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Abstract

Extracting object-oriented design from procedural code is an important issue in

software maintenance. Existing research in this direction puts a heavy burden on the

experts of the system being studied. To try to automate the process, we propose a

new method to cluster together routines that are semantically related. The method

is based on routine-call analysis. Some experiments on a subset of the system we are

studying (23 KLOC) are discussed. They give very promising results.

1 Introduction

While maintaining legacy applications, a large portion of the software engineers' e�ort is
spent in trying to understand the program and data [11]. To help the software engineers
in this task, we have built a tool to let them easily browse through the code and �nd what
they are looking for. A component of this browsing tool is an \object-oriented browser": a
browser which will present the (procedural) code as a hierarchy of classes.

A number of researchers have tried to migrate procedural code into object oriented code
(see for example [4, 9, 10]). This is usually done by choosing some data structure and
clustering around it the routines that access it. The result is said to represent a class.

This approach has been reported to be successful in various papers, however our project
imposes a number of constraints which set us apart. One of the main di�culties we face is
the size of the system (2 MLOC) and the impossibility of relying upon experts of the system
to help sort out the true extracted classes.

�This work is supported by NSERC and Mitel Corporation and sponsored by the Consortium for Software

Engineering Research (CSER).
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In this paper, we propose a new method to cluster semantically related routines together.
The method is based on routine calls rather than uses of data structures.

We �rst present our project, stating the constraints it imposes on us. We then discuss
the current practice in program comprehension and contrast it to our project's constraints.
Thirdly, we describe a new method of clustering routines and the assumptions on which it
is based. We then present and discuss some promising experimental results. We �nish with
a discussion of related and future work.

2 Our Project

\Does the method scale up?" is a recurring question in program comprehension. A key
aspect of our project is to deal with an actual software system in a real world company, to
ensure that scaling up is not a problem.

Our goal is to help software engineers to maintain a legacy telecommunication system.
The browsing tool we have built contains a variety of di�erent facilities that allow them
to navigate the code, search for various things in it and view abstractions of it. All of
these facilities, including our \object-oriented browser" are designed to operate rapidly even
though the system being studied contains millions of lines of code.

Migrating procedural code to object code is a popular research domain; however the
conditions associated with our project create a set of particular constraints:

� Since the software engineers are busy people, we cannot a�ord to disturb them too
often.

� Since we are dealing with an actual system, we must cope with the usual di�culties
associated with real world problems (e.g. size, noise in the data).

� Since we aim at building a browser, we need a fully automatic method which could be
run periodically to cope with the continuously evolving software.

� On the other hand, because we aim at building a browser, the precision of the generated
classes is not as critical as for a real migration project where a key requirement is precise
preservation of semantics.

These constraints make the \traditional" class extraction approach ill-suited to our
project. We will now present this traditional approach and the problems it raises in our
case.

3 Current Practice in Class Extraction

Extracting classes from procedural code has been discussed in several papers (see for example
[4, 5, 7, 8, 9, 10]). The common practice consists of choosing a seed, which is a data structure,
and then clustering \around it" the routines that use this seed. The cluster is said to form a
class where the routines are the class's methods. This process is repeated as long there are
seeds available. We call this the seed method.
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The seed may be a structured type (struct in C, record in Pascal) or a global variable.
In the �rst case (structured type), the routines which use the seed are those with a formal
parameter of this type. In the second case (global variable), the routines which use the seed
are those that read the variable or write into it. In this case, one usually clusters together
more than one global variable and all the routines that access them. Each variable represents
a separate attribute of the class.

All the experiments we are aware of which use this method require an expert who under-
stands the system to evaluate the quality of the extracted classes. One of our requirements
was that the method be fully automatic. Therefore we require a more \intelligent" method.

Another problem concerns the size of the data. The largest experiments we are aware of
that use the seed method deal with 40 KLOC of C [6] or 200 KLOC of Cobol [5] { we are
concerned with systems that are substantially larger.

To allow a more sophisticated analysis of the code and to keep computation time low, we
propose to split our system into subsystems and to apply the method inside each subsystem.
The size of the subsystems we have experimented with only range from 5 KLOC to 23 KLOC
which should be small enough to meet our requirements.

However this solution brings another di�culty: since the subsystems are procedural in
nature, a \class" is often scattered across di�erent subsystems; the seed data structure is
de�ned in only one subsystem, possibly with the main routines that access it; but other
routines that also access it are found in another subsystem.

Applying the seed method purely to this second subsystem will not allow the routines to
be clustered around their seed, since the seed is not present in the second subsystem. Hence
the seed method will never �nd the common semantic link among the routines.

We would like this clustering to be possible even in the absence of the seed. To solve this
problem and also to try to help in automating the seed method, we will now propose a new
method for extracting groups of routines which are semantically related.

4 Clustering Routines on Routine Calls

We are looking for a method to cluster together routines that are semantically related. Unlike
the traditional approach to class extraction, this method cannot be based on data uses. A
possible answer comes from earlier research we did on class hierarchy redesign [1, 2]. We will
now present this solution and the assumption on which it is based. The following section
will discuss some experimental results that seem to validate these assumptions.

While doing research on class hierarchy redesign, we discovered that routines calls often
carry a semantic meaning. Clustering routines on routine calls would often return seman-
tically coherent clusters. We will now explain how we propose to use routine calls as a
clustering base.

A routine calls another one to delegate a part of its job. The caller and the called share a
purpose. But this semantic link may be sometimes very weak. For example, a bug-reporting
method may call a string-formating function to create a message to be displayed. The link
between bug-reporting and string-formating may well be judged not important enough to
cluster the two routines together.
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We propose a transitive extension of this approach: two routines called by a third one
should also share a semantic link. Obviously, this new link would likely be even weaker;
however if the same two routines have two, three or more common calling routines, then we
can sum the links to create a stronger one.

We therefore propose to say that if two routines are both called by a number of other
routines they should be clustered together.

Less obviously, the transitivity should work in the other direction: if two routines both
call a third one then they likely share a (very thin) semantic link. And if they both call a
number of similar routines, this semantic link could be judged strong enough to cluster the
calling routines together.

We have performed some experiments to ascertain the validity of these assumptions.

5 Empirical results

In this section we present and discuss some experiments we have run to discover semantic
links between routines. The clustering is based on routine calls, as described in the last
section; it would be used to �nd related routines that would not be detected by the seed
method or to validate the results of the seed method without asking an expert.

The �rst step of the experiment consists of splitting the software into subsystems. In [3]
we propose an automatic way to do so, but for these experiments we preferred to use some
known subsystems that were identi�ed by the software engineers who maintain the software.

The size of the subsystems range from 5 to 23 KLOC of Pascal. We give here the results
for the largest one (45 �les and 23 KLOC).

# of # rtn # pairs % pairs
children pairs with seed with seed

2 1014 94 9%
3 534 84 16%
4 41 18 44%
5 17 12 71%
6 7 5 71%
7 3 2 67%
8 3 2 67%
9 2 1 50%

# of # rtn # pairs % pairs
parents pairs with seed with seed

2 70 7 10%
3 20 3 15%
4 9 0 0%
5 5 0 0%
6 3 0 0%
7 1 0 0%
8 1 0 0%
9 1 0 0%

Table 1: Number of routine pairs that share more than one child (left) or parent (right) in
the call graph. The last two columns in each table give the number and percentage of these
pairs which are also recognized by the seed method.

For the sake of clarity, calling routines will be named parents (in a call graph) and called
routines will be named children. Each experiment includes two parts: we �rst consider the
pairs of routines called by more than one common parent; then we consider the pairs calling
more than one common child. We will sometimes refer to these parts as, respectively, the
parent experiment and the child experiment.
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We �rst present some statistics on the number of routine pairs that share more than one
child (table 1, left) or parent (table 1, right) in the call graph.

In each table, the left most column gives the minimum number of common children or
parents that the pairs of routines share. The second column gives the number of pairs
having at least that many common children or parents. The third and fourth columns give
the number and percentage of pairs that are also clustered by the seed method.

The left table (child experiment) shows that our method compares well with the seed
method. Our hypothesis was that the more children two routines share in a call graph, the
stronger the semantic link that binds them. This seems to be con�rmed by the fact that
when the number of common children grows, the percentage of pairs sharing a seed grows
too. Assuming that the seed method is a well-founded way to evaluate the e�ectiveness of
our routine-call based method, this means that our method clusters more and more pairs of
routines that belong to the same class.

One must not pay too much attention to the last 4 percentages. The number of pairs is
so low for these that they loose any statistical signi�cance.

We did not discuss the exact threshold where the semantic link starts to be signi�cant.
Here we believe it lies between 2 and 4 common children, but more experiments have to be
done to validate this conjecture.

The right table presents the results for the symmetric (parent) experiment. This time,
the number of extracted pairs as well as the number of pairs also recognized by the seed
method are much lower. To our surprise the results for the child experiment seem better
than with the parent experiment.

The �rst 2 percentages are similar in the child and parent experiments, but then this
percentage quickly drops to 0% in the latter case. However, this does not allow one to
deduce that the extracted pairs are not valid. For example, the one pair which has more
than 9 common parents, actually has thirty! It is very unlikely that 2 routines which are
called together by thirty other ones do not share any semantic link, even if they were not
clustered by the seed method. We believe that one simply cannot draw any conclusion from
the parent experiment.

# of # rtn # pairs % pairs
children pairs with seed with seed

2 443 60 14%
3 371 60 16%
4 10 5 50%
5 5 4 80%
6 1 1 100%
7 1 1 100%
8 1 1 100%

# of # rtn # pairs % pairs
parents pairs with seed with seed

2 39 3 8%
3 10 1 10%
4 3 0 0%
5 1 0 0%
6 1 0 0%
7 1 0 0%
8 1 0 0%

Table 2: Number of routine pairs that share more than one child (left table) or more than
one parent (right table) and do not have any \personal" child or parent.

The next experiment is slightly di�erent in that it not only constrains the pairs to share
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more than one child (table 2, left) or more than one parent (table 2, right), but it also forbids
them from having any other child or parent. The rationale is that if two routines are always
called together by their parents, the semantic link that binds them must be stronger than if
they are sometimes used independently. The same reasons apply to routines calling exactly
the same children.

This seems to be con�rmed in the child experiment (left table). The percentage of pairs
clustered by the seed method is higher than in table 1. Once again, one must not pay
too much attention to the last results (however good they are) as they are not statistically
signi�cant.

The parent experiment does not allow to draw any more conclusions.

Routine pairs Evaluation

call reference is valid call reference is valid for redirect ext
execute del text msg execute get text msg seed
execute del text msg execute put text msg seed
execute del text msg execute set msg pwd for text msgs seed
execute get text msg execute put text msg seed
execute get text msg execute set msg pwd for text msgs seed
execute put text msg execute set msg pwd for text msgs seed
execute initiate call q2000cp send afc msg seed
execute initiate call release mtce busy for ons ext
execute snapshot q2000 format and send call status seed
q2000 display hash table q2000 display monitors ext
q2000 feature interr monitor q2000 feature start monitor seed
q2000 feature interr monitor q2000 feature stop monitor seed
q2000 feature start monitor q2000 feature stop monitor seed
q2000 generate call status q2000 generate key group cs msgs seed
q2000 send busy circuit req q2000 send rts circuit req ext
q2000 send invoke reply q2000 send pbx invoke msg ext

Table 3: Evaluation of the routine pairs that share more than 5 children in the call graph.
In the evaluation column: 'seed' means the pair share a seed in the subsystem; 'ext' means
they share a seed external to the subsystem.

Finally, we present more subjective results. We manually evaluated each pair of routines
extracted. We are fully aware that to carry any signi�cance this evaluation should be done
by an expert who did not take any part in this research { this evaluation will be done later.
Before making any appointment with the software engineers however, we wish to have a
better understanding of this new method. The experiment would also require that we design
a small tool with a proper interface to make the evaluation process as short and easy as
possible.

Table 3 presents all the routine pairs that share more than 5 children and table 4 presents
all the routine pairs that share more than 3 parents. These thresholds have been chosen to
show a small yet meaningful number of pairs (about twenty pairs). However, to allow a
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better comparison between tables 3 and 4, the routine pairs that share more than 5 parents
in the second one are in italic.

In table 3, most of the pairs of routines would have been clustered by the seed method
because they both access a common seed declared in the subsystem considered. All the other
pairs access a common seed which is external to the subsystem and thus would not have been
clustered by the seed method inside this subsystem. This is one of the primary reasons why
we proposed this new clustering method.

Routine pairs Evaluation

build feature access string call reference is valid ?
build feature access string icf initiate call ext
call reference is valid dispatch q2000 ?
call reference is valid format icf msg ?

call reference is valid icf generic invoke function ext

call reference is valid icf initiate call ext

call reference is valid q2000 cti link ext
call reference is valid send recall message ext
dispatch q2000 format icf msg ext

icf generic invoke function send recall message ext
display call status details q2000 get cr feature bits. . . seed

. . . and party swids
display call status details q2000 get swid feature bits. . . seed

. . . and party swids
q2000 get cr feature bits. . . q2000 get swid feature bits. . . seed
. . . and party swids . . . and party swids

deactivate monitor q2000 hash swid ok
�nd swid and destination in chain q2000 hash swid ok
�nd target and dest in chain notify database of table changes ?
�nd target and dest in chain target monitored ok
notify database of table changes target monitored ?
q2000 receive invoke msg q2000 send invoke reply ok
q2000 receive invoke reply q2000 send invoke msg ok

Table 4: Evaluation of the routine pairs that share more than 3 parents in the call graph.
The pairs in italic share more than 5 parents. In the evaluation column: 'seed' means the
pair share a seed in the subsystem; 'ext' means they share a seed external to the subsystem;
'ok' means the cluster is probably correct, and '?' means we are not sure whether this is
correct or not.

Once again, the results seem not as good in the parent experiment (table 4). Many pairs
(10 out of 20) do share a seed either internal or external to the subsystem. But for the
others, we did not �nd any seed. This does not mean that the routines do not belong to the
same cluster. By studying the comments of the routines, we were sometimes (5 cases) able
to see a common purpose. For other pairs we will have to go to an expert.
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6 Related Work

Various researchers are concerned with extracting classes from procedural code. However,
we are not trying to re-engineer the system, but rather to build an object-oriented browser
on it. This sets us apart from most of these researchers:

� Our object model will have to be recomputed often to keep up with the continuously
evolving system. This implies that we use a fully automated method.

� On the other hand, we do not need the extreme precision that re-engineering projects
require.

Few researchers have tried to cope with as large a system as ours. In [6], Girard also
proposed to split the system to reduce its size. He proposes to cluster around a seed only
those routines that are declared in the same �le as the seed. This approach is similar to
ours, however we chose to split the system at the level of subsystems instead of �les. Based
on our experiments, Girard's heuristic seems valid: a vast majority of the routine clusters
we �nd are located inside a single �le.

Possibly for the same reasons as ours, Girard also proposes to cluster routines based on
routine calls. He states that two routines called by a third one \should belong to the same
module as long as they are semantically related". In his case, the checking is done by an
expert.

Since we are seeking an automatic solution, we could not a�ord this. Instead we decided
to rely on a repetition heuristic: two routines will be considered semantically related if they
are called by more than one common parent routine. We have not yet ascertained the number
of common parents above which this assumption is valid.

Girard also proposes that a routine that has only one caller be clustered with this caller.
We agree with him although we did not consider this heuristic in our current research.

Moreover, following this idea, we also propose to cluster together pairs of routines that
share more than one parent and are never called independently. Presumably, this would
allow to lower the number of common parents required to consider two routines semantically
related.

A third heuristic used by Girard consists of clustering together sets of mutually-recursive
routines. We did not consider it because there is no recursion in the subsystems we studied.

Finally, we introduce a new idea which is to cluster routines that share some common
children. To our surprise, this heuristic seems more promising than the parent-oriented
heuristic.

7 Future Work

This research is still in an early stage. Although the results are very promising, there are
many questions to answer. We will now summarize some of them.

Routines sharing more than one parent or more than one child in the call graph do
seem to be semantically related. However, the precise number of parents or children above
which we may con�dently cluster them is not yet clear. Moreover, the thresholds seem to
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be di�erent for the number of parents and the number of children. Experiments have to be
done to try to ascertain these numbers.

We also wish to understand what di�erences exist between the parent and child heuristics.
Given our experiments, one seems to work better than the other, but this may simply indicate
a di�erence in the semantic link elicited. For example, some clusters generated by these
methods did not share any seed (structured type or global variable). Nevertheless their
comments did show a connection. Can these routines be said to belong to a \class", or does
their cluster have another meaning ?

Some other \complementary" heuristics have been proposed: cluster sets of mutually
recursive routines, cluster routines which do not have \independent" parents or children.
We would like to establish their actual impact on the main heuristics.

Although this was not shown in the discussion in section 5, our method gives dissim-
ilar results for the various subsystems we studied. This may be related to the size of the
subsystems, but we need to �nd the reasons for this di�erence and establish their importance.

8 Conclusion

We are trying to design an object-oriented browser to help software engineers to maintain
legacy software. Trying to extract an object-oriented design from procedural code is a
research issue which receives signi�cant interest. The traditional method of doing it (what
we call the seed method) consists of choosing a data structure (either a structured type or
some global variables) and to use it as a seed around which to cluster the routines which use
this seed.

A major problem of this method, for us, is that it requires the intervention of a human
expert. Because we will have to recompute our object model often, our project requires that
the method be automatic.

We �rst proposed to use the classical seed method on subsystems instead of the full
system. However, this brings in new di�culties as a seed may be declared in a subsystem
and the routines accessing it in another one. Therefore these routines cannot be clustered
around their seed.

We then proposed to rely on routine calls. The idea is that if two routines are both called
by a number of common parents, then they must share some semantic link and we would
be justi�ed to cluster them together. The same analysis holds for pairs of routines calling a
number of common children.

We performed experiments which tend to prove the two hypotheses are valid. To our
surprise, common children seem to be a better sign of semantic link than common parents.
However, these are early results, more experiments need to be done to understand more
precisely the e�ects of our method.
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