
Assessing the Relevance of Identi�er Names in a Legacy

Software System
�

Nicolas Anquetil Timothy Lethbridge
School of Information Technology and Engineering

150 Louis Pasteur, University of Ottawa
Ottawa, Canada, K1N 6N5
(1) (613) 562-5800 x6688

fanquetil,tclg@site.uottawa.ca

Abstract

Reverse engineering is a di�cult task even for

humans. When trying to provide tools to assist

in this task, one should try to take advantage

of all possible sources of information.

Informal sources, like naming conventions,

are more abstract than the code, thus helping

to bridge the gap between code and design. On

the other hand, there is no certainty that they

actually represent the current state of the sys-

tem.

Some researchers have used these informal

sources of information, relying on the fact that

types (or variables, or functions) have the same

name to assume they represent the same thing.

However none of these researchers actually

tried to establish to what extent this assump-

tion was veri�ed.

This paper aims at providing a framework to

study this point. We will de�ne what it means

to have a \reliable naming convention", how

this can be tested and under what conditions.

Examples from the particular legacy software

system we are studying as well as from the lit-

erature are presented.

1 Introduction

Maintaining legacy software systems is a prob-

lem which many companies face. To help soft-

ware engineers in this task, researchers are try-

ing to provide tools to help recover the design

structure of the software system. In general,

existing research focuses on the source code as

the place from which to extract design con-

cepts.

Some researchers however considered more

informal sources of information of a higher level

of abstraction [3, 5, 7, 13]. The di�culty with

these is that they may be the remnants of an

old design no longer representing the actual

state of the system. Therefore one should be

careful when basing assumption on it.

In [2] we showed that �le names can provide

a reliable source of information to extract sub-

systems. But is naming convention still reliable

when it comes to identi�ers?

The community appears divided on this is-

sue. In [17], Sneed states that \in many legacy

systems, procedures and data are named arbi-

trarily". Other researchers have used heuristics

based on naming convention (eg. [4, 6, 15]) but

without assessing formally their e�ciency.

This paper aims at providing a framework to

study this point. We will de�ne what it means

to have a \reliable naming convention", how

this can be tested and under what conditions.

Examples from the particular legacy software

system we are studying.

2 Naming Convention and

Reverse Engineering

Reverse engineering is a di�cult task even for

humans. When trying to provide tools to assist

in this task, one should take advantage of all

possible sources of information.

1

Informal source, like naming conventions, are

more abstract than the code, thus helping to

bridge the gap between code and design. On

the other hand, there is no certainty that they

actually represent the state of the system.

In [3] we used �le naming convention to ex-

tract subsystems in the legacy system we work

with. Our results show that �le names are a

useful source of information in this case [1, 2].

In the case of identi�er names, opinions are

contradictory: Sneed [17] reports that \pro-

grammers often choose to name procedures

after their girlfriends or favorite sportsmen",

whereas other researchers have used heuristics

based on the assumption that identi�ers names

were somehow signi�cant [4, 6, 15].

There are di�erent kinds of identi�ers: vari-

ables, user de�ned types, functions, etc. Be-

cause they are used to represent very di�erent

things (algorithms, abstract data types, . . .),

each kind would probably require a di�erent

treatment. In this paper we will focus on (user

de�ned) structured types and their �elds.

Structured types are of particular interest in

reverse engineering because they represent ab-

stract data types which are good candidates to

form classes (see for example [6, 9, 12, 15, 20]).

One di�culty with structured types is to detect

when two of them, possibly slightly di�erent,

implement the same abstract data type:

� Sneed again, states that \data attributes

of the same structure may have di�erent

names from one program to another".

� Newcomb [15] or Cimitile et al. [6] are

comparing the de�nitions of the structured

types to �nd out the synonyms, i.e. struc-

tured types with di�erent names but im-

plementing the same abstract data type.

Relying on the structured type de�nitions,

Newcomb and Cimitile assume that if the struc-

tured type names are not signi�cant, the �eld

names are. But they did not formally assess to

what extent either assumption is true.

This paper aims at providing a framework to

study this point. We will now propose a formal

de�nition of \reliable naming convention".

2.1 Reliable Naming Convention

It should �rst be made clear that this work is

somehow based on an important assumption:

By trying to test how relevant naming conven-

tions are (with regard to the design) we are sup-

posing that the software engineers are trying

to give signi�cant names (although they may

failed in this attempt).

As already mentioned, in Sneed's experience

[17], this initial attempt was not made. He

found legacy software where procedures were

named after peoples (sportsmen or software en-

gineers' girlfriends). One can only hope this

kind of behavior is not the rule.

For us, we will assume that as long as iden-

ti�ers are not people names, they do represent

the concepts implemented. In our legacy sys-

tem, names seem to have been chosen to help

understanding what they represent.

The expression \naming convention" can be

misleading because it suggests a preliminary

agreement of the software engineers on how to

name things. This would not be a realistic hope

and it is not what we are aiming at.

Ideally, we would say that the naming con-

vention is reliable if there is an equivalence be-

tween the name of the software artifacts and

the concepts they implement. These concepts

will be though of as domain or design concepts.

For example, for structured types, this would

mean there is an equivalence between the name

of a structured type and the abstract data type

it implements.

The problem of comparing concepts (such

as design concept) will be addressed in section

x3. Even without considering this aspect, the

above de�nition is very strict. In reality, we

will have to consider independently each side

of the equivalence:

� Two software artifacts with the same name

should implement the same concept.

� A concept should have the same name

for each of its di�erent implementations.

(Corollary: Two software artifacts with

di�erent names should implement di�erent

concepts.)

The second implication is a well known, un-

resolved, problem of \forward" engineering:

\studies of how people name things have shown

2

that the probability of having two people apply

the same name to an object is between 7% and

18%, depending on the object" [8].

We cannot hope the software systems we will

study solved it, therefore when talking about

the reliability of naming convention, we will

primarily focus on the �rst equivalence.

Before considering the di�cult problem of

comparing the concepts implemented, we will

briey describe the example software system we

used for our experiments.

2.2 The Data

We are working on a real world telecommuni-

cation legacy software system. This system is

over 15 years old and about 2 MLOCs of Pas-

cal code. The system contains over 7000 struc-

tured type de�nitions (records in Pascal).

A record can be de�ned as a type and then

be used to declare variables. Or it can be de-

�ned \on the y" when declaring a variable.

We call the second anonymous record de�ni-

tion, because it does not have a name of its

own. We did not considered this second type

of de�nition because obviously we cannot assert

the reliability of such record names.

Also, records can be de�ned globally (by a

program), or locally (by a function). We will

only consider global record de�nitions.

There are 2666 global, non anonymous,

record de�nitions, out of which, 97 records

have a non-unique name. This is relatively

small subset of all the record de�nitions. If we

consider the global and local, non anonymous,

record de�nitions, there are over 6000 records,

with 542 common names covering 1709 records.

We will mainly be comparing the records

pairwise. There are 44 common names, which

yield 77 pairs of synonymous records:

� 40 names common to 2 records (40 syn-

onymous record pairs),

� 3 names common to 3 records (9 synony-

mous record pairs), and

� 1 name common to 8 records (28 synony-

mous record pairs).

3 \Conceptual" Similarity

Metrics

In establishing whether a naming convention is

reliable or not, a very important point will be

how we compare the concepts implemented.

Ideally we would have an oracle (human) to

tell us whether two software artifacts with the

same name implement the same concept.

This solution is not tractable given the pos-

sible size of the data (thousands of software ar-

tifacts). We will therefore rely on the source

code to try to establish the similarity of two

implemented concepts.

We suppose here that any change in the de-

sign will be reected by a corresponding change

in the implementation. This is the act of faith

on which is based all the work in the reverse

engineering community.

3.1 Comparison of De�nitions

Intuitively it seems that the de�nition of a

software artifact is the most appropriate handle

(if not the sole one) to get a grip on the concept

implemented. This is how Newcomb [15] and

Cimitile et al. [6] detect synonymous records.

This is also how Mayrand et al. [14] propose to

detect clone functions.

Although we will not explore this path, we

believe, one could also consider the uses of the

software artifacts. The idea comes from the

way cohesion and coupling of subsystems |

which is basically measuring how close �les in

the subsystem are one from the other| are

computed: One compares the types or global

variables that are used in these �les [11, 16].

Experience with these metrics suggests the

results would be very similar. The two ap-

proaches should be very close in their imple-

mentation also as they would both come down

to compare other names, of variables using the

records in one case, of the records' �elds in the

other case.

We will only consider here the record de�ni-

tions. The theoretical di�culty lies in the fact

that one assumes the �elds' names and types

are reliable whereas the record names are not.

To justify this somehow incoherent assump-

tion, Newcomb proposes a subjective argument

3

Synonymous Field Types

records = 6= total

Field = 73 (94.8%) 4 (5.2%) 77

Names 6= 52 (11%) 421 (89%) 473

Table 1: Paired comparison of �elds' names and �elds' types for synonymous records. The results

are given in number of record pairs.

(accumulation of imperfect proofs): \For com-

plex records consisting of 5-10 or more �elds,

the likelihood of false positives1 is relatively

small. For smaller records the probability of

false positive is fairly large."

There are a number of problem with this ar-

gument:

� Although common sense suggests it is true,

it would have to be formally established.

� It implies to �x a threshold (somewhere

between 5 and 10 for Newcomb) which

presumably would depend on the software

system.

� It does not say much for records that are

below the treshold.

In the system we are studying, the average

size of the structured types we considered is 3.6

�elds, which is well below Newcomb's thresh-

old.

It would be easier if we knew \how much"

reliable the �eld names are.

As for the records, we may try to assess the

�eld names reliability by comparing their de�-

nition (i.e. the �elds' types). Fortunately, the

\recursive testing" may stop if we deal with

typed programming languages. For these lan-

guages, the type of a variable (or a �eld in our

case), is usually meaningful2.

One must however make sure that:

� The type of the �eld is not not one of

the basic types of the language (integer,

boolean, characters, . . .)

� The type of the �eld is not an anonymous

record.

1
i.e. Structured types assumed to represent the same

abstract data type whereas it is not the case.

2
There are di�erences among the typed languages.

In C for example, the typing is looser than in Pascal.

We exclude the basic types of the language

because they are too general and meaningless:

We can make very few assumptions from the

fact that two variables are integers.

We exclude anonymous records because to

assert if they are equal, one would have to com-

pare their �elds and therefore assume the �elds

name are reliable which is what we are trying

to establish.

For all the pairs of synonymous records in

our system, we compared their �elds' names

and �elds' types. The results are given in table

1. These numbers show that inside the syn-

onymous records subset, the �eld names are

reliable: A high proportion (94.8%) of synony-

mous �elds have the same type (�rst implica-

tion of section x2.1, same name) same im-

plemented concept), and the proportion of non

synonymous �elds with di�erent types (89%) is

also good (second implication of section x2.1,

di�erent names) di�erent implemented con-

cepts).

However, the set of synonymous records is a

relatively small subset of all the records. To be

of interest, the experiment should consider all

the records.

These new results (table 2) are not as clear.

At �rst it would seem that the �rst implication

is not respected whereas the second (that we

judged less likely to be true) is.

In fact, the overwhelming number of �eld

pairs with di�erent names or di�erent types

invalidate all the results. A possible solution

would be to split down the system into sub-

systems and consider each subsystem indepen-

dently. We will come back on this in section

x4.

3.2 Field Based Similarity

We have established that inside the subset of

records that have non unique names, the �eld

4

All Field Types

records = 6= total

Field = 7709 (33.7%) 15174 (66.3%) 22883

Names 6= 158828 (0.2%) 66652062 (99.8%) 66810890

Table 2: Paired comparison of �elds' names and �elds' types for all records. The results are given

in number of record pairs.

naming convention is reliable. We will see how

we can use such a result to formally compare

records.

To compare the record de�nitions we will

use similarity metrics from [10]. These met-

rics compare two lists of \attributes" (in our

case, �eld names with their types). Given the

two lists l1 and l2, the metrics are based on the

following values a = kl1 \ l2k, b = kl1 n l2k and

c = kl2 n l1k:

Jaccard: similarity (l1; l2) =
a

a+ b+ c

S�rensen-Dice: similarity(l1; l2) =
2a

2a+ b+ c

Ochiai: similarity(l1; l2) =
a

p
(a+ b)(a+ c)

When the need will appear to make a di�er-

ence between the metrics themselves and the

ways they are used to compare the record de�-

nitions, we will refer to these three as similarity

metrics and to the way we use them as concep-

tual similarity metrics (\conceptual" because

we use them to compare the \concepts" or ab-

stract data types implemented by the records).

For the conceptual similarity metrics, the

record de�nitions will be represented by lists

of �eld names and types (together). Because

we compare each �eld and its type as a whole,

we will say these conceptual similarity metrics

are �eld based. We will see in the next section

conceptual similarity metrics based on words.

Table 3 (upper part) gives the distribution

for the 77 pairs of synonymous records for the

three metrics. The two special values zero

(records completely di�erent) and one (records

completely equal) have been singled out to al-

low a better comparison of the results with fol-

lowing experiments.

First a good news: one can see that the re-

sults are very similar for the three metrics.

The bottom part gives the results when we

do not take into account the type of the �elds

in the list describing each record. As expected,

this makes little di�erence.

On the other hand, it would seem that the

record names are not reliable. About half of

the pairs have a low conceptual similarity (<

0:4). This is in fact a aw in our �eld based

conceptual similarity metric.

3.3 Word Based Similarity

Some record pairs have �elds with very close,

yet di�erent, names. As a result, the similarity

metric consider such records completely di�er-

ent one from the other (null similarity).

The eight records sharing one single name

(\general software log data type") provide a

very good example of this. They have the fol-

lowing �elds:

� fcpreport table id: language �les, cpre-

port string 1: integerg (1 record),

� fhm table id: language �les, hm string 1:

integerg (2 records),

� fmsgctrp table id: language �les, msgc-

trp string 1: integerg (1 record),

� fsmdr table id: language �les,

smdr string 1: integerg (1 record),

� ftrfmtce table id: language �les,

trfmtce string 1: integerg (2 records),

� ftrfreport table id: language �les, trfre-

port string 1: integerg (1 record).

Because of the di�erent pre�xes in the �eld

names, the records have a null similarity be-

tween them, whereas in fact, these small dif-

ferences themselves reinforce the impression of

5

Similarity intervals

0]0; 0:2[[0:2; 0:4[[0:4; 0:6[[0:6; 0:8[[0:8; 1[1

Jaccard 32 2 1 2 3 5 32

S�rensen-Dice 32 0 3 0 4 6 32

Ochiai 32 0 3 0 4 6 32

Jaccard 32 1 1 2 2 5 34

S�rensen-Dice 32 0 2 0 3 6 34

Ochiai 32 0 2 0 3 6 34

Table 3: Conceptual similarity of the 77 synonymous record pairs. The results are given in number

of pairs in each similarity interval. The top part was measured with �elds' names and types, the

bottom part with �elds' names only.

intentional similarity. The records are not just

simple copy/pastes to avoid rewriting a few

lines of code. They were purposedly modi�ed

to mark minor di�erences while still pertaining

to the same general abstract data type.

These eight records act as implementations

of subtypes of a general abstract data type that

would have the following two �elds ftable id:

language �les, string 1: integerg.

This single problem accounts for 26

pairs out of the 32 with null conceptual

similarity (24 pairs for the name \gen-

eral software log data type" and two other

pairs from two other names).

There are possibly two ways to overcome this

problem:

� consider only the �eld types and not the

�eld names,

� allow imperfect match between �eld

names.

We rejected the �rst solution on fear that

we do not have enough data left to compare

the records. Because we said we don't want to

use the language basic types, we would have

to eliminate the integer type in these �elds

and therefore compare the records on only one

type (\language �les") which seems little. Pre-

sumably, some records would have nothing left

to compare them (if all their �elds have basic

types).

We will rather consider the second solution

and propose a word based conceptual similarity

metric that would take into account the simil-

itude between the �elds' names.

To do this, we will simply decompose

the �eld names into the list of their con-

stituent words (\cpreport table id" decom-

poses in \cpreport", \table" and \id"), hence

the name word based conceptual similarity met-

rics.

Decomposing the record names is not a di�-

cult task with the system we are studying. As

a rule, the identi�ers include \word markers"

(the underscore sign) on which to break them.

In addition to this, some identi�ers include

numbers like \pid0" or \hm string 1". If these

numbers or not isolated by \word markers" (in

\hm string 1", 1 is isolated; in \pid0", 0 is not),

we consider them version number and decom-

pose the word as follow: \pid0" gives \pid" and

\pid0".

See [3] for a discussion on how to decompose

names which do not contain \word markers"

There are di�erent ways to compute

the word based conceptual similarity

metric. We could come up with a

\weighted" version of the metrics, where

kfcpreport table id ; cpreport string 1g \

fhm table id ; hm string 1gk would not be

zero, but would consider that the elements of

the lists have some similitude.

This solution would require many di�cult

decisions, as: what to do when some names

from l1 all imperfectly match some names from

l2? Deciding which names of l1 will be matched

with which other name of l2 would be a di�cult

task that we did not want to undertake.

We propose an easier solution, the list repre-

senting each record de�nitions will be made of

all the \words" composing the �eld names of

the record. Thus, computing the word based

6

Similarity intervals

0]0; 0:2[[0:2; 0:4[[0:4; 0:6[[0:6; 0:8[[0:8; 1[1

Jaccard 4 3 0 27 2 7 34

S�rensen-Dice 4 0 3 0 28 8 34

Ochiai 4 0 3 0 28 8 34

Jaccard 3 1 3 1 29 8 32

S�rensen-Dice 3 0 3 1 29 9 32

Ochiai 3 0 3 1 29 9 32

Jaccard 2 2 3 0 29 9 32

S�rensen-Dice 2 1 3 1 27 11 32

Ochiai 2 1 3 1 27 11 32

Table 4: Word based conceptual similarity of synonymous records. The top part was measured

with decomposed �eld names only. The middle part was measured with decomposed �eld names

and non decomposed �eld types. The bottom part was measured with decomposed �eld names and

decomposed �eld types.

conceptual similarity between these two lists:

� fcpreport table id, cpreport string 1g

� fhm table id, hm string 1g

will consist in applying the similarity metric on

the two following lists of \words":

� fcpreport, table, id, cpreport, string, 1g

� fhm, table, id, hm, string, 1g

This solution may appear a bit too simplistic

at �rst because we loose the �eld to �eld com-

parison and just compare all the words. This

means for example that the two lists faa 11,

bb 22g and faa 22, bb 11g would get a \per-

fect" similarity (equal to one) whereas they are

not equal.

To reduce the risk of such problem, we sug-

gest to drop the �elds' types for this experi-

ment. Of course, one can do this only if the

�eld names have proved to be reliable. If they

are not, one could put the �eld types in the

list as independent word themselves. The ba-

sic types of the language would be discarded.

A priori, it does not seem �tted to also decom-

pose the type names, but this could be subject

to discussion.

Table 4 gives the results of the new exper-

iment for our system. The top part was ob-

tained with the lists characterizing each record

containing only the decomposed �eld names.

The middle part was obtained with the lists

containing the decomposed �eld names and the

non decomposed �eld types. Finally the bot-

tom part was obtained with the lists contain-

ing the decomposed �eld names and the decom-

posed �eld types.

In this case, the three alternatives make little

di�erence.

As expected, the results are better. The aw

we detected has been corrected and only 10%

of the pairs have a conceptual similarity infe-

rior to 0.6 . Two pairs are de�nitely di�erent

(null similarity). These are utility records. The

number of perfectly equal pairs did not change

(32 if we include the �eld types, 34 if we do

not include them). This may indicate that the

problem of \cross similarity" (between list like

aa 11, bb 22 and aa 22, bb 11) we feared did

not occur.

4 Naming Convention in

Legacy Software

Because we are dealing with legacy software,

there is another problem one should consider,

that of reliability over space. Because legacy

software are very large, di�erent parts of the

entire system (presumably subsystems) could

have di�erent naming conventions.

Consider the following example: In the sys-

tem we study, there are 16 records with an at-

7

tribute \data"3. Out of these 16 �elds, only

four have the same type (two pairs of \data"

�elds with the same type). These two similarly

typed pairs occur in records that have either

the same name or very similar names:

� two records \ss7msgdmp trace buf item"

have a \data" �eld of type \message",

� records \registers" and \lld registers" have

a \data" �eld of type \data register".

The 12 other \data" �elds (with dissimilar,

non basic, types) occur in records that have

dissimilar names.

We believe this is the same kind of localized

naming conventions that caused the �eld names

to appear non relevant over all the records (ta-

ble 2, page 5) whereas they appear relevant

over the subset of synonymous records (table

1, page 4).

These localized naming convention would

make their testing all the more di�cult because

it imposes to know the partitioning of the sys-

tem over which the di�erent naming convention

are based.

Presumably, the naming convention would

be localized in subsystem, but there is no cer-

tainty about it. It could also depend on the

software engineers who would be working on

more than one subsystem.

5 Conclusion and Future

Work

Being able to rely on the names of software arti-

facts to detect di�erent implementations of the

same concept would be very useful. It would

for example allow to extract the \names" of

the design concepts thus allowing the program

comprehension tools to use the same language

the software engineers do. It could also de-

crease the amount of data to deal with (consid-

ering records' names instead of all the records'

�elds).

Some researchers tried to rely on names in

their reverse engineering e�ort. But they did

3
In fact, there are 25 \data" �elds, but we do not

consider nine of them which use one of the language's

basic types.

not formally assess to what extent naming con-

ventions are reliable in the systems they study.

In this paper we presented a framework to

do so. We proposed a de�nition for \reliable

naming convention" and proposed some exper-

iments to evaluate it.

The possibly di�cult issue of \consistency

over space" (or \localized naming convention")

was raised.

We tried to illustrate our discussions with

examples and experiments from the particular

software system we study. But these were lim-

ited in size and do not allow to draw any signif-

icant conclusion for this system. An extension

of this work would be to conduct real experi-

ments over the system.

Thanks

The authors would like to thank the software

engineers at Mitel who participated in this re-

search by providing us with data to study and

by discussing ideas with us. We are also in-

debted to all the members of the KBRE re-

search group for fruitful discussions we have

had with them.

About the authors

Nicolas Anquetil completed is Ph.D. at the

Universit�e de Montr�eal in 1996. He is now

working as a research associate and part time

professor in the School of Information Technol-

ogy and Engineering (SITE) at the University

of Ottawa.

Timothy C. Lethbridge is an Assistant Pro-

fessor in the School of Information Technology

and Engineering (SITE) at the University of

Ottawa. He leads the KBRE group, which is

one of the projects sponsored by the Consor-

tium for Software Engineering Research.

The authors can me reached by email

at fanquetil,tclg@site.uottawa.ca.

The URL for the project is

http://www.site.uottawa.ca/~tcl/kbre.

8

References

[1] Nicolas Anquetil and Timothy Lethbridge.

File Clustering Using Naming Conventions

for Legacy Systems. In J. Howard John-

son, editor, CASCON'97, pages 184{95.

IBM Centre for Advanced Studies, nov

1997.

[2] Nicolas Anquetil and Timothy Lethbridge.

Design quality of subsystems extracted

from �le names. Technical Report TR-98-

06, University of Ottawa, Computer Sci-

ence Departement, MacDonald Hall, 150

Louis Pasteur, room 329, Ottawa, Canada,

K1N 6N5, jul. 1998.

[3] Nicolas Anquetil and Timothy Lethbridge.

Extracting concepts from �le names; a

new �le clustering criterion. In Interna-

tional Conference on Software Engineer-

ing, ICSE'98, pages 84{93. IEEE, IEEE

Comp. Soc. Press, apr. 1998.

[4] Elizabeth Burd, Malcom Munro, and

Clazien Wezeman. Extracting reusable

modules from legacy code: Considering

the issues of module granularity. In Work-

ing Conference on Reverse Engineering,

pages 189{196. IEEE, IEEE Comp. Soc.

Press, nov 1996.

[5] G. Butler, P. Grogono, R. Shinghal, and

I. Tjandra. Retrieving information from

data ow diagrams. In Working Confer-

ence on Reverse Engineering, pages 22{29.

IEEE, IEEE Comp. Soc. Press, jul. 1995.

[6] A. Cimitile, A. De Lucia, G.A. Di Lucca,

and A.R. Fasolino. Identifying objects

in legacy systems. In 5th International

Workshop on Program Comprehension,

IWPC'97, pages 138{47. IEEE, IEEE

Comp. Soc. Press, 1997.

[7] Julio Cesar Sampaio do Prado Leite and

Paulo Monteiro Cerqueira. Recovering

business rules from structured analysis

speci�cations. In Working Conference on

Reverse Engineering, pages 13{21. IEEE,

IEEE Comp. Soc. Press, jul 1995.

[8] G. W. Furnas, T. K. Landauer, L. M.

Gomez, and S. T. Dumais. The vocabulary

problem in human-system communication.

Communications of the ACM, 30(11):964{

971, nov. 1987.

[9] Harald Gall and Ren�e Kl�osch. Finding ob-

jects in procedural programs: An alterna-

tive approach. In Working Conference on

Reverse Engineering, pages 208{16. IEEE,

IEEE Comp. Soc. Press, jul 1995.

[10] Donald A. Jackson, Keith M. Somers, and

Harold H. Harvey. Similarity Coe�cients:

Measures of Co-occurence and Associa-

tion or Simply Measures of Occurence ?

The American Naturalist, 133(3):436{453,

March 1989.

[11] Thomas Kunz and James P. Black. Us-

ing automatic process clustering for de-

sign recovery and distributed debugging.

IEEE Transaction on Software Engineer-

ing, 21(6):515{527, jun 1995.

[12] A. De Lucia, G.A. Di Lucca, A.R. Fa-

solino, P. Guerra, and S. Petruzzelli. Mi-

grating legacy systems towards object-

oriented platforms. In Mary Jean Har-

rold and Guieppe Visaggio, editors, In-

ternational Conference on Software Main-

tenance, ICSM'97, pages 122{29. IEEE,

IEEE Comp. Soc. Press, oct 1997.

[13] P. Lutsky. Automatic testing by reverse

engineering of software documentation. In

Working Conference on Reverse Engineer-

ing, pages 8{12. IEEE, IEEE Comp. Soc.

Press, jul 1995.

[14] Jean Mayrand, Claude Leblanc, and Et-

tore M. Merlo. Experiment on the au-

tomatic detection of function clones in a

software system using metrics. In In-

ternational Conference on Software Main-

tenance, ICSM'96, pages 244{53. IEEE,

IEEE comp. soc. press, nov. 1996.

[15] Philip Newcomb and Gordon Kotik.

Reengineering procedural into object-

oriented systems. In Working Confer-

ence on Reverse Engineering, pages 237{

49. IEEE, IEEE Comp. Soc. Press, jul

1995.

9

[16] Sukesh Patel, William Chu, and Rich Bax-

ter. A Measure for Composite Module

Cohesion. In 14th International Confer-

ence on Software Engineering. ACM SIG-

Soft/IEEE Comp. Soc. Press, 1992.

[17] Harry M. Sneed. Object-oriented cobol re-

cycling. In Working Conference on Re-

verse Engineering, pages 169{78. IEEE,

IEEE Comp. Soc. Press, nov 1996.

[18] Bruce W. Weide, Wayne D. Heym, and

Joseph E. Hollingsworth. Reverse engi-

neering of legacy code exposed. In Interna-

tional Conference on Software Engineer-

ing, ICSE'95, pages 327{331. IEEE, IEEE

Comp. Soc. Press, 1995.

[19] Steven Woods and Qiang Yang. The

program understanding problem: Analy-

sis and a heuristic approach. In Interna-

tional Conference on Software Engineer-

ing, ICSE'96. IEEE, IEEE Comp. Soc.

Press, 1996.

[20] Alexander S. Yeh, David R. Harris, and

Howard B. Reubenstein. Recovering ab-

stract data types and object instances

from a conventional procedural language.

In Working Conference on Reverse Engi-

neering, pages 227{36. IEEE, IEEE Comp.

Soc. Press, jul 1995.

10

