complexity.

We raise the abstraction level of programming
languages by iteratively executing the following
language refinements (LRs).
L.R-1. Make available additional, and more
abstract, language constructs.
L.R-2. Restrict and modify statements so they
become language independent
L.R-3. Within our modeling and action language
environment, and by building complex systems, we
iteratively identify new language constructs for
inclusion in our Action Language.

Umple is a complete development platform.
The discussion in this paper is limited to its
relevance to UML action languages. Other
publications on Umple should be referred to for
more information (Badreddin et al, 2014),
(Badreddin et al, 2014), (Badreddin, 2013),
(Badreddin & Lehtbridge, 2013), (Badreddin et al,
2012), (Badreddin & Lethbridge, 2012).

5.1 Overcoming limitations with

existing programming languages
for use as an action language

Umple, as we show in the remainder of this paper,
addresses the limitations in programming
languages for use as an action language as follows.

5.1.1 Programming languages provide
more than what an action language
needs

This limitation is overcome in Umple by limiting
the scope of the programming language into the
subset required in the action language. The Umple
compiler handles this by marking statements that
are outside of a limited set with a warning in the

editor view. Those warnings do not prevent Umple
from compiling and executing the model and the
action language, because the underlying Umple
platform supports all programming language
statements. We find this flexibility highly useful in
building full systems using Umple. In addition, the
scope of an Action Language that is powerful
enough to build complete systems is bigger than
we first anticipated.

5.1.2 Commitment to implementation

Umple no longer requires the programmer to
implement many abstract concepts; as in ordinary
compilers, the many implementation decisions are
left to the compiler designers. The compiler will
select a suitable implementation based on the target
environment.

Take for example a 'for loop' in a typical high-
level language compiler. The for loop is
implemented in a machine language in a number of
different ways, all are deemed acceptable as long
as the semantics of the for loop is maintained.
Taking the same concept to the modeling
abstraction, consider a state machine. There are a
variety of approaches to the implementation of
state machine behavior (Gurp & Bosch, 1999),
from an action language perspective, all are
acceptable as long as the semantics of the state
machine is maintained.

5.1.3 Programming languages concepts
such as association or states

This is one core aspect of Umple. Umple makes
available those UML constructs in the language
itself. This becomes evident when we present the
language syntax.

5.1.4Declarative constraint languages lack
support for algorithms

Because Umple is based on object-oriented
programming languages, this limitation is not
applicable to Umple. In addition, Umple supports
aspects of the OCL, an example being the pre and
post conditions we present in the following
sections.

5.2 Umple Syntax

We illustrate Umple syntax by implementing our
motivating example (explained in Figures 1 and 2)
using Umple syntax. Umple models a Class and its
associated state machines in the same or separate

artifacts. In this paper, we model the class and state
machine models in the same artifact. The class
diagram and state machine diagram in Figure 1 and
2 can be represented in Umple, in part, as follows:

Class Order {
 deliveryAddress;
 1 -- * CreditCardCharge;
 0..1 – 1 ShoppingCart;

 orderStatemachine {
 EstablishingCustomer {
 entry / {establishCustomer();}
 chargeSubmitted -> Charging; }

 Charging {
 entry / {processCharge();}
 paymentApproved -> Packing;
 paymentDeclined ->
 PaymentDeclined; } } }

class CreditCardCharge {
 expiryDate; }

This illustrates the textual representation of

UML models in Umple. In addition to the UML
elements present in the motivating example, Umple
has similar syntax for nested states, entry, exit and
transition actions, guards, events, and do activities.
The complete Umple grammar and syntax is
maintained on the Umple home page (Lethbridge et
al, 2012).

5.3 Umple modeling abstractions

In this section, we define the execution semantics
of Umple’s modeling and algorithmic elements.
Umple defines an executable subset of UML for
which Umple generates executable artifacts that
implement this semantics. Examples of the
modeling elements are the following.

5.3.1 Associations

Umple supports all possible multiplicity
combinations, and generates code that maintains
multiplicity and referential integrity at run time.
For our motivating example, Umple makes
available the following statements for the one-to-
many association with CreditCardCharge:

getCreditCardCharge(int index)

This interface returns the creditCardCharge
matching the index.

getCreditCardCharges()
This returns a list of all creditCardCharges.
numberOfCreditCardCharges()

This returns the number of creditCardCharges
associated with the order object.

hasCreditCardCharges()

This returns true if the object order has at least one
creditCardCharge associated with it.

indexOfCreditCardCharge(aCreditCardC
harge)

This returns the index of the
creaditCardCharge. Umple also generates
interfaces to manipulate associations by adding and
removing objects to either side of the association.
Those interfaces maintain the integrity of
association multiplicities at run time. This is an
example of additional, and more abstract language
constructs (L.R-1).

5.3.2 Attributes

Umple generates setter and getter interfaces for all
attributes, and allows the user to insert his own pre
and post conditions for the setters and getters.
Various properties such as immutability can also be
specified.

5.3.3 State machine

UML state machines define the behavior of
instances of a class. Umple generates artifacts to
implement state machine semantics. Events
become part of the system interface and the state
transitions are executed in response to events.

State machine guards are an example of
limiting the scope of a programming language
(L.R-2). Early releases of Umple allowed arbitrary
statements as guards. We later restricted guard
code to be only simple Boolean expressions, or a
function call that returns a Boolean value.

Umple events illustrate where a construct is
modified to make it language independent (L.R-1).
Umple events are represented by a name, rather
than a function call statement, making the event
name language-independent; the syntax is
unchanged regardless of the target language.

5.3.4 Umple algorithmic elements

To fully support UML executable environment,
Umple enables modelers to include algorithmic

elements in the model. Algorithmic elements can
make use of Umple’s generated interface. Modelers
can embed their natively-defined algorithmic
elements in the language of their choosing. Let’s
take the example of navigating from
CreditCardCharge to Order, to ShoppingCard.
Because Umple generates automatically a number
of interfaces, the navigation can be performed as
follows:

getCreditCardCharge(index).getOrder(
).getShoppingCart()

Algorithmic code can be embedded within state

machine entry, exit, and transition actions. Blocks
of code from inline algorithmic statements can be
referenced by name within any state machine
element.

We are iteratively adding additional restrictions
to Umple-based object-oriented languages (L.R-2
and L.R-3). For example, we restrict manipulation
of the model attributes to only the setters and
getters. We also disallow statements that
manipulate internal representation for state
machines and associations.

5.4 Umple in practice

Because Umple is a fully executable action
language environment, we are able to use it in
building a variety of applications, both model-
intensive and/or algorithmic-intensive. We came to
the realization that the subset of a programming
language to satisfy the action language requirement
is larger than we first anticipated (L.R-3). We
currently limit statements that violate modeling
integrity, for example, statements that result in
updating state machine internal representations.
Because there are a wide variety of systems where
Umple is used, limiting the scope of the action
language results in unintended hindrance to
modelers and developers alike.

We have built Umple using Umple itself, a
practice commonly referred to as ‘eating your own
dog food’. This guarantees robustness.

6 COMPARISON OF ALF AND

UMPLE

Before making the comparison, it is imperative to
note the following core differences:
1. Alf is an action language added to UML, while

Umple is an action language in a fully

executable platform for experimenting and
developing action languages.

2. While both Alf and Umple target an
unambiguous execution of UML models,
Umple takes the approach of raising the
abstraction levels of object programming
languages, while Alf defines a new language
that will then be executed on some platform.

6.1 Representation of the UML
modeling and execution artifacts

Alf is to be embedded in the visual elements of
UML models. The supporting tool should enable
the modeler to manipulate both textual and visual
elements in the same view. UML models, in
particular large models, may become overloaded
by the number of textual elements. In addition,
some macro textual editing features may inevitably
be compromised by embedded the textual artifacts
across a number of visual elements.

Umple assumes the visual model and the
textual representation are two faces of the same
coin. Umple attempts to blur the lines between the
model and the action language, where the visual
model becomes merely an editable view.

6.2 Approach for raising the

abstraction level

Alf implies a language-independent language. In
other words, a file containing UAL statements can
generate virtually any implementation language
code, whether that be Java, or Php. This conforms
to the common need in model driven engineering
projects, where the implementation language and
platform need to be determined in a lazy fashion.

Umple’s bottom-up approach takes the stand of
starting from a full-fledged object-oriented
programming language. This approach enabled us
to:
1. Build real and fully functional systems using

Umple, and learn from how an action language
is used in a modeling environment.

2. Iteratively add refinements to enhance the
programming language.

3. Quickly assess the impact of limiting scope, or
adding new abstractions, to systems and users.

4. Significantly reduce barriers to adoption.
Using a familiar syntax means Umple users
require minimal training to be able to start
using and building systems using Umple.
This does mean that for each base language we

have to create a parser that extends the base

language with Umple concepts. We have done this
for Java PHP and C++ and other languages that
allow the {} notation for blocks. The Umple
constructs would not need to change.

6.3 Platform Independence

In a Model Driven Arechitecture, a Platform
Independent Model (PIM) is a model that has no
platform dependencies, while a Platform Specific
Model (PSM) is a model optimized for execution
on a specific platform (France & Rumpe, 2007).
Alf is a PIM, since there is should be no
dependency on the language side for execution on
any specific platform. However, as soon as native
code is embedded in-line, the platform
independence is compromised, since the model
becomes tide to the embedded language platform.

Pure models in Umple are platform
independent, since executable semantics can be
generated for any platform. Umple action language
is as platform-independent as the underlying
language execution platform is.

6.4 Lines of Code Comparison

While lines of code (LoC) is a simple measure, it is
considered to be a good indicator for complexity
(Gold et al, 2005). Alf, at the time of writing, does
not support state machine constructs. We therefore
make the comparison based on class diagram,
associations, and attributes. Because attributes are
defined in similar fashion in Alf and Umple, we
focus on classes and association. For the sake of
demonstration, let’s consider the association
between the classes ShoppingCart and Product.
This association is represented in Alf as follows:

public active class ShoppingCart;
public active class Product;
public assoc R4 {
 public : ShoppingCart[0..*];
 public : Product[1..*]; }

In Umple, this association is defined as follows

class ShoppingCart {
 0..* -- 1..* Product; }

In the case of Umple, there is no need to

explicitly define a class Product because Umple
identifies Product as a class as it is participating in
an association. In addition, the association can be

defined in one end class, or both, or in a separate
entity.

Our motivating example has four associations,
which can be implemented in Alf in (4*5 = 20
LOC), while in Umple, the same associations are
implemented in (4*2 = 8 LOC).

7 RELATED WORK

There is a consensus in the research and
professional communities that UML models are, by
themselves, incomplete with regard to
executability. UML models can have a number of
varying interpretations (Evans, 1998), (France et al,
1997), (Evans, 1998). Action languages, or
methods for formalizing execution semantics, are
referred to as a way to provide such formalism.

For different types of models, researchers and
practitioners have identified the need for explicit
and unambiguous execution formalism. At the
meta-model level, Muller et al (Muller et al, 2005)
proposed a language for precise action
specification at the meta level. Sunyé (Sunyé,
2001) illustrates how an action language can be
applied at the meta-model level to maintain
behavior-preserving transformation, implement
design patterns, and achieve design aspect weaving
(Keller & Schauer, 1998). Action language usages
extend to formally defining model transformations.
Varro and Pataricza (Varro & Pataricza, 2003)
propose an executable action language for formally
defining model transformations. Their language
generates model transformation scripts for a
number of existing off-the-shelf software tools.

Alvarez et al (Alvarez et al, 2001) proposes an
action semantics language for UML where actions
are defined as computational procedures with side-
effects.

A Java-like action language called JAL is
proposed by (Dinh-Trong et al, 2005). JAL is a
simple language that they used for defining the
actions in the activity diagrams with the goal of
automated test generation for class and activity
diagrams.

8 CONCLUSIONS

We have defined a technology called Umple that
has some advantages over Alf as a UML action
language. Alf is a new textual language designed to
be embedded in UML constructs, whereas Umple
allows any language to be used as an action
language.

We also have developed a process whereby we
have incrementally developed Umple bottom-up to
provide action-language capabilities. It has been
tested in practice on various systems, including
Umple itself. This contrasts with Alf, which has
been developed top-down. Umple can be
incrementally be adopted by developers who are
used to using standard languages and want to move
towards modeling; Alf, on the other hand requires a
complete rewrite of action code.

REFERENCES

Alvarez, J. M., Clark, T., Evans, A. and Sammut, P. "An
Action Semantics for MML". 2001. Lecture notes in
computer science, Springer. pp. 2-18.

Badreddin, Omar, Andrew Forward, and Timothy C.
Lethbridge. "Exploring a Model-Oriented and
Executable Syntax for UML Attributes." Software
Engineering Research, Management and
Applications. Springer, 2014. 33-53.

Badreddin, Omar, Andrew Forward, and Timothy C.
Lethbridge. "Improving Code Generation for
Associations: Enforcing Multiplicity Constraints and
Ensuring Referential Integrity." Software
Engineering Research, Management and
Applications. Springer, 2014. 129-149.

Badreddin, Omar. "Empirical evaluation of research
prototypes at variable stages of maturity", User
Evaluations for Software Engineering Researchers
(USER), 2013 2nd International Workshop ,
10.1109/USER.2013.6603076. 2013 , Pages: 1- 4.

Badreddin, Omar, Lethbridge, Timothy C., “Model
Oriented Programming: Bridging the Code-Model
Divide”. ICSE Workshop on Modeling in Software
Engineering, 2013, Modeling in Software
Engineering (MiSE), 2013 5th International
Workshop , 10.1109/MiSE.2013.6595299. 2013 ,
Pages: 69 - 75.

Badreddin, Omar, Andrew Forward, and Timothy C.
Lethbridge. "Model oriented programming: an
empirical study of comprehension." 2012 Conference
of the Center for Advanced Studies on Collaborative
Research. IBM Corp., 2012.

Badreddin, Omar. ; Lethbridge, Timothy C. "Combining
experiments and grounded theory to evaluate a
research prototype: Lessons from the umple model-
oriented programming technology", User Evaluation
for Software Engineering Researchers (USER),
2012. 10.1109/USER.2012.6226575 , 2012 , Page(s):
1- 4.

Badreddin, Omar, Timothy C. Lethbridge, and Maged
Elassar. "Modeling Practices in Open Source
Software." Open Source Software: Quality
Verification. Springer, 2013. 127-139.

Bock, C. "UML without Pictures". 2003. IEEE Software,
vol 20, pp. 33-35.

Chaves, R. " TextUML", accessed 2012,
http://abstratt.com/.

Dinh-Trong, T., Kawane, N., Ghosh, S., France, R. and
Andrews, A. A. "A Tool-Supported Approach to
Testing UML Design Models," in Proccedings of the
10th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), 2005.

Elkoutbi, M., Khriss, I. and Keller, R. K. "Automated
Prototyping of User Interfaces Based on Uml
Scenarios". 2006. Autom.Software.Eng, vol 13,
Springer. pp. 5-40.

Evans, A. "Making UML Precise, OOPSLA'98". 1998.
October.

Evans, A., France, R., Lano, K. and Rumpe, B.
"Developing the UML as a Formal Modelling
Notation," in UML, 1998, pp. 397–407.

France, R. and Rumpe, B. "Model-Driven Development
of Complex Software: A Research Roadmap," in
FOSE '07: 2007 Future of Software Engineering,
2007. pp. 37-54.

France, R., Evans, A., Lano, K. and Rumpe, B. "The
UML as a Formal Modeling Notation". 1997.
Computer Standards and Interfaces, vol 19, Citeseer.
pp. 325-334.

Gold, N., Mohan, A. and Layzell, P. "Spatial Complexity
Metrics: An Investigation of Utility". 2005. IEEE
Trans.Software Eng., vol 31, pp. 203-212.

Harris, T. " YUML", accessed 2012, http://yuml.me/.
IBM. " IBM Rational Software Architect Modeling

Tool", accessed 2013, http://www-
01.ibm.com/software/awdtools/architect/swarchitect/

Keller, R. K. and Schauer, R. "Design Components:
Toward Software Composition at the Design Level,"
in Proceedings of the 20th Int’l Conference on
Software Engineering, 1998. pp. 302-311.

Lethbridge T.C., Forward, A. and Badreddin, O. " Umple
Language Online.", accessed 2012,
http://try.umple.org.

Mellor, S. J., Tockey, S. R., Arthaud, R. and Leblanc, P.
"An Action Language for UML: Proposal for a
Precise Execution Semantics". 1999. Lecture notes in
computer science, Springer. pp. 307-318.

Muller, P. A., Fleurey, F. and Jézéquel, J. M. "Weaving
Executability into Object-Oriented Meta-
Languages". 2005. Lecture notes in computer
science, vol 3713, Springer. pp. 264.

Object Management Group (OMG). " Concrete Syntax
for a UML Action Language RFP", accessed 2012,
http://www.omg.org/cgi-bin/doc?ad/2008-9-9.

Object Management Group (OMG). " Human-Usable
Textual Notation", accessed 2013,
http://www.omg.org/technology/documents/formal/h
utn.htm.

papyrus, "The Papyrus UML", accessed 2013,
http://www.papyrusuml.org.

Planas, Elena, et al. "Alf-Verifier: an eclipse plugin for
verifying Alf/UML executable models." Advances in
Conceptual Modeling, 2012. Springer Berlin
Heidelberg, 2012.378-382.

Steel, J. and Raymond, K. "Generating Human-Usable
Textual Notations for Information Models," in Fifth
International Conference on Enterprise Distributed
Object Computing (EDOC 2001), Seattle,
Washington, USA, 2001. pp. 250-250.

Sunyé, G., Pennaneac h, F., Ho, W. M., Le Guennec, A.
and Jézéquel, J. M. "Using UML Action Semantics
for Executable Modeling and Beyond". 2001.Lec’
notes in comp’ sci’, Springer. pp. 433-447.

Van Gurp, J. and Bosch, J. "On the Implementation of
Finite State Machines," in Proceedings of the 3rd
Annual IASTED Int’l Conference Software
Engineering and Applications, 1999. pp. 172-178.

Varro, D. and Pataricza, A. "UML Action Semantics for
Model Transformation Systems". 2003. Period
Polytech Electr Eng, vol 47, Citeseer. pp. 167-186.

