
CASCON 97

1

An Examination of Software Engineering Work Practices1

Janice Singerα, Timothy Lethbridgeβ,
Norman Vinsonα, Nicolas Anquetilβ

1 This work is supported by NSERC and the company serving as the site of the study.. This work was
sponsored by the Consortium for Software Engineering Research (CSER). The IBM contact for CSER is
Patrick Finnigan.

α Institute for Information Technology
National Research Council, Ottawa, ON, K1A OR6

β School of Information Technology and Engineering
University of Ottawa, Ottawa, ON, K1N 6N5

Abstract

This paper presents work practice data of the daily
activities of software engineers. Four separate
studies are presented; one looking longitudinally
at an individual SE; two looking at a software en-
gineering group; and one looking at company-
wide tool usage statistics. We also discuss the ad-
vantages in considering work practices in design-
ing tools for software engineers, and include some
requirements for a tool we have developed as a re-
sult of our studies.

1. Introduction
The Knowledge Based Reverse Engineering proj-
ect’s goal is to provide software engineers (SEs)
in an industrial telecommunications group with a
toolset to help them maintain their system more
effectively. To achieve this goal, we have adopted
a user-centered design approach to tool develop-
ment [6, 7, 8]. However, unlike traditional user-
centered approaches, we have focused on the SEs’
work-practices. This represents a new approach
[15] to tool design.

This approach borrows from several different
fields in an effort to more accurately assess users’
behavior and then provide them with tools that
enhance, rather than displace or replace, these
work practices. The rationale is that the tools that
are built will actually be used because they have
been created to mesh with existing behavior. This
paper will describe our experiences with this ap-
proach and what we have learned about the work

practices of one group of SEs at a large telecom-
munications company.

The rest of this introduction will first critically
examine the more traditional uses of psychology
in the program comprehension literature, and sec-
ond describe the study of work practices. We will
then outline some results of a study we conducted
at a large telecommunications company. Finally,
we will discuss the implications of these results
for tool design .

1. 1 Empirical Studies of Pro-
grammers (ESP)

One human-computer interaction approach to the
design of tools has been to study the cognitive
processes of programmers as they attempt to un-
derstand programs [19, 20, 21]. The results of
such studies are supposed to provide the basis for
designing better tools. In other words, understand-
ing the mental processes involved in program-
ming will permit the design of tools that mesh
with the programming process.

In this vein, ESP research has identified a
number of programmers’ approaches to the com-
prehension ‘problem’ including the top-down [12],
bottom-up [4], and as-needed strategies [9], and the
integrated meta-model [21].

There are three problems with this research,
though, as it pertains to tool design. First, the
vast majority of the research has been conducted
with graduate and advanced undergraduates serving
as expert programmers (but c.f., [21]). It is not at
all clear that these subjects accurately represent the
population of industrial programmers. Conse-

CASCON 97

2

quently, the results of studies involving students
cannot be generalized to programmers in industry.

Second, to control extraneous variables, re-
searchers have used programs that are very small
(both in terms of lines of code and logic) relative
to industrial software. This poses a generalization
problem as well: it is not clear that approaches to
comprehending small programs scale up to the
comprehension of very large programs.

Third, there is an assumption that understand-
ing the programmer’s mental model is an efficient
route to designing effective tools. However, it is
not at all obvious how to design a tool given a
specification of the programmer’s mental model.
For instance, how does knowing that program-
mers will sometimes use a top-down strategy to
understand code [12] inform tool design? It doesn’t
tell us what kind of tool to build, or how to inte-
grate that tool into the workplace or the pro-
grammer’s work. Furthermore, given this knowl-
edge, it is not clear how to help the programmer
build that mental model; how to help her apply it;
or how to help her use it effectively in software
engineering activities.

These three problems with the ESP approach
suggest that an alternative approach to tool design
may be more effective.

1. 2 Human Computer Interaction
Currently, there is a strong focus on usability in
the field of human-computer interaction [10]. That
is, designers attempt to ensure that prospective
users can use the software without encountering
interface difficulties. For instance, it should be
clear to users what action they should take at each
step, preferably without referring to documenta-
tion. Another aspect of usability is the minimiza-
tion of the number of steps and the amount of
time needed to accomplish a task. To determine
whether software is sufficiently usable, prospec-
tive users are observed using the software for a
few, or several minutes. Reaction times, errors,
backtracking to previous states and failures to ac-
complish the task are recorded along with the con-
ditions under which they occurred. These data are
then used to fix the interface and, ideally, more of
these test-redesign iterations take place until the
software is sufficiently usable.

However, we see problems with this approach.
While it may increase the usability of systems, it

does not guarantee that the systems that are built
will be genuinely useful [2, 18]. The usability
approach cannot speak to the issue of whether a
user will adopt and use a new tool in the work-
place because that is not the point, or the focus,
of usability. Moreover, several features of the
usability approach prevent it from informing the
designers about the acceptance of the tool in the
workplace. Usability testing usually takes place
outside the normal work setting, sometimes in a
room especially designed for that purpose. This
method of testing prevents the user from behaving
in a normal manner because it isolates him from
resources that are not part of the software (such as
colleagues, documentation, notes). In other words,
it prevents the user from engaging in his day-to-
day work practices. In addition, during usability
testing, the user is essentially forced to use the
software. In consequence, it is impossible to col-
lect data on whether the user would use the soft-
ware if he were given a choice between his exist-
ing work practices and the new software.

The lack of tool adoption and use is a major
problem in the area of tool design for software
engineering. However, because of its features and
techniques, usability cannot inform designers on
this issue. We believe that to build tools that are
actually used, designers must first understand what
it is that SEs do when they work. This is the rea-
son for our focus on work practices in designing
software engineering tools.

1. 3 Work Practices
The study of work practices is a relatively new
field [2, 3, 18] which seeks to understand how
work occurs and, from this understanding, suggest
appropriate technologies for the workplace. Work
practices have been studied in such diverse fields
as law, navigation, document use, etc.

In studies of work practices, data are generally
collected by following and recording the work that
people do. Researchers often rely on ethnographic
methodologies producing diverse sets of data. The
challenge, then, is to take work practice data sets,
and put them into a form that is useful to design-
ers.

CASCON 97

3

Our approach to this problem has been to im-
plement many different data collection techniques2

and see if the evidence from each converges. Then
we will use these data to decide what types of
tools would best solve the problems that SEs face
in their daily activities.

The first thing that struck us when we entered
the work place was that we did not know exactly
what it was that the SEs did on a day-to-day basis.
That is, we knew neither the kinds of activities
they performed, nor the frequency with which
these various activities took place. As far as we
could tell, there were many hypotheses about the
kinds of things SEs do, but no clear ‘cataloging’
as such of exactly how SEs go about solving
problems. Consequently, we decided to begin our
study of work practices by finding out what it is
that SEs do when they do their work. First, we
will briefly describe the characteristics of the
workplace. Then, the rest of this paper will pres-
ent the findings from several studies we conducted
to answer this first question.

2. Workplace Characteristics
The group we are studying maintains a large tele-
communications system that is one of the key
products of the company. The management of the
group is fairly informal, with group members able
to select the problems on which they work.

Group members work in close proximity and
often walk over to each other’s desks with ques-
tions. The group also makes use of a laboratory in
which the target hardware is installed.

2. 1 The System
The system includes a real-time operating system
and interacts with a large number of different
hardware devices. The system contains several
million lines of code with over 16000 routines in
over 8000 files. It is also divided into numerous
layers and subsystems written in a proprietary
high-level language.

The system was first fielded in the early 1980s
and has since been continually updated. Its impor-
tance to the company and its evolution are ex-
pected to continue for many years to come.

2 These methods are detailed more precisely in [7,
8, 13]

Approximately 13 people actively work on
various aspects of the system at the current time.
Over 100 people have made changes to the source
code during the life of the system.

2. 2 Software Engineering Process
And Tools In The Group

The group follows a well-defined process for creat-
ing new system features. They also keep detailed
records of problem reports and the consequent
changes to the system. Other important docu-
ments include the ‘practices’ that are followed by
those who install and run the system in the field.

Careful attention is paid to quality control in
the form of design reviews, informal code inspec-
tions, and an independent test team.

Development work is done on the Sun plat-
form, although the SEs must also spend consider-
able time installing and running the software on
various configurations of the target hardware.

3. SE Activities
We collected five basic types of SE work practice
data. First, using a web questionnaire, we simply
asked the SEs what they do. Second, we followed
an individual SE for 14 weeks as he went about
his work. Third, we individually shadowed 9 dif-
ferent SEs for one hour as they worked. Fourth,
we performed a series of interviews with software

A c t i v i t y % of
people

Read documentation 66%
Look at source 50%
Write documentation 50%
Write code 50%
Attend meetings 50%
Research/identify alternatives 33%
Ask others questions 33%
Configure hardware 33%
Answer questions 33%
Fix bug 33%
Design 17%
Testing 17%
Review other’s work 17%
Learn 17%
Replicate problem 17%
Library maintenance 17%

Table 1: Questionnaire results of work practices
(6 responses).

CASCON 97

4

engineers. Finally, we obtained company-wide
tool usage statistics. The next several sections
will outline more precisely our methodologies and
results from these various studies.

3. 1 Questionnaire Study
We began this research by administering a web-
based questionnaire. The questionnaire covered
many different aspects of the SEs’ work. Here we
report their answers to a question on what they
spend their time doing. Six SEs in the group of
13 responded. The question was open-ended, i.e.,
the SEs had to decide how to describe their work,
rather than choosing certain activities from a list.

On average, SEs said that they spend 57% of
their time fixing bugs, and 35% of their time
making enhancements to the system. Table 1
shows more specifically the things they reported
that they engaged in, and the percentage of people
reporting that activity.

The most reported activity was reading docu-
mentation. SEs also reported that they spend time
looking at source, writing documentation, attend-
ing meetings, and writing code. Other activities
include consulting, both answering and asking
questions, working with the hardware, testing,
designing, and fixing bugs.

Because of the questionable validity of self-re-
ports, we felt it was extremely important to not
just rely on what SEs said they did, but to actu-
ally observe them as they worked. Hence the next
sections of the paper describe two studies that we
undertook towards this goal.

3. 2 Individual study
We have been following one SE longitudinally
from the time he joined the company (November,
1996). For the first six months, we spent about 1-
1/2 hours per week with B. However, as B has
become more expert, we have found that it makes
more sense to meet once every 3 weeks. This is
both because new things happen less frequently
(e.g., experience with a new tool) and because B is
more busy with ‘real’ tasks. B is an experienced
SE (was previously a team-leader), thus while he
is new to the company, he is certainly new to nei-
ther maintenance nor telecommunications soft-
ware.

Our sessions with B consist of 3 distinct com-
ponents. First we talk about what has transpired
since the last time we met. This could be any-
thing from code review to learning about a new
tool to reading documentation, etc. Second, we
ask B to look at a diagram of the system he previ-

A c t i v i t y Description

Call trace Looking at an execution trace of the program

Consult Either being consulted or consulting someone else

Compile Linking or compiling a program

Configuration
Mgt

Entering and using the in-house configuration management system (sometimes
for updating, and sometimes to search for past updates)

Debug Using either the high-level or low-level debugger

Documentation Looking at documentation

Edit Actually making a change to source code

Management General software activities, such as meetings, code reviews, etc.

In-house tools Using one of the in-house tools, primarily static software analysis tools

Notes Taking notes, or reading past notes

Search Using Grep, in-house search tools, or searching in an editor

Source Looking at source code using editors or code viewers

Hardware Interacting with the hardware, e.g., loading software, running software, configur-
ing the hardware, etc.

Unix Issuing a general Unix command such as ls, cd, etc.

Table 2: Categories of activities observed when shadowing software engineers

CASCON 97

5

ously constructed and ask him to modify it if it
does not reflect his current understanding. Finally,
we ‘shadow’ B as he works for 1/2 hour. In this
paper, we report the data from the shadowing.

3. 2. 1 Method

3. 2. 1. 1 Subject

B has worked in the software industry for many
years. Prior to joining the telecommunications
company, he worked as a team leader for a nearby
competitor. There, B maintained a product in the
same category as the current product, but devel-
oped on a much smaller scale.

B has experience in several languages, but
prior to joining the company, considered himself
to be an expert only in an in-house proprietary
language. Likewise, while he has experience in
several platforms, prior to joining the company, B
considered himself to be an expert only in an in-
house proprietary 68K development platform. B
has worked on 5 different systems, 3 of which
have involved development, 2 of which have in-
volved maintenance.

B joined the company in November, 1996. Be-
fore then B had no experience in the company’s
in-house Pascal-based proprietary language. Nor
did B have any experience in Pascal, although he
had programmed in other structured languages. B
had utilized VI before coming to the company, but
planned on switching to the Emacs editor at the
company. Similarly, he had used Grep previously,
but was switching to use of Egrep and Fgrep at
the company. B did not have previous experience
with the other tools available at the company

3. 2. 1. 2 Procedure and Data

The shadowing data result from 14 half-hour ses-
sions ranging from October 17, 1996 to February
27, 1997. Some days are missing because of vaca-
tion or schedule conflicts. For the most part,
however, these dates reflect weekly meetings with
B.

For half an hour, we would sit behind B and
write down the things he did. For instance, if he
used Grep, that would be recorded (using pencil
and paper). If he read documentation, or wrote
notes to himself, that was written down.

We recorded B’s activities in detail, but not to
the point of exactly what he typed or said. For

example, we would record that B edited a file or
interacted with the hardware, while not detailing
the exact nature of his involvement with these
activities.

A new activity was recorded each time a switch
in activity occurred. So, for instance, if B did 6
Greps in a row, that was recorded as a single in-
stance of the event Grep. Then if he did 4 Diffs, a
single Diff event would be recorded. Taking that
to its extreme, if all B did was Grep for 1/2 hour,
that is the single activity that would have been
recorded for that 1/2 hour. No time measures were
taken. Thus, we do not know the duration of B’s
involvement in each distinct event. We followed
the shadowing procedure regardless of the nature of
B’s work. Sometimes that meant that we observed
B reading documentation only. Other times B was
engaged in a wide variety of tasks.

As a general note, there is probably some self-
selection of activities involved in B’s choices of
things to do. For instance, it is highly unlikely
that B would have chosen to respond to personal
email when he was being shadowed by us. As a
rule, he was always directly involved in work ac-
tivities. We do not consider this to be too much
of a problem, however, because our goal is, after
all, to build tools that help SEs work.

3. 2. 2 Results

The shadowing events were categorized into 14
distinct categories which are described in Table 2.
Each of B’s events was then classified as belong-
ing to one of these event categories.

First, Figure 1 shows the percentage of days
(for a 14 day span) on which an event occurred at
least once. For example, if B searched for informa-
tion one day, the search count would be incre-
mented by 1, regardless of whether B searched 1
time, 4 times, or 24 times on that particular day.

Searching and interacting with the hardware
were the most likely events to occur on a daily
basis, each occurring on 8 of the 14 days. B
looked at the source code on 6 of the 8 days. The
reason that B searched on more days than he
looked at the source code is because searching was
an activity that also occurred when interacting
with the hardware and debugging. B only looked at
documentation on 2 of the 14 days. This is sur-
prising because, at the time, B was still a relative
novice to the software system and it is commonly

CASCON 97

6

assumed that novices will spend much of their
time reading the documentation to get a handle on
what they are doing. The data show that this was
not the strategy B pursued. However, because B
was a novice, it was not surprising to find that ,
editing code, compiling, and management were
each only done on 1 of the 14 days.

The data were then examined in two distinct
ways.

Figure 2 shows the proportion of each event
type out of the total of 156 distinct events. Unlike
Figure 1, Figure 2 shows the total count, so that
if B searched 8 times on one day, that is counted
as 8 instances of search.

Again, we see that overall B searched more of-
ten than he did anything else (37 times). He also
frequently looked at the source code (33 times).
While B was likely on any particular day to work
with the hardware (see Figure 1), he did so on
only 22 distinct occasions.

Remember, however, that these data do not in-
clude time measurements, but simply activity
switches. So, for instance, while B did manage-

ment activities on only 1 day, the code review that
was undertaken took the entire 1/2 hour.

Thus overall, in terms of both daily activities
and frequency of different activities, search for in-
formation about the system, whether through
Grep, in-house search tools, or within a particular
editor or debugger, figures most prominently. A
significant amount of effort was also expended
interacting with the hardware and looking at the
source code.

3. 3 Group study
To generalize our findings, we have conducted
several studies that focus on different aspects of
the work of an entire group of SEs.

We have collected four types of data from the
group. First, we asked the SEs to draw a diagram
or picture of their current understanding of the sys-
tem, a conceptual map, if you will. Second, we
conducted intensive interviews with the SEs as
they solved a real problem with the software. This
generally involved 1 hour interviews over the
course of several days. Third, we asked the SEs to

0%

10%

20%

30%

40%

50%

60%

S
ea

rc
h

H
ar

dw
ar

e

So
ur

ce
U

N
IX

N
ot

es
C

on
fi

gu
ra

ti
on

 M
gt

C
al

l_
tr

ac
e

D
eb

ug

In
-h

ou
se

 t
oo

ls
D

oc
um

en
ta

ti
on

C
on

su
lt

E
di

t
C

om
pi

le
M

an
ag

em
en

t

Figure 1. Percentage of days on which B en-
gaged at least once in a particular activity.

0%

10%

20%

30%

40%

50%

60%

S
ea

rc
h

So
ur

ce
H

ar
dw

ar
e

C
al

l_
tr

ac
e

D
eb

ug
U

N
IX

N
ot

es
C

on
fi

gu
ra

ti
on

 M
gt

D
oc

um
en

ta
ti

on
In

-h
ou

se
 t

oo
ls

E
di

t
C

on
su

lt
C

om
pi

le
M

an
ag

em
en

t

Figure 2. Percentage of times each type of
event occurred out of a total of 156 distinct
events.

CASCON 97

7

recount how they solved a recently encountered
problem. Finally, we spent one hour shadowing
each SE as they went about their work. This re-
port focuses on this fourth type of data; the shad-
owing data.

3. 3. 1 Method

3. 3. 1. 1 Subjects

Eight group members participated in the shadow-
ing study. Their experience ranged from the most
expert member of the group (8 years) to the least
experienced (6 months - recent college graduate).
All but one of the shadowed subjects worked on
the main controller of the hardware. One of the
subjects worked primarily on the database compo-
nent.

The subjects were expert in a wide variety of
platforms and languages, and had experience in
both development and maintenance environments.

3. 3. 1. 2 Procedure and Data

The shadowing occurred in the same manner as for
B: we sat behind the SEs and recorded the activi-
ties they engaged in. Again, a new activity was

recorded when there was a switch in activity, so 9
Greps in a row counted as one instance of the ac-
tivity search. Durations of activities were not re-
corded.

We recorded activities in gross, not fine, detail;
e.g., we did not record the arguments to particular
commands.

Shadowing schedules were not chosen to re-
flect any particular activity, but rather were sched-
uled at times convenient for the SEs. Shadowed
times were relatively free from stress, i.e., SEs
were not shadowed as deadlines approached.

Again, there is probably some self-selection
involved in the activities that the SEs pursued.
However, it was very clear that they were all
working on ‘real’ problems as evidenced by their
concern with the problem report’s contents.

3. 3. 2 Results

Like B’s data, the shadowed events were catego-
rized into 14 distinct categories which are de-
scribed in Table 2. Each of the events was then
classified as belonging to one of these event cate-
gories. 356 distinct events were recorded.

Figure 3 shows the proportion of users who
engaged in a particular type of activity at least
once during the shadowed hour. All 8 SEs looked
at the source, conducted a search, and changed the
source code at least once during the hour. Most of
the SEs also engaged at least once in several other
activities, with 5 of the 8 SEs interacting with the
hardware, debugger, or the in-house tools. On the
other hand, only 3 SEs looked at a call trace,
while only one SE performed a management activ-
ity.

Figure 4 shows the percentage of times a par-
ticular type of event occurred out of the total of
357 events (totaled over the 8 SEs). Issuing a
UNIX command was the most frequent activity,
occurring 54 times. A close second was looking at
the source which was done 52 times. Interacting
with the hardware or the debugger, searching, or
changing the source code was done on 36, 32, 31,
and 30 occasions respectively. Configuration
management, consulting, compiling, and looking
at in-house tools were each done about 20 times.

Surprisingly enough, reading the documenta-
tion, although done by 6 of the 8 SEs accounted
for only 12 separate events. Clearly, the act of
looking at the documentation is more salient in

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

So
ur

ce
S

ea
rc

h
E

di
t

U
N

IX
C

on
fi

gu
ra

ti
on

 M
gt

C
om

pi
le

C
on

su
lt

D
oc

um
en

ta
ti

on

N
ot

es
H

ar
dw

ar
e

D
eb

ug
In

-h
ou

se
 t

oo
ls

C
al

l_
tr

ac
e

M
an

ag
em

en
t

Figure 3. Percentage of users who engaged
in a particular type of activity.

CASCON 97

8

the SEs’ minds (as evidenced by the questionnaire
data) than its actual occurrence would warrant.

SEs only occasionally wrote notes, looked at
the call trace or did management activities. This is
not to say that these events are not important, but
merely that they did not occur as frequently as
other events.

As B did, the group frequently examined the
source code. Every SE in the group made at least
one search during their shadowing session, but
search was less prominent than in B’s activities.
Search ranked as the most frequent event type for
B, while it was the 4th most frequent for the
group.

Code editing and compiling were more promi-
nent activities in the group data. This is probably
because B was still learning the system at the
time we shadowed him, so he was not yet in a
position to make many changes. This may also

explain the higher prominence of call trace in his
data: call trace may be effective in gaining an ini-
tial understanding of a system.

Interestingly, in-house tools and documenta-
tion were both relatively infrequent activities for
both the group and B.

The group data converge with B’s data to
suggest that looking and searching through the
source code are prominent activities for SEs. Ed-
iting and compiling also seem important. This
concurs with what we would expect in that the
code is the focus of their work.

3. 4 Company Study
The final study we report concerns company-wide
tool usage statistics. These data were obtained
from the company’s tool group. This group is
responsible for acquiring, updating, and maintain-
ing the company’s tools. Collecting usage statis-
tics is part of their mission.

3. 4. 1 Results

The data presented here represent one week of Sun
tool usage by 367 users in late May. Note that
this week occurred before ‘vacation season,’ so is
fairly representative of peak tool usage. There
were 79,295 separate tool calls logged from the
Sun operating system. Each call counts as one
usage event. These tool calls were classified ac-
cording to the scheme presented in Table 3.

Figure 5 shows the proportion of times that
each type of tool was used. Compilers, which ac-
counted for 32,422 calls, or 41% of all calls are
not included in this graph. This is because the
compiler data include all the automatic software
builds done nightly and by the various testing and
verification groups. These data are therefore not
representative of the SEs real work practices.
The overwhelming finding from the company data
is that search is done far more often than any other
activity. In fact, search accounts for 21,146 events
over the course of the week, or an average of
about 58 searches per individual user. Compres-
sion and un-compression tools are also used often.
We never actually observed anyone using these
tools. Perhaps they are used by the verification
groups.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
N

IX
S

ou
rc

e

H
ar

dw
ar

e
D

eb
ug

S
ea

rc
h

E
di

t
C

o
n

fi
g

u
ra

ti
o

n
 M

g
t

C
o

n
su

lt
C

o
m

p
il

e

In
-h

o
u

se
 t

o
o

ls
D

o
cu

m
en

ta
ti

o
n

N
o

te
s

C
al

l_
tr

ac
e

M
an

ag
em

en
t

Figure 4. Proportion of times a particular type
of event occurred out of the total of 357
events.

CASCON 97

9

The configuration management system was ac-
tivated 2819 times, accounting for approximately
4% of all events. At this company, the configura-
tion management system is central to the work
process, both for retrieving files, filing changes,
and searching through past changes (along with

associated documentation).
Editors and viewers account for approximately

3190 events, or 4% of the total number of events.
This low frequency could be due to counting par-
ticularities that apply only to editors. In the com-
pany tool data, an editor command is counted only
when the editor is opened. Once an editor is open,
it generally stays open, regardless of how many
changes are made, or how many files are viewed.
In contrast, in the shadowing data, an edit was re-
corded each individual time the source was
changed, and a source event was counted each time
the source was examined, whether the editor was
already open or not. Consequently, it comes as no
surprise that the shadowing data edit and source
frequency is higher than that of the company data.

Again, the in-house tools are not used very
frequently, but that belies their importance. These
tools are important because they perform neces-
sary functions that cannot be performed by other
tools.

Search is the most frequently used tool at the
company wide level. Grep and its variants are the
most frequently used search tools, accounting for
21,117 separate invocations. Clearly, search is an
important aspect of SEs work practices.

3. 5 Discussion
This examination of work practices suggests that
search is an important component of real, day-to-
day, software engineering. It is therefore quite rea-
sonable to think that an improvement in search
tools would help SEs to do their job better. In

T o o l Description
Compilers Compilers, assemblers, linkers
Compression Compression tools such as zip and unzip
Configuration Mgt Make and an in-house configuration management tool
Debuggers General and in-house debuggers
Editors Emacs, VI, and various others
Formatters Tools such as latex and groff
Graphics Tools Tools to create and display graphics
Hardware Connectors In-house tools to connect to hardware
Internet Tools Web browsers, news readers, and email programs
In-house Tools Primarily software static analysis tools
Operating System Windowing, terminal, and various other OS tools
Search Primarily variations of Grep, but some in-house tools
Viewers Document viewers such as More and Less
Other A collection of various other tools

Table 3. Classification of the types of Sun tools.

0%

10%

20%

30%

40%

50%

S
ea

rc
h

C
om

pr
es

si
on

C
on

fi
gu

ra
ti

on
 M

gt

E
di

to
rs

V
ie

w
er

s

O
pe

ra
ti

ng
 S

ys
te

m

In
-h

ou
se

 t
oo

ls
H

ar
dw

ar
e

C
on

ne
ct

or
s

In
te

rn
et

 t
oo

ls

G
ra

ph
ic

s
T

oo
ls

D
eb

ug
ge

rs

F
or

m
at

te
rs

O
th

er

Figure 5. Proportion of all tool calls accounted
for by each tool type.

CASCON 97

10

fact, the KBRE group has decided to focus its ef-
forts in this direction. Currently, we are imple-
menting a source code exploration tool [6] and
investigating ways to introduce it into the work-
place.

In order to improve these new tools, we are
continuing our study of SE work practices in sev-
eral ways. First, we are examining the source code
search activity: identifying the kinds of things
SEs search for, how many searches they need to
find a particular piece of information, etc. Second,
we are continuing our longitudinal study of B’s
work and our involvement with the group. Fi-
nally, we are talking to SEs at other companies to
determine whether our findings generalize to their
work practices.

Our shadowing studies indicate that SEs also
expend a significant amount of effort in just look-
ing at the source. This suggests that intelligent
viewers might prove valuable. Indeed, the process
of reading and navigating huge pieces of source
code can be considered to be a type of navigation
and information retrieval problem [16]. In the fu-
ture, we plan on exploiting this perspective on
code viewing, especially in terms of the relation-
ship between viewers and search.

4. Application or Work-
Practices Studies to the
Development of Tool
Requirements

We have used the data gathered during the work-
practices studies described in section 3, in order to
develop requirements for software engineering
tools. This section describes those requirements.

4. 1 The Software Engineering
Task We Address: Just in
Time Comprehension of
Programs

Almost all the SEs we have studied spend a con-
siderable proportion of their total working time in
the task of trying to understand source code prior
to making changes. We call the approach they use
Just in Time Comprehension (JITC) [14]; the rea-
son for this label will be explained below. We
choose to focus our research on this task since it
seems to be particularly important, yet lacking in
sufficient tool support.

The ‘changes’ mentioned in the last paragraph
may be either fixes to defects or the addition of
features: The type of change appears to be of little
importance from the perspective of the approach
the SEs use. In either case the SE has to explore
the system with the goal of determining where
modifications are to be made.

A second factor that seems to make relatively
little difference to the way the task is performed is
class of user: Two major classes of users perform
this task: Novices and experts. Novices are not
familiar with the system and must learn it at both
the conceptual and detailed level; experts know the
system well, and may have even written it, but are
still not able to maintain a complete-enough men-
tal model of the details. The main differences be-
tween novice and expert SEs are that novices are
less focused: They will not have a clear idea about
which items in the source code to start searching,
and will spend more time studying things that are,
in fact, not relevant to the problem. It appears that
novices are less focused merely because they do
not have enough knowledge about what to look
at; they rarely set out to deliberately learn about
aspects of the system that do not bear on the cur-
rent problem. The vision of a novice trying to
‘learn all about the system’, therefore seems to be
a mirage.

As described in section 3, we observe that SEs
repeatedly search for items of interest in the source
code, and navigate the relationships among items
they have found. SEs rarely seek to understand any
part of the system in its entirety; they are content
to understand just enough to make the change re-
quired, and to confirm to themselves that their
proposed change is correct (impact analysis). After
working on a particular area of the system, they
will rapidly forget details when they move to
some other part of the system; they will thus re-
explore each part of the system when they next
encounter it. This is why we call the general ap-
proach, just-in-time comprehension (JITC). Al-
most all the SEs we have studied confirm that
JITC accurately describes their work paradigm –
the only exceptions were those who did not, in
fact, work with source code (e.g. requirements ana-
lysts).

CASCON 97

11

4. 2 List of Key Requirements for
a Software Exploration Tool

As a result of our work-practices studies (section
3), we have developed a set of requirements for a
tool that will support the just-in-time compre-
hension approach presented in the last section.
Requirements of relevance to this paper are listed
and explained in the paragraphs below. Actual re-
quirements are in italics; explanations follow in
plain text.

The reader should note that there are many
other requirements for the system whose discus-
sion is beyond the scope of this paper. The fol-
lowing are examples:
• Requirements regarding interaction with con-

figuration management environments and other
external systems.

• Requirements regarding links to sources of in-
formation other than source code, such as
documentation.

• Detailed requirements about usability.

Functional requirements. The system shall:

F1 Provide search capabilities such that the user
can search for, by exact name or by way of
regular expression pattern-matching, any
named item or group of named items that are
semantically significant3 in the source code.

The SEs we have studied do this with high
frequency. In the case of a file whose name
they know, they can of course use the oper-
ating system to retrieve it. However, for defi-
nitions (of routines, variables etc.) embedded
in files, they use some form of search tool
(see section 4.3).

3 We use the term semantically significant so as
to exclude the necessity for the tool to be required
to retrieve ‘hits’ on arbitrary sequences of charac-
ters in the source code text. For example, the
character sequence ‘e u’ occurs near the beginning
of this footnote, but we wouldn’t expect an in-
formation retrieval system to index such se-
quences; it would only have to retrieve hits on
words. In software the semantically significant
names are filenames, routine names, variable
names etc. Semantically significant associations
include such things as routine calls and file inclu-
sion.

F2 Provide capabilities to display all relevant
attributes of the items retrieved in requirement
F1, and all relationships among the items.

We have observed SEs spending considerable
time looking for information about such
things as the routine call hierarchy, file inclu-
sion hierarchy, and use and definitions of
variables etc. Sometimes they do this by
visually scanning source code, other times
they use tools discussed in section 4.3. Often
they are not able to do it at all, are not will-
ing to invest the time to do it, or obtain only
partially accurate results.

F3 Provide capabilities to keep track of separate
searches and problem-solving sessions, and
allow the navigation of a persistent history.

This requirement has come about because we
observe users working on multiple problems
and subproblems over a span of many days.
We also observe them losing information
they had previously found and redoing
searches.

Non-functional requirements. The system
will:

NF1 Be able to automatically process a body of
source code of very large size, i.e. consisting
of at least several million lines of code.

As we are concerned with systems that are to
be used by real industrial SEs, an engineer
should be able to pick any software system
and use the tool to explore it.

NF2 Respond to most queries without perceptible
delay.

This is one of the hardest requirements to ful-
fill, but also one of the most important. In
our observations, SEs waste substantial time
waiting for tools to retrieve the results of
source code queries. Such delays also interrupt
their thought patterns.

NF3 Process source code in a variety of pro-
gramming languages.

The SEs that we have studied use at least two
languages – a tool is of much less use if it
can only work with a single language. We
also want to validate our tools in a wide va-

CASCON 97

12

riety of software engineering environments,
and hence must be prepared for whatever lan-
guages are being used.

NF4 Wherever possible, be able to interoperate
with other software engineering tools.

We want to be able to connect our tools to
those of other researchers, and to other tools
that SEs are already using.

NF5 Permit the independent development of user
interfaces (clients).

We want to perform separate and independent
research into user interfaces for such tools.
This paper addresses only the overall archi-
tecture and server aspects, not the user inter-
faces.

NF6 Be well integrated and incorporate al l fre-
quently-used facilities and advantages of tools
that SEs already commonly use.

It is important for acceptance of a tool that it
neither represent a step backwards, nor require
work-arounds such as switching to alternative
tools for frequent tasks. In a survey of 26 SEs
[7], the most frequent complaint about tools
(23%) was that they are not integrated and/or
are incompatible with each other; the second
most common complaint was missing fea-
tures (15%). In section 4.3 we discuss some
tools the SEs already use for the program
comprehension task.

NF7 Present the user with complete information,
in a manner that facilitates the JITC task.

Some information in software might be de-
scribed as ‘latent’. In other words, the soft-
ware engineer might not see it unless it is
pointed out. Examples of such information
are the effects of conditional compilation and
macros.

Acceptable limitations:

L1 The server component of the tool may be
limited to run on only one particular plat-
form.

This simplifies implementation decisions
without unduly restricting SEs.

L2 The system is not required, at the present
time, to handle object oriented source code.

We are restricting our focus to SEs working
on large bodies of legacy code that happens to
be written in non-object-oriented languages.
Clearly, this decision must be subsequently
lifted for the tool to become universally use-
ful.

L3 The system is not required, at present, to deal
with dynamic information, i.e. information
about what occurs at run time.

This is the purview of debuggers, and dy-
namic analysis tools. Although it would be
useful to integrate these, it is not currently a
requirement. We have observed software engi-
neers spending considerable time on dynamic
analysis (tracing, stepping etc.), but they
consume more time performing static code
exploration.

4. 3 Why Other Tools are Not Able
to Meet these Requirements

There are several types of tools used by SEs to
perform the code exploration task described in sec-
tion 4.1 This section explains why, in general,
they do not fulfill our requirements:

Grep: Our studies described in section 3.4 indi-
cated that over 25% of all command executions
were of one of the members of the Grep family
(Grep, Egrep, Fgrep, Agrep and Zgrep). Interviews
show that it is the most widely used software en-
gineering tool. Our observations as well as inter-
views show that Grep is used for just-in time
comprehension. If SEs have no other tools, it is
the key enabler of JITC; in other situations it
provides a fall-back position when other tools are
missing functionality.

However, Grep has several weaknesses with
regard to the requirements we identified in the last
section:

• It works with arbitrary strings in text, not se-
mantic items (requirement F1) such as routines,
variables etc.

• SEs must spend considerable time performing
repeated Greps to trace relationships
(requirement F2); and Grep does not help them
organize the presentation of these relationships.

CASCON 97

13

• Over a large body of source code Grep can take a
large amount of time (requirements NF1 and
NF2).

Search and browsing facilities within
editors: All editors have some capability to
search within a file. However, as with Grep they
rarely work with semantic information. Advanced
editors such as Emacs (used by 68% of a total of
127 users of text-editing tools in our study) have
some basic abilities to search for semantic items
such as the starts of procedures, but these facilities
are by no means complete.

Browsing facilities in integrated devel-
opment environments: Many compilers now
come with limited tools for browsing, but as with
editors these do not normally allow browsing of
the full spectrum of semantic items. Smalltalk
browsers have for years been an exception to this,
however such browsers typically do no not meet
requirements such as speed (NF2), interoperability
(NF4), and multiple languages (NF3). IBM’s
VisualAge tools are to some extent dealing with
the latter problem.

Special-purpose static analysis tools: We
observed SEs using a variety of tools that allow
them to extract such information as definitions of
variables and the routine call hierarchy. The big-
gest problems with these tools were that they
were not integrated (requirement NF6) and were
slow (NF2)

Commercial browsing tools: There are sev-
eral commercial tools whose specific purpose is to
meet requirements similar to ours. A particularly
good example is Sniff+ from Take5 Corporation
[17]. Sniff+ fulfills the functional requirements,
and key non-functional requirements such as size
[NF1], speed [NF2], and multiple languages
[NF3]; however its commercial nature means that
it is hard to extend and integrate with other tools.

Program understanding tools: University
researchers have produced several tools specially
designed for program understanding. Examples are
Rigi [11] and the Software Bookshelf [5]. Rigi
meets many of the requirements, but is not as fast
[NF2] nor as easy to integrate other tools [NF6]
as we would like. As we will see later it differs
from what we would like in some of the details of
items and relationships. The Software Bookshelf
differs from our requirements in a key way: Before

somebody can use a ‘bookshelf’ that describes a
body of code, some SE must organize it in ad-
vance. It thus does conform fully with the
‘automatically’ aspect of requirement NF1.

4. 4 The Tools We are Developing
As a consequence of our work practices studies,
and thus the requirements described in the last sec-
tion, we have developed an improved software ex-
ploration tool which we call tksee. A view of this
tool is shown in figure 6.

The main features that fulfill F1 and F2
(search capabilities) are in the bottom two panes.
The bottom left pane shows a hierarchy that the
user incrementally expands by asking to show at-
tributes of items, or to search for information
(relations or Grep results) about a given item. The
currently selected item is shown in the bottom-
right pane, from which the user can hyper-jump
by selecting any item of text.

The main feature that fulfills F3 is the top
pane. Each element in this pane is a complete
state of the bottom two panes. A hierarchy of
these states is saved persistently, so each time the
user starts the tool, his or her work is in the same
state as at the end of the previous session.

The non-functional requirements are met by
the tksee architecture shown in figure 7. This ar-
chitecture includes a very fast database, an inter-
change language for language-independent infor-
mation about software, and a client-server mecha-
nism that allows incorporation of existing tools
(e.g. Grep) so software engineers can continue to
use tools they already find useful.

Further details about this tool are in [6, 15].
We are continuing our involvement with us-

ers: we are studying how their work practices
evolve when they choose to adopt this tool.

5. Conclusions
In conclusion, the study of work practices pro-
vides a path to tool design that is an alternative to
the traditional paths taken in human-computer in-
teraction, namely those issuing from the study of
the users’ cognitive processes and mental models,
and the emphasis on usability. The problem of
disuse has plagued software tools designed with
these traditional human computer interaction ap-
proaches. By focusing on workplace activities, the
study of work practices increases the likelihood

CASCON 97

14

that tools can be smoothly integrated into the us-
ers’ daily activities. This, in turn, should increase
the acceptance and use of software tools designed
on the basis of work practices. Whether one
wishes to examine user cognitions or not, it is
necessary that tools be consistent with work prac-
tices for them to be used. Once this consistency is
established, the usability approach can be taken to
ensure that the SEs can effectively use these tools
to accomplish their work.

It is possible that the study of work practices
can reduce, or perhaps even eliminate, the need to
study cognitive processes and mental models. This
will depend on the accuracy and detail with which
work practices can be described. If they can be de-
scribed in detail, in terms of every system state
explicitly and intentionally accessed by the user, it
may not be necessary at all to fathom the users’
cognitions. We may only need to abide by general

principles of usability and usability testing in
addition to the work practice specifications in or-
der to design useful, and used tools. Moreover, it
may be more efficient, in terms of time, to take
the work practice approach to tool design than the
cognitive approach. However, further empirical
work is required in order to strengthen out confi-
dence in these statements. Further details about
our research can be found in [15].

Acknowledgments
We would like to thank the SEs who participated
in our studies, in particular those with whom we
have worked for many months. We would also
like to thank the tools group at the company for
providing us with the tool usage statistics. Fi-
nally, we would like to thank the KBRE group for
many helpful suggestions.

About the Authors
Janice Singer is a cognitive psychologist who is
now researching software engineering work prac-
tices with the Software Engineering Laboratory at
the National Research Council of Canada. Prior to
her Ph.D. studies, she conducted research in hu-
man-computer interaction and worked as a soft-
ware engineer.

Timothy C. Lethbridge is an Assistant Profes-
sor in SITE at the University of Ottawa. He
teaches software engineering and human-computer

interaction and heads
the Knowledge-Based
Reverse Engineering
group, sponsored by
CSER. Dr. Lethbridge
has worked as a soft-
ware developer in both
public and private sec-
tors.

Norman Vinson is
a cognitive psycholo-
gist working in the
Interactions with
Modeled Environ-
ments group, at the
Institute for Informa-
tion Technology, Na-
tional Research Coun-
cil of Canada. Prior to
joining the NRC, Dr.Figure 6: The main window of the tksee tool.

TA++
Files

Parsers

Database

Source Code
File

DBMS

Clients
(User Interfaces

and other
analysis tools)

3rd party tools
that read

TA++

3rd party tools
that produce

TA++

Auxilliary
Analysis Tools

Query
Engine

Interchange
format (TA++)

Query
response

Interchange
format

 (TA++)

Interchange
format (TA++)

Write-API
data

TA++
Parser Read-API

data

Read-API
data

TA++
Generator

Figure 7: Data flow diagram showing architecture
of the tksee software

CASCON 97

15

Vinson was a user-interface designer at Northern
Telecom.

Nicolas Anquetil recently completed his Ph.D.
at the l’Université de Montréal and is now work-
ing as a research associate and part time professor
in SITE at the University of Ottawa.

The authors can be reached at {singer, vin-
son}@iit.nrc.ca and {tcl, anquetil} @site.uottawa.
ca The web site of the KBRE project is
www.csi.uottawa.ca/~tcl/kbre, and that of the In-
stitute for Information Technology is
www.iit.nrc.ca.

References
 [1] Anderson, J., Cognitive Psychology and Its

Implications, WH Freeman, 1995..

[2] Blomberg, J., Suchman, L., & Trigg, R.,
Reflections on a Work-oriented Design Proj-
ect. Human Computer Interaction (11), pp.
237-265, 1996.

[3] Beyer, H., & Holtzblatt, K., Apprenticing
with the customer. CACM (38), pp. 45-52,
1995.

[4] Brooks, R., Towards a Theory of the Com-
prehension of Computer Programs, Int. J. of
Man-Machine Studies (18), pp. 543-554,
1983.

[5] Holt, R., Software Bookshelf: Overview
And Construction, www.turing.toronto.edu/
~holt/papers/bsbuild.html

[6] Lethbridge, T., & Anquetil, N., Architecture
of a source code exploration tool: A software
engineering case study. SITE, Technical Re-
port.

[7] Lethbridge, T. and Singer J., Understanding
Software Maintenance Tools: Some Empiri-
cal Research, Workshop on Empirical Stud-
ies of Software Maintenance (WESS 97),
Bari Italy, October, 1997.

[8] Lethbridge, T. and Singer, J, Strategies for
Studying Maintenance", Workshop on Em-
pirical Studies of Software Maintenance,
Monterey, November 1996.

[9] Littman, D., Pinto, J., Letovsky, S., &
Soloway, E., Mental Models and Software
Maintenance, Empirical Studies of Pro-
grammers, pp. 80-98, 1986.

[10] Mayhew, D., Principles and Guidelines in
Software User Interface Design, Prentice
Hall, 1991.

[11] Müller, H., Mehmet, O., Tilley, S., and
Uhl, J., A Reverse Engineering Approach to
Subsystem Identification, Software Main-
tenance and Practice, Vol 5, 181-204, 1993.

[12] Pennington, N., Stimulus Structures and
Mental Representations in expert compre-
hension of computer programs. Cognitive
Psychology (19), pp. 295-341, 1987.

[13] Singer, J. and Lethbridge, T, Methods for
Studying Maintenance Activities, Workshop
on Empirical Studies of Software Mainte-
nance, Monterey, November 1996.

[14] Singer, J., and Lethbridge, T. (in prepara-
tion). Just-in-Time Comprehension: A New
Model of Program Understanding.

[15] Singer, J, Lethbridge, T., and Vinson, N.
Work Practices as an Alternative Method for
Tool Design in Software Engineering, CHI
‘98.

[16] Storey, M., Fracchia, F., & Müller, H.,
Cognitive Elements to support the construc-
tion of a mental model during software visu-
alization. Proc 5th Workshop on Program
Comprehension, Dearborn, MI, pp. 17-28,
May, 1997.

[17] Take5 Corporation home page,
http://www.takefive.com/index.htm

[18] Vicente, K and Pejtersen, A. Cognitive
Work Analysis, in press

[19] von Mayrhauser, A., & Vans, A., From
Program Comprehension to Tool Require-
ments for an Industrial Environment, In:
Proc. 2nd Workshop on Program Compre-
hension, Capri, Italy, pp. 78-86, July 1993.

[20] von Mayrhauser, A., & Vans, A., From
Code Understanding Needs to Reverse Engi-
neering Tool Capabilities, Proc. 6th Int.
Wkshp on Computer-Aided Software Engi-
neering, Singapore, pp. 230-239, July 1993.

[21] von Mayrhauser, A and & Vans, A., Pro-
gram Comprehension During Software
Maintenance and Evolution, Computer, pp.
44-55, Aug. 1995.

