
A Manifestation of Model-Code Duality:

Facilitating the Representation of State Machines in the

Umple Model-Oriented Programming Language

 by

Omar Badreddin

PhD Thesis

Presented to the Faculty of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree

Doctor of Philosophy (Computer Science
1
)

Ottawa-Carleton Institute for Computer Science

School of Information Technology and Engineering

University of Ottawa

Ottawa, Ontario, K1N 6N5

Canada

© Omar Badreddin, 2012

1 The Ph.D. program in Computer Science is a joint program with Carleton University, administered by the Ottawa

Carleton Institute for Computer Science.

2

Acknowledgements

I wish to thank foremost my supervisor Dr. Timothy C. Lethbridge. Tim has been my supervisor

throughout the PhD years and has provided guidance and deep insights that helped shape my

understanding of the software engineering field.

A very special, and well-deserved, thank you to the following:

a) The Complexity Reduction in Software Engineering (CRUISE) research group. I have

benefited from our weekly meetings and discussions. Particular thanks to Andrew Forward,

Garzon Miguel, and Hamoud Ajman. My family and friends. Thank you to my mom, Sameha,

for her unconditional support, my father, Bahy, for his reviews and input.

b) The Natural Sciences and Engineering Research Council of Canada (NSERC), IBM, and

University of Ottawa for their collaboration and funding. These institutions have made available

an environment through which I was able to conduct research while staying in touch with the

industry.

c) Software professionals around the world. Sincere thanks to the individuals that

participated in my research, published valuable references for my writings, as well as to those in

the various news-groups about software engineering that I follow. Your knowledge and insight

helped provide the necessary substance for my work.

3

Abstract

This thesis presents research to build and evaluate embedding of a textual form of state machines

into high-level programming languages. The work entailed adding state machine syntax and code

generation to the Umple model-oriented programming technology. The added concepts include

states, transitions, actions, and composite states as found in the Unified Modeling Language

(UML). This approach allows software developers to take advantage of the modeling

abstractions in their textual environments, without sacrificing the value added of visual

modeling.

Our efforts in developing state machines in Umple followed a test-driven approach to ensure

high quality and usability of the technology. We have also developed a syntax-directed editor

for Umple, similar to those available to other high-level programming languages. We conducted

a grounded theory study of Umple users and used the findings iteratively to guide our

experimental development. Finally, we conducted a controlled experiment to evaluate the

effectiveness of our approach.

By enhancing the code to be almost as expressive as the model, we further support model-code

duality; the notion that both model and code are two faces for the same coin. Systems can be and

should be equally-well specified textually and diagrammatically. Such duality will benefit both

modelers and coders alike. Our work suggests that code enhanced with state machine modeling

abstractions is semantically equivalent to visual state machine models.

The flow of the thesis is as follows; the research hypothesis and questions are presented in

“Chapter 1: Introduction”. The background is explored in “Chapter 2: Background”. “Chapter 3:

Syntax and semantics of simple state machines” and “Chapter 4: Syntax and semantics of

composite state machines” investigate simple and composite state machines in Umple,

respectively. “Chapter 5: Implementation of composite state machines” presents the approach we

adopt for the implementation of composite state machines that avoids explosion of the amount of

generated code. From this point on, the thesis presents empirical work. A grounded theory study

is presented in “Chapter 6: A Grounded theory study of Umple”, followed by a controlled

experiment in “Chapter 7: Experimentation”. These two chapters constitute our validation and

evaluation of Umple research. Related and future work is presented in “Chapter 8: Related

work”.

4

How to read this thesis

For readers who are not familiar with UML modeling, specifically, state machine models, we

recommend a start-to-end reading of this document. However, readers familiar with UML

modeling can choose to skip Chapter 1 and Chapter 2. Readers interested in empirical studies can

focus on Chapter 6 and Chapter 7. Readers familiar with Umple and interested in the

development and architecture work can read Chapter 3, Chapter 4, and Chapter 5.

5

Table of Contents

Acknowledgements ... 2

Abstract .. 3

Chapter 1: Introduction ... 18

1.1 Research Questions .. 19

1.1.1 RQ1: .. 19

1.1.2 RQ2: .. 20

1.2 Hypothesis and Approach .. 21

1.3 Research Activities .. 21

1.4 Thesis contributions ... 22

1.4.1 Publications based on this thesis .. 23

1.5 Outline... 24

Chapter 2: Background .. 26

2.1 History of State Machines .. 26

2.1.1 The Evolution of State Machines ... 27

2.2 Umple state machine example .. 28

2.3 Code Generation from State Machines ... 31

2.3.1 Design Approaches .. 33

2.3.2 In-class pattern ... 34

2.3.3 Multiple-class pattern ... 35

2.3.4 Extended multiple-class pattern.. 36

2.3.5 Alternatives within design patterns... 37

6

2.4 Summary ... 47

Chapter 3: Syntax and semantics of simple state machines .. 49

3.1 State Machines in Umple: The Basics .. 49

3.2 Grammar defining the syntax of Umple state machines .. 53

3.2.1 Overview of the notation .. 54

3.3 Umple state machine meta-model .. 57

3.4 State Machine Design Decisions .. 60

3.4.1 Umple state machine goals ... 60

3.4.2 Design decisions .. 62

3.5 State machine reuse and mixins ... 65

3.6 State machine timers .. 67

3.7 Umple textual editor and automated update site ... 69

3.7.1 Umple textual editor .. 70

3.7.2 Automated update site .. 71

3.8 Summary ... 72

Chapter 4: Syntax and semantics of composite state machines 73

4.1 Syntax of Composite state machines .. 73

4.2 Semantics of composite states machines .. 74

4.3 Final States .. 77

4.3.1 Case 1: Final states in regions .. 78

4.3.2 Case 2: Transition from a composite state to a simple Final state 79

4.3.3 Case 3: Final state in nested configuration.. 79

7

4.4 Do Activities ... 80

4.4.1 Case 1: Do activity in nested configuration .. 80

4.4.2 Case 2: Do activities in concurrent configuration ... 80

4.4.3 Case 3: Do activities in Multiple state machines within the same class 81

4.5 Outstanding issues ... 82

4.5.1 A higher level transition to composite states with regions without start state 82

4.5.2 Conflicting transitions .. 83

4.5.3 Forks and Joins with actions and guards ... 83

4.5.4 Partial Forks and Joins ... 84

4.5.5 Event processing in concurrent states ... 84

4.6 Large State Machine Example ... 85

4.7 Test Driven Development .. 88

4.7.1 Umple Testing Process... 88

4.7.2 Parsing Umple code into tokens ... 88

4.7.3 Meta-model tests .. 89

4.7.4 Code generation tests ... 90

4.7.5 Generated-systems tests ... 92

4.8 Summary ... 93

Chapter 5: Implementation of composite state machines.. 94

5.1 Convention .. 94

5.2 Composite state cases .. 95

8

5.2.1 Case 1: Transition to an inner state ... 95

5.2.2 Case 2: Transition from an inner state .. 97

5.2.3 Case 3: Transition to a concurrent state .. 99

5.2.4 Case 4: Transition from a concurrent state.. 101

5.2.5 Case 5: Reflexive transition of a concurrent state ... 103

5.2.6 Case 6: Transition into an inner state in a concurrent region 106

5.2.7 Case 7: Transition from an inner state of a concurrent region 108

5.2.8 Case 8: Concurrent state is the start state .. 110

5.3 State transition method .. 112

5.3.1 Entering a composite state.. 113

5.3.2 Exiting a composite state ... 115

5.4 Code generation templates ... 116

5.5 Multiple state machines in the same class .. 117

5.5.1 Single event causing multiple transitions .. 119

5.5.2 Action in a state machine triggers an event of another state machine 120

5.5.3 Action in a state machine updates the state of another state machine 120

5.6 Traditional flattening approach .. 120

5.7 Comparison of code generation approaches ... 122

5.7.1 Generated code growth analysis ... 123

5.8 Summary ... 124

Chapter 6: A Grounded theory study of Umple .. 125

9

6.1 Survey of grounded theory in software engineering... 125

6.1.1 Background and History .. 126

6.1.2 Discussion of Sources.. 127

6.1.3 Grounded Theory in Agile Development Methodologies ... 128

6.1.4 Grounded Theory and Geographically Distributed Development (GDD) 130

6.1.5 Grounded Theory and Requirement Engineering ... 133

6.1.6 Other Applications of Grounded Theory .. 134

6.1.7 Opportunities and Challenges of GD Application in Software Engineering 135

6.1.8 Adaptation of Grounded Theory .. 136

6.1.9 Analysis of meta-codes .. 137

6.2 Grounded Theory study of Umple .. 138

6.2.1 Purpose ... 138

6.2.2 Objective ... 138

6.2.3 Methodology.. 139

6.2.4 Participants .. 139

6.2.5 Participants’ tasks .. 139

6.2.6 Questionnaire ... 139

6.2.7 Interview ... 140

6.3 Results and Analysis: ... 141

6.3.1 Questionnaire results .. 141

6.3.2 Interview qualitative analysis ... 143

10

6.3.3 Coding process .. 144

6.3.4 Codes summary ... 144

6.4 Findings ... 147

6.5 Challenges ... 149

6.6 Summary ... 150

Chapter 7: Experimentation ... 151

7.1 Experiment definition, context, and steps ... 151

7.2 Experiment Metrics ... 152

7.3 Null Hypotheses (H0) .. 152

7.4 Experiment Planning.. 153

7.5 Experiment objects .. 154

7.6 Question List ... 156

7.7 Profiling information ... 157

7.8 Selection of Participants .. 158

7.9 Variables in the Study .. 158

7.9.1 Extraneous Variables ... 158

7.9.2 Independent Variables.. 159

7.9.3 Dependent Variables .. 160

7.10 Threats of Validity ... 160

7.11 Results ... 162

7.12 Results Analysis .. 163

11

7.12.1 Assessment of threats of validity .. 163

7.12.2 Examining Data for Umple and Java .. 163

7.12.3 Examining data for Umple and UML ... 164

7.13 Discussion ... 166

7.14 Related Work ... 166

7.15 Future work ... 167

7.16 Summary ... 167

Chapter 8: Related work .. 168

8.1 Textual modeling ... 168

8.1.1 State machines in Ruby .. 170

8.1.2 State Machine Compiler ... 171

8.1.3 Comparison with Umple approach ... 173

8.1.4 Specification and Description Language (SDL) .. 174

8.1.5 Comparing Umple and SDL ... 175

8.2 Standardization of execution semantics of UML .. 178

8.2.1 Background and Introduction ... 178

8.2.2 Emergence of Action Languages .. 179

8.2.3 Why not use an existing programming or constraint language? 180

8.2.4 Umple as an Action Language ... 181

8.2.5 Overcoming limitations with existing programming languages 181

8.2.6 Comparison between Umple and UAL ... 182

12

8.3 Summary ... 184

Chapter 9: Summary and conclusion ... 185

Glossary .. 188

Appendix .. 191

A.1 Example System One (UML) .. 191

A.2 Example System One (Umple) .. 192

A.3 Example System One (JAVA) ... 193

A.4 Example System Two (UML) ... 194

A.5 Example System Two (Umple) ... 195

A.6 Example System Two (JAVA) .. 196

A.7 Example System Three (UML) ... 197

A.8 Example System Three (Umple) ... 198

A.9 Example System Three (JAVA) .. 199

A.10 Training Example One (Classes, attributes, Associations) ... 200

A.11 Training Example 2 (State Machines) ... 200

A.12 Question list for example system one .. 201

A.13 Question list for example system two .. 203

A.14 Question list for example system three .. 205

References .. 207

13

List of Tables

Table 1: Variations of implementation of Actions ... 39

Table 2: Tool design approaches ... 40

Table 3: Design variations implementation .. 40

Table 4: Design approach comparison ... 43

Table 5: Generated code from commercial tools .. 44

Table 6: Number of classes for different design approaches .. 45

Table 7: Comparison between Umple and UML 2.2 state machine meta-models 59

Table 8: Umple state machine keywords ... 60

Table 9: Minimizing the number of keywords ... 61

Table 10: code generation comparison... 123

Table 11: Meta codes for agile development methodologies ... 129

Table 12: Meta-codes for geographically distributed development .. 132

Table 13: Meta-codes for requirements engineering .. 134

Table 14: Interview questions .. 140

Table 15: Questionnaire responses summary ... 142

Table 16: System example instances distribution ... 153

Table 17: Domain and abstract naming distribution ... 154

Table 18: Example model properties ... 156

Table 19: Line and character numbers for Java and Umple examples 156

Table 20: Question list for version E1 (UML and Umple) ... 157

Table 21: Information collected prior to the experiment .. 158

Table 22: Extraneous variables .. 159

Table 23: Independent variables .. 160

14

Table 24: dependent variables ... 160

Table 25: Threats of validity ... 161

Table 26: Average results .. 162

Table 27: Average response time per example ... 163

Table 28: Objective of UAL standard .. 183

Table 29: Question list for version E1 (UML and Umple) ... 201

Table 30: Question list for version E1 (Java) ... 202

Table 31: Question list for version E2 (UML and Umple) ... 203

Table 32: Question list for version E2 (Java) ... 204

Table 33: Question list for version E3 (UML and Umple) ... 205

Table 34: Question list for version E3 (Java) ... 206

15

List of Figures

Figure 1: History of state machines ... 26

Figure 2: State machine of a car transmission .. 29

Figure 3: Extensions to state pattern [1] ... 32

Figure 4: An Example State machine... 34

Figure 5: Multiple-class design pattern .. 36

Figure 6: Extended multiple-class design approach ... 36

Figure 7: ignore event ... 38

Figure 8: summary of design approaches and variations .. 41

Figure 9: Nested example .. 42

Figure 10: Concurrent example ... 42

Figure 11: Performance analysis of the three design approaches .. 47

Figure 12: Umple meta-model ... 57

Figure 13: Umple high-level system components .. 69

Figure 14: Umple textual Editor .. 71

Figure 15: Exploring the semantics of state machines .. 75

Figure 16: Final states in regions ... 78

Figure 17: Transition from a composite state to a Final state ... 79

Figure 18: Final state in nested configuration .. 79

Figure 19: Case 1: Do activity in nested configuration... 80

Figure 20: Case 2: Do activities in concurrent configuration .. 81

Figure 21: Case 3: Do activities in Multiple state machines within the same class 81

Figure 22: A higher level transition to a composite state .. 82

Figure 23: Conflicting transitions .. 83

file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420931
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420938
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420939

16

Figure 24: Fork with actions and guards .. 83

Figure 25: Partial fork ... 84

Figure 26: Event processing in concurrent regions... 84

Figure 27: Complex state machine model .. 85

Figure 28: Testing Process [2] ... 88

Figure 29: CFCG Process .. 94

Figure 30: Transition to an inner state ... 96

Figure 31: Transition from an inner state ... 99

Figure 32: Transition to a concurrent state ... 101

Figure 33: Transition from a concurrent state .. 103

Figure 34: Reflexive transition of a concurrent state .. 106

Figure 35: Transition to an inner state in a concurrent region... 108

Figure 36: Transition from an inner state of a concurrent region .. 110

Figure 37: Concurrent state is the start state... 111

Figure 38: explosion phenomenon ... 121

Figure 39: comparison of flattening approaches... 122

Figure 40: Composite state comparison example ... 123

Figure 41: Factor of growth analysis ... 124

Figure 42: Codes ... 144

Figure 43: Number of unique visitors to the Umple Google Code site from March 1st to

December 1st, 2011 (this does not include UmpleOnline).. 150

Figure 44: Example one class diagram .. 154

Figure 45: Example One state machine diagram .. 155

Figure 46: Average response time for Umple and Java .. 164

Figure 47: Average response time for Umple and UML .. 165

file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420940
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420941
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420942
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420956

17

Figure 48: Simple state machine .. 169

Figure 49: State machines in Ruby .. 170

Figure 50: SDL graphical and textual notation... 175

Figure 51: UML and Umple notations ... 176

18

Chapter 1: Introduction

The context for this thesis is a software development environment where code and model reside

in the same artifact. It is an environment where the programming language is enhanced by

modeling abstractions typically available to modelers in a visual environment. This approach

effectively raises the abstraction level of today’s modern high-level programming languages.

Our work is part of research efforts aiming at uniting code-centric and model-centric software

engineering with the ultimate goal of enhancing modeling practices in the software engineering

industry. We approach this goal by incorporating modeling abstractions in textual form that

extends, or is similar to, a programming language. In particular, we investigate the incorporation

of UML state machines to enhance the Umple language [3]. This approach is a manifestation of

model-code duality. Model-code duality means that we consider both model and code to be a

single entity with two representations. More specifically, we aim at demonstrating that graphical

state machine modeling abstractions and their equivalent textual representations can be equally

effective for designing and understanding systems.

Traditional development environments treat models and code as two separate entities. Such

approaches induce software professionals to create, edit, and manage independently two separate

artifacts; models and code. Forward and reverse engineering for code and model is therefore

needed to keep the two artifacts in synch. On the other hand, if we treat models and code as a

single entity, having two representations, we encourage the treatment of models and code as a

single artifact (model-code duality). The need for model-to-code and code-to-model

transformations are then eliminated or minimized.

A key research hypothesis we investigate is whether the core features of state machine

diagrammatical modeling language can be effectively represented textually, in a high level

programming-like syntax. Effective representation means that software professionals can

comprehend, develop, and maintain software models textually in a manner suitable particularly

to those who are accustomed to textual programming languages. In fact, developers and

modelers will blend modeling and coding in the same development artifacts.

Our research approach is threefold; first, we investigate and evaluate how software engineers

generate code from models, focusing on state machine models, and we use a grounded theory

study to understand how Umple early adopters perceive textual modeling. Iteratively, we use the

empirical research findings to drive the second part of this research, which is experimenting with

state machine enhancements to the existing Umple research platform. And finally, we

empirically evaluate our findings by means of conducting controlled experimentation.

19

The goals of our research activities are: 1) Understanding how the current tools handle code

generation for state machines. 2) Empirical assessment of the use of textual modeling in

software development. 3) Utilizing the findings of goals 1 and 2 to drive activities that aim at

incorporating state machine modeling in a textual modeling environment to generate effective

models and code. 4) Evaluating our approach.

1.1 Research Questions

Our research activities are guided by the following questions:

1.1.1 RQ1:

To what extent do software developers use state machines to model system behavior and

specifications? What are the major factors behind that level of adoption?

The origins of state machines can be traced back to the notion of “calculating machine”,

introduced by Charles Babbage in 1834 [4]. The mathematical model, since then, has been

continuously improved and refined. We discuss the history and development of state machines

in the section “History of State Machines” on page 26.

State machines are now a well-established modeling approach and are incorporated in the UML

modeling specification. State machine models are supported in a significant number of software

modeling tools and there is considerable support for automated code generation from state

machines diagrams. However, our research findings indicate a low level of adoption of modeling

notations in the software industry [5] and specifically for state machines [6]. Our personal

observation of modelers, and our survey of capabilities of modeling tools, discussed later,

indicate that adoption of state machines is particularly low. Reasons for the low adoption of

state machines models may include:

1. State machine support by software modeling tools is poor.

Other than in certain high-end real-time modeling tools, the available software modeling

tools tend to have little support for state machine analysis and code generation; and some do

not support basic modeling of state machines. In such a situation, lack of proper support in

the available commercial and open source modeling tools will inevitably have a negative

impact on the adoption of state machines.

2. Typical state machine diagrams are represented using a mixture of diagrammatical modeling

elements and textual elements.

Elements like states and transitions render themselves suitable for diagrammatical

representations, while elements like actions and guard conditions are more suited for textual

20

representation. In most software modeling tools, developers have to switch from visual

context to textual context to accomplish their modeling tasks.

3. There is little correspondence between state machine diagrams and the generated code.

There are multiple design patterns for code generated from state machines. Our survey of

generated code from a number of leading open source and commercial software modeling

tools, discussed later, indicates the existence of several distinct design patterns with

variations in the generated code that go beyond implementation specifics. This creates a

wider gap between models and code that further induces developers to treat code and models

as separate artifacts that need to be independently managed. This is discussed in “Chapter 2:

Background”.

4. Integration of state machine notation with other object oriented concepts tends to be poor.

State machine notation is poorly integrated with other related UML modeling concepts. The

overwhelming majority of tools support state machine notation in a standalone fashion;

where the state machine diagrams do not integrate smoothly with other modeling notations

such as class diagrams. For example, they do not generally support refinement of state

machines over inheritance.

5. Awareness of state machines as a modeling notation is low among software developers.

Software professionals may choose not to use state machines because they are not familiar

with their concepts or applications. There is relatively little guidance on building applications

that incorporates state machines.

1.1.2 RQ2:

Can the gap between state machine diagrams and code be minimized by incorporating core

state machine abstractions in a high-level programming-like language?

Software modeling tools treat state models and code as two separate artifacts. Updates in the

visual model have to be synchronized to the corresponding code, and vice versa. Software

developers therefore need to make updates in both the visual model and the textual code, further

complicating development tasks. A common scenario is for developers, at some point during the

development process, to stop updating the visual model and rely only on editing the generated

textual code, which renders models out of date and obsolete.

By incorporating state machine core concepts in a textual language that supports in-line native

code, the model is maintained as long as the code is maintained.

21

1.2 Hypothesis and Approach

The following is the hypothesis we are investigating in this thesis:

H 1: Software developers can comprehend software more effectively if state machine

abstractions are embedded within the code.

Existing software modeling and code generating tools imply that both the visual and textual

contexts are in use, and are required, for system development using state machine diagrams. Our

investigations focus on incorporating state machine concepts in a textual modeling language, and

allow for in-line native code embedding. We anticipate significant reduction in the gap between

state models and code, enabling developers to effectively treat both visual and textual code as a

single entity. Our evaluation indicates that, for simple tasks, this approach improves

comprehension when compared to a typical high level programming language. The evaluation is

discussed in Chapter 7: Experimentation on page 151.

This hypothesis is investigated throughout our research activities.

1.3 Research Activities

We have conducted the following research activities and used the findings to address our

research questions and verify our hypothesis.

I. Continuously explore how the Umple research platform is perceived by end users. Prior

to our research, Umple already supported core class diagram features including

associations and attributes. Understanding how users perceive textual modeling of class

diagram elements helped guide our research activities and the implementation of state

machine features in a way that is best suited towards developers’ usability needs and

cognitive patterns. We carry out this task by conducting a grounded theory study of

Umple. Details of the study and findings are presented in “Chapter 6: A Grounded theory

study of Umple”.

II. Explore the design and implementation of state machine concepts in the Umple platform.

Our understanding of the prevailing modeling practices and modeling tools has helped

guide our research activities in adding state machine features to Umple. To accomplish

this task, we explored existing related technologies and research.

III. Implement an interpretation of the latest UML state machine specifications and

incorporate that implementation in the Umple platform. The implementation covers both

simple and composite state machines.

IV. Evaluate our approach using a controlled experiment. Participants are presented with

samples of models and code using a visual UML notation, a typical high level

22

programming language, and Umple. Participants are then asked a series of questions that

aims at measuring their level of comprehension. The study suggests a positive added

value of Umple technology.

V. To accomplish the empirical study, it is required to present participants with a compiler

and environment that reflects Umple’s vision, and that is of quality matching their

expectations and helps participants focus on core research questions, rather than

limitations in the platform. Towards that objective, we built a sophisticated textual editor.

1.4 Thesis contributions

The contributions of this research and the publications based on this thesis are presented

in this section. The contributions are listed in order of importance. References to thesis

sections discussing the contribution are given.

 Adding state machine abstractions in the Umple language

The Umple technology now supports state machine abstractions. These abstractions are

supported in the core Umple, and hence, are reflected in all Umple based tooling, such as

the Umple online [3]. Implementing such abstractions required:

- Defining new textual syntax to represent UML state machine modeling elements.

- Integrating and extending the syntax into the Umple technology.

 Implementing semantics for state machine abstractions

The semantics of the state machine abstractions are part of Umple core technology. The

state machine abstractions are implemented by means of code generation of high level

programming language. Umple distinguishes between two types of state machines;

simple state machines (Chapter 3), and composite state machines (Chapter 4 & Chapter

5). This contribution entails the following sub-contributions:

- Code generation for state machines that is similar to what software developers would

write as implementation for a state machine model (Chapter 3 & Chapter 4).

- A novel approach to implementing composite state machine semantics (Chapter 5).

 Investigation and analysis of the latest UML state machine specifications.

We introduce a deep investigation of the UML state machine specifications exposing

some of the undefined semantics of state machines. We also analyze areas of the

specifications where there are two or more alternative interpretations. Umple’s

23

implementation provides clarifications and a working solution to some of these

ambiguities. (Chapter 4)

 Empirical evaluation of the Umple technology (Chapter 7).

A controlled experiment has been designed and conducted to evaluate the effectiveness of

the Umple technology. This experiment is the topic of Chapter 7: Experimentation.

 Open-sourcing the Umple technology

Umple is now open for developers and contributors. Umple source is hosted in the

Google code repository [7].

 Reporting on an application of Grounded Theory research methodology. We used a

grounded theory study to learn about the community of Umple users and utilize their

feedback to enhance our research direction and priorities. (Chapter 6)

1.4.1 Publications based on this thesis

All publications based on this thesis are presented in this section. The first author is the

main author.

1. “Combining Experiments and Grounded Theory to Evaluate a Research Prototype:

Lessons from the Umple Model-Oriented Programming Technology”

Omar Badreddin, Timothy C. Lethbridge. To appear in ICSE Workshop on User

Evaluation for Software Engineering Researchers (USER), 2012.

2. “Model-Driven Rapid Prototyping with Umple”

Andrew Forward, Omar Badreddin, Timothy C. Lethbridge. In Software: Practice and

Experience Journal, 2011.

3. "A study of applying a research prototype tool in industrial practice"

Omar Badreddin and Timothy C. Lethbridge. 2010. In Proceedings of the eighteenth

ACM SIGSOFT International Symposium on Foundations of Software Engineering

(FSE '10- Doctoral Symposium). ACM, New York, NY, USA, 353-356.

http://dx.doi.org/10.1145/1882291.1882345

4. "Umple: A model-oriented programming language"

Omar Badreddin. In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering - Doctoral Consortium - Volume 2, 2010, pp. 337--338.

http://dx.doi.org/10.1145/1810295.1810381

24

5. "Teaching UML Using Umple: Applying Model-Oriented Programming in the

Classroom"

Timothy C. Lethbridge, Gunter Mussbacher, Andrew Forward, Omar Badreddin. In

Proceedings of CSEE&T 2011, co-located with ICSE 2011, , pp. 421-428.

6. "Umplification: Refactoring to Incrementally Add Abstraction to a Program"

Timothy C. Lethbridge, Andrew Forward, Omar Badreddin. In proceedings of the 17th

Working Conference on Reverse Engineering http://dx.doi.org/10.1109/WCRE.2010.32.

2010, pp. 220-224.

7. "Umple: Towards Combining Model Driven with Prototype Driven System

Development"

Andrew Forward, Omar Badreddin and Timothy C. Lethbridge. In proceedings of the

21st IEEE International Symposium on Rapid System Prototyping

http://dx.doi.org/10.1109/WCRE.2010.32. 2010.

8. “Challenges and opportunities in applying research prototypes and findings into

industrial practice”

Omar Badreddin, Tim Lethbridge, Hisham El-Shishiny, Margaret-Anne Storey, Andrew

Forward. CASCON '10 Proceedings of the 2010 Conference of the Center for Advanced

Studies on Collaborative Research. ACM. doi:10.1145/1923947.1924021.

9. “Perceptions of Software Modeling: A Survey of Software Practitioners”

Andrew Forward, Omar Badreddin, and Timothy C. Lethbridge. (2010) 5th Workshop

From code centric to model centric: Evaluating the effectiveness of MDD

(C2M:EEMDD), Paris, June 2010, http://www.esi.es/modelplex/c2m/papers.php

In addition, we have published the following technical report. A conference paper has been

submitted and is being considered for publication.

10. “An Empirical Experiment of Comprehension on Textual and Visual Modeling

Approaches”.

Omar Badreddin and Timothy C. Lethbridge. Technical report number TR-2011-03.

Accessed 2011. http://www.eecs.uottawa.ca/eng/school/publications/techrep/2011/

1.5 Outline

Presented here is a short summary of each chapter.

http://www.esi.es/modelplex/c2m/papers.php
http://www.eecs.uottawa.ca/eng/school/publications/techrep/2011/

25

Chapter 2: Background

This chapter presents background research, a brief introduction of Umple state machines, and a

survey of state machine code generation approaches.

Covered in this chapter are existing technologies in state modeling and code generation

approaches from state machines.

Chapter 3: Syntax and semantics of simple state machines

Our approach of representing state machines abstractions in Umple is presented in this chapter.

The chapter also covers the design decisions and compromises that we undertook throughout the

research study.

Chapter 4: Syntax and semantics of composite state machines

Nested and concurrent states concepts syntax and semantics are explored in this chapter. The

chapter also explores aspects of the latest UML standard and how it relates to our approach.

 Chapter 5: Implementation of composite state machines

A novel implementation of composite state machine semantics is presented in great detail in this

chapter.

Chapter 6: Grounded theory study of Umple

We conducted a series of interviews with users of the existing Umple language, compiler and

environment. We analyzed the interviews using the grounded theory approach and used the

results as guidance to our research and experimental development.

Chapter 7: Experimentation

Experiment goals and objectives, metrics, design, results and analysis are presented in this

chapter.

Chapter 8: Related Work

We present in this chapter selected on-going research activities that bear similarity to our

research. We focus on highlighting aspects of the existing research that influenced our direction,

and position our research with respect to existing work.

Chapter 9: Summary and conclusion

This summarizes our research activities and gives an outline of future research directions.

26

Chapter 2: Background

This chapter presents background research, a brief introduction of Umple state machines, and a

survey of state machine code generation approaches.

2.1 History of State Machines

The mathematical foundations of state machines can be traced back to the Turing machines that

were first described by Alan Turing in 1936 [8]. A Turing machine is composed of a tape, head,

a table, and a state registry. The mathematical foundation of Turing state machines has been

formalized in the Church Turing thesis that informally states that if an algorithm (a procedure

that terminates) exists then there is an equivalent Turing machine.

The history of state machines is graphically summarized in the timeline in Figure 1.

Figure 1: History of state machines

A Turing machine is a type of a state machine. At any point of time, the Turing machine is at

one of a finite number of states. In modern terms, reading a character on the tape may, or may

not, trigger a transition to a new, or the same, state. Any Turing machine can be effectively

modeled using modern state machine diagrams. It is therefore that the Turing machine’s

mathematical model laid the grounds for more elaborate models that resembles today’s notion of

state machines, most notably are Mealy and Moore machines [9]. Mealy machines output

depends on the current state and on the input (transition oriented state machine), while Moore

machines’ output depends only on the state (state-oriented state machine). Therefore, the same

model implemented using Moore machines usually result in more states compared to the same

model implemented using Mealy machines. For example, Wagner et al [10] present a

27

microwave implementation that results in a Moore machine with 7 states, compared to only 5

states using Mealy machine.

2.1.1 The Evolution of State Machines

A significant factor behind the development of the concept of state machines was the

understanding of the practical significance of state machines. A prominent step towards that

understanding is the work of Borger [11]. He realized that abstract state machines can solve

some central problems that had faced the ISO Prolog standardization committee for years. After

a number of unsuccessful attempts, a few engineers from IBM, Quintus, Bim, Interface,

Siemens, demonstrated the benefits of state machines by highlighting the ability for supporting

changing designs. State machines have also been significantly utilized in hardware design.

Since the practical significance of state machines became widely accepted by researchers and

practitioners, there have been a number of case studies and experiments that explore the full

potential of this concept [12]. This takes us to the late 1980s and early 1990s that mark the

origin of UML state machines diagram.

Specification and Description Language (SDL)

SDL has emerged from the communication domain and it is mainly used in the modeling of real

time and communication systems [13]. SDL emerged from a study at the International

Telecommunication Union (ITU) in 1968. The first SDL standard was produced in 1976. SDL

has both graphical representation (SDL/GR) and a phrase or physical representation (SDL/PR)

[14-16]. SDL is further discussed in “Comparing Umple and SDL” on page 175.

Harel Statecharts

Mealy and Moore machines suffered from a limitation; the machine was either in one state or in

another state. The machine is never in two states at the same time. Harel [17] introduced the

concept of an and-state. This allowed the state machine, or the statechart, to be decomposable

into lower states, or sub-states, of a high level state. Those sub-states need not be sequential;

Harel’s proposed statecharts allows sub-states to be concurrent. In addition, Harel defined

communication and synchronization methods in which these sub-states can communicate with

each other. Douglass [18] has provided a well-defined enumeration of these communication and

synchronization methods. In 1988, Harel presented StateMate [19], a working tool that

encapsulates those concepts.

The Booch Method

Five years after the introduction of StateMate, a new enhanced method, based on Harel’s

statecharts, was introduced. Grady Booch developed an Object Modeling Language and

methodology that became widely used in object-oriented modeling analysis and design [20].

Booch’s focus was on states and events. Events could be defined within a state model, or could

28

be external to the system under design. The property “StateKind” determines whether the state is

a normal state, or a special state (initial state, end state). The method also supported stateRegion

that can be either sequential or concurrent. Events are attached to transitions that can have

conditional expressions that are commonly called guards today.

The Object Modeling Technique

During the same period of time, another methodology was being developed by Rumbaugh,

Blaha, Premerlani, Eddy and Lorensen, named Object Modeling Technique (OMT) [21]. OMT

supported a dynamic model that was primarily composed of states, transitions, and actions. The

dynamic model captures control information without regard for what the operations act on or

how they are implemented. It was conceptually very similar to the Booch’s state machines.

The Unified Modeling Language (UML)

The development of UML began in 1994 when Booch and Rumbaugh began their work on

unifying the methods. They were later joined by Ivar Jacobson, the author of OOSE (Object-

Oriented Software Engineering) method. The three authors created UML v0.9 in October of

1996 [22].

Realizing the strategic importance of standardizing UML, a number of organizations joined

forces to form the OMG (Object Management Group). This effort resulted in UML v1.0 in

1997. In the same year, the standard was enhanced and UML 1.1 was released. The current

specification adopted by OMG today is UML 2.2 [23] that supports 13 different diagrams under

three categories; structure, behavior and interactions diagrams. Our state machine

implementation in Umple builds on the latest UML specifications, although we have not

rigorously followed UML for pragmatic reasons, and because we want to be free to explore new

ideas.

Current Developments

OMG, along with a number of industrial partners, is developing new standards that enhance

UML executability; UML Action Language (UAL) and Action Language for Foundational UML

(ALF). These two standards are at an early stage of development. We elaborate on UAL and

ALF in Chapter 8: Related work.

2.2 Umple state machine example

We illustrate Umple state machine basic syntax by briefly introducing a state machine example.

A much more complete demonstration of Umple state machine features is presented in Chapter

3: Syntax and semantics of simple state machines. Figure 2 illustrates a state machine of a car

transmission system.

29

Figure 2: State machine of a car transmission

As shown in Figure 2, the car transmission system is comprised of a two-level nested state

machine. The transmission starts in Neutral state. While in Neutral state, the state machine

responds to four events; namely, selectFirst, selectDrive, selectSecond, and selectReverse events.

Each event triggers a transition to a new state. For example, the transition selectSecond triggers

a transition to Second state.

While in Second state, the transmission system responds to two events; reachThirdSpeed and

dropBelowSecondSpeed that trigger transitions to Third state and First state respectively.

Transition to Third state and First State are guarded. The guard driveSelected has to evaluate to

true for the transition to take effect. If the guard driveSelected evaluates to false, the transition is

inhibited.

Next, we illustrate how this state machine is represented in Umple.

Driving

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

class Car {

 transmission {

 Neutral {

 selectreverse -> Reverse;

 selectSecond -> Second;

 selectDrive -> Driving;

 selectFirst -> First;

 }

 Reverse {

 selectNeutral -> Neutral;

 }

 Driving {

 selectNeutral -> Neutral;

 selectSecond -> Second;

 selectFirst -> First;

 First {

 reachSecondSpeed [driveSelected] -> Second;

 }

 Second {

 dropBelowSecondSpeed [driveSelected] -> Second;

 reachThirdSpeed [driveSelected]-> Third;

 }

 Third {

 dropBelowThirdSpeed -> Second;

} } } }

Listing 1: Umple state machine syntax

Listing 1 illustrates Umple state machine syntax for the state machine illustrated in Figure 2.

Line 1: declares a class named Car.

Line 2: a class attribute named transmission. Because there is no declared type, Umple defaults

the attribute in Java to be an Enum and in Php to be a string.

Line 3 to line 8: declares a state Neutral. The state is an initial state (Umple sets the first state

defined to be the start state), and has 4 unguarded transitions to Reverse, Second, Driving, and

First states.

Line 13 to line 30: Creates a state Driving that contains several nested substates; First, Second,

and Third. Some of the transitions between First, Second and Third states are guarded

transitions.

Line 19: defines a transition from state First to state Second. The transition is triggered by the

event reachSecondSpeed. This is a guarded transition. The event reachSecondSpeed will not

trigger the transition unless the value of the guard driveSelected evaluates to true. Umple users

have two ways to declare a guarded transition. The transition can either be written as

event [Guard] -> StateName

31

or alternatively, the transition can be written as

[Guard] event -> StateName

Transition may have optional actions. The syntax for the transition with action is as follows:

EventName / ActionName -> StateName;

All actions have to be preceded by the character “/”. The guard can be placed anywhere before

the transition characters “->”.

The next section presents a survey and an investigation of existing state machine code generation

approaches.

2.3 Code Generation from State Machines

In this section, we give a survey of existing approaches to code generation approaches from state

machine models. This survey guided our decision-making process with regard to generating

executable artifacts from Umple models. We present Umple code generation and our decision

points in section “State Machine Design Decisions” on page 60.

Different design approaches for code generation from state machines have been presented in the

literature [24]. Adamczyk brings together a number of implementation approaches for state

machines, and evaluates them based on the flexibility of the implementation, problem domain

and user expectations. Adamczyk presents an implementation of a traffic light state system and

analyzes the ease with which the system can be maintained. Briefly, the implementation patterns

discussed in this work are grouped based on the state machine element concerned; state, event,

transition and action. For example, the work presents three ways to implement a state:

enumerated values, methods and classes. An action on one extreme can be a single statement, or

a complex computation that can be encapsulated within a dedicated class. Adamczyk classified

action implementation under three categories, unstructured code, methods, and classes.

Similarly, transitions can be implemented using tables, state-driven transitions, and classes.

A similar study, [1], investigates extensions to the state pattern formulated as advice to

developers implementing state machine behavior.

32

Figure 3: Extensions to state pattern [1]

As shown in Figure 3, the state object represents the core of the state pattern. Here, the state is

encapsulated as an object. In the pattern of State-Driven Transitions, the state object is

responsible for the handling of the transition. On the other hand, the Owner-Driven Transitions

pattern represents the case where the owning object is responsible for the implementation of the

transition. The State Member pattern deals with whether data members should be placed in the

owning object or in the State Object. The Pure State is a pattern where the state object has

nothing but a state-specific behavior.

Dyson explains how different patterns suit different types of state machines. For example, if the

developer is faced with a large number of state objects, he can use the pure state pattern to cut

down on the number of objects required.

We identify state machine patterns by investigating existing tools that support state machine

code generation. We achieve this by conducting a survey and analyzing the code generation from

state machines as exhibited in the existing open source and commercial tools. Our findings

indicate the existence of distinct design characteristics for state machine code generation. We

identify and group the design approaches under three categories; the in-class pattern, the

multiple-class pattern, and the extended multiple-class pattern. Of those three design

approaches, none is an all-time winner, as each alternative is more attractive under certain

circumstances. In this section, we present the three main design approaches for code generation

from state machines, as well as variations of those approaches. While laying out the design

alternatives, we make reference to the latest commercial and open source tools and the design

each has adopted.

While executing state machines and automated code generation have been reported in the

literature for some time now, a surprising number of state-of-the-art commercial and open source

tools do not support state machine code generation. According to Gartner’s reports [25] IBM

Rational Software Architect (RSA), as of 2007, is the top leading commercial object-oriented

analysis and design tool. For open source tools, Gartner in another report [26] puts ArgoUML as

the most active UML modeling tool, and StarUML as the most active open source tool that

supports UML 2.0. RSA, ArgoUML, and StarUML support code generation from Class

diagrams, but provide only limited support for code generation from state diagrams.

33

There are a number of other tools that support code generation from state machines. Telelogic

Tau [27], Mentor Graphics’ BridgePoint [28], Borland Together for Eclipse [29], RSA RealTime,

and SmartState [30] are some leading commercial tools that support automated code generation

from state machines. On the open source side, FSMGenerator [31], Concurrent Hierarchical

State Machine (CHSM) [32], HUGO [33], and FSM Framework offer that support.

For the modeling tools that support code generation from state machines, we identified

significant variations in the design approach followed by the existing modeling tools

(summarized in Table 2 and Table 3 on page 40). Even for the tools that adopt the same design

pattern, each follows a variant of it. This wide variation can be attributed to one or more of the

following factors:

1. State machine elements may or may not be first-class object-oriented elements, which

gives flexibility in the implementation of those elements. For example, states can be

implemented as simple data attributes, or instances of classes.

2. The existence of a number of design approaches and the lack of comprehensive

understanding of which design approach is most effective.

3. Certain application domains or platforms bring their own considerations, for example,

embedded applications or performance-sensitive systems have specific needs.

In order to move towards a comprehensive understanding of state machine code generation

design alternatives, we present the three main design approaches, and their variations as

exhibited in the literature and the existing tool implementations. Our analysis evaluates

candidates of those design approaches and aims at laying the foundations for more uniformity in

state machine code generation.

2.3.1 Design Approaches

In this section, we present the three design approaches, and their variations. We make reference

to commercial and open source tool implementations whenever possible. We illustrate the

alternative design approaches by referring to the simple state machine in Figure 4.

34

On

Off StandBy

e1 [g1] / a1

e1 [g2] / a1

e2 [g4] / a2

e2 [g2] / a2

Figure 4: An Example State machine

The state machine in Figure 4 represents simple functionality present in a device. The device

can be in one of three states, On, Off, and StandBy. Each state has an entry and exit action. Each

transition has a guard condition and a corresponding transition action as illustrated. Event “e1”

triggers the transition from state Off to On, and the same event triggers the transition from state

On to Off, depending on which state is active. Similarly, event “e2” triggers the transition from

state On to state StandBy, and the same event will trigger the transition from state StandBy to

state On. For simplicity, we assume guard conditions to be a Boolean variable, and all entry and

exit actions to be a function call. Events are triggered by an action external to the system.

This example is intentionally simple, as it does not include nested states, concurrent states, joins,

or forks. The simplicity in this example enables us to consistently implement the example and

generate code from a wide range of available commercial and open source tools. We employ

two additional, and more complex, examples in our assessment and analysis (illustrated in Figure

9: Nested example and Figure 10: Concurrent example).

2.3.2 In-class pattern

In this design approach, the whole state machine behavior is implemented in a single class. The

single class includes code to implement the core state machine behavior, typically by means of

nested switch statement, if statements, or a transition table. The class includes implementations

for functions representing all entry, exit, and transition actions, as well as guard

implementations.

Variations. The core behavioral logic is implemented as a switch statement, or by implementing

a state transition table as in Mentor graphics BridgePoint, or a nested if statement as in Telelogic

Tau. The use of the deprecated goto statement is reported in the literature [1], however, there is

no evidence that goto statements are implemented in any of the existing open source or

commercial modeling tools. Goto statements suffer from weak readability and maintainability of

the generated code, but may provide for a faster execution time.

35

Transitions in the implementation code are comprised of statements to call exit actions, checking

for guard conditions, transition actions, deactivating old state and activating the new state. Such

code is typically embedded within the switch statement or nested if statements. Telelogic Tau

groups such code in a single method “leave()” that would execute all statements for affected

transitions which results in a more modular and readable generated code. Umple adopts a similar

implementation of the leave method.

Another variation of the single-class approach is the use of a code library that implements

specific functions that are called by the state machine’s single class. For example, the function to

execute a transition from one state to the other can be implemented in a separate library. This

approach is adopted in Telelogic Tau.

2.3.3 Multiple-class pattern

In this approach, a separate class is generated for each state that inherits from a State superclass.

The superclass defines entry and exit actions that are then implemented in each state class. This

approach is adopted in HUGO [33, 34], Telelogic Rhapsody [27], and SmartState. This design

approach is similar to the State design pattern presented in [35] . For the example presented in

Figure 4, adopting this design approach results in the class diagram shown in Figure 5.

Variations. This design pattern allows for a larger number of variations than the in-class pattern.

In addition to the variations related to the implementation of the state machine behavior, there

are variations related to when objects are created and destroyed. Objects representing states can

be created only when that state is active. Another alternative is for all state objects to be created

as soon as the state machine becomes active. Yet another alternative, implemented in Telelogic

Rhapsody, is the use of an additional helper class that implements the state machine behavior.

36

Figure 5: Multiple-class design pattern

2.3.4 Extended multiple-class pattern

In this approach, object orientation is taken even further, with separate classes used to implement

actions and, in some variations, guards [35-37]. This design pattern provides for some

centralization of state machine elements. In this approach, all actions, entry actions, exit actions,

and guards are grouped together in dedicated classes. Following this design pattern to

implement our example results in the class diagram in Figure 6.

Figure 6: Extended multiple-class design approach

37

Variations. Variations for this design pattern are related to what elements of state machines are

grouped together in a dedicated class. For example, [38] Tomura implements a separate abstract

class for Entry Action, Do Action, Exit Action, and Guard condition. Other variations may

implement transitions in a separate class. When a dedicated class implements the state machine

transitions, the transition object will include statements to call any exit action from the current

active state, deactivate current active state, check any guard condition, call any transition action,

call any entry action into the new current state, and update the current state. This design

approach is referred to as Owner-Driven transition [1]. If transitions are not grouped into a

transition class, then state objects are responsible for transition from one state to the other. This

design approach is referred to as State-Driven transition.

2.3.5 Alternatives within design patterns

In addition to the different design approaches, there are implementation specifics that can be

adopted within any design pattern previously presented. Those implementation specifics relate to

how states are represented and stored, as well as how actions, and guards are realized.

How states are represented

In the case of the in-class approach, states are represented by attributes. Those attributes can be

strings, or constant values, or simply integer attributes as implemented in SmartState.

In the case of the multiple-class and extended multiple-class design approaches, states are

represented as instances of classes, with one class per state. The current active state is tracked as

a reference to the current state object. Telelogic Rhapsody creates objects for all states up front,

which stay active in memory as long as the state machine is executing. Since in many systems,

there is likely to be a number of states machines active at the same time, upfront object creation

has performance significance especially since object creation can be expensive, particularly in

embedded systems, or systems with a large number of states. Gurp and Bosch [36] recommend

the Flyweight pattern [35] that allows objects to be shared among multiple contexts.

How guards are realized

There are three ways to implement guard conditions. The simplest way is the use of a Boolean

attribute or a Boolean expression to represent the guard condition. Alternatively, guard

conditions can be implemented as Boolean functions.

Semantically, guards prevent transitions in response to an event whenever the guard value is true.

This behavior can be semantically equivalent to implementing “ignore events” for each guarded

transition. An ignore event is a new event that is triggered when the original event is triggered

and the Boolean expression is true. Semantically, this is equivalent to assigning a guard

38

condition and original event to the transition. This guard implementation approach is adopted in

Mentor Graphics BridgePoint tool. We illustrate this design alternative further in Figure 7.

State1 State2

Event e1 [G]

Figure 7: ignore event

Let’s assume that when in State1 the state machine responds to Event e1 by triggering a

transition to State2. In such a situation, the state machine implementation will check for the

value of the guard ‘G’ before executing the transition to State2. If the value of ‘G’ is false, the

transition is inhibited.

The ‘ignore events’ design alternative does not use a guard condition. However, to implement

the same behavior of the state machine in Figure 7, we delete the transition shown and replace it

with a transition with a new event (say e2) that is triggered whenever e1 occurs and G is true.

How actions are represented

There is a general convention in tools and in the literature to implement actions as functions.

However where the actions are implemented has a significant impact on complexity,

maintenance, and performance, as we discuss later on when we assess the design patterns.

Actions can be implemented in each state class, as in the multiple-class pattern. Or, as in the

extended-multiple-class pattern, actions can be grouped together in a designated action class.

There are two arguments for grouping actions in the same class. The same arguments apply for

variations that group guards, transition functions, and entry and exit actions in the same class.

The first argument for grouping actions is to facilitate reuse and maintenance. The second

argument is to maintain the separation between the state machine behavior (represented by

actions) and structure (represented by the class hierarchy).

On the other hand, in object-oriented best practices, classes should include functions that

manipulate the behavior of the instances of that class. Grouping all actions in a single class

breaks this convention. We summarize the impact of grouping actions in a single class in Table

1. We further discuss the three design patterns and analyze their complexity, maintainability,

and performance in the next section.

39

Table 1: Variations of implementation of Actions

 Grouping actions in the same class Distribute actions on state classes

Applicable in

design

In-class and extended-multiple class

design approaches.

Multiple-class design approach.

Standard object

oriented design

principles

Breaks object oriented design principle

of distributing responsibilities so that

each object implements functions that

manipulates its own data.2

In accordance with object oriented

principles.

Reuse of actions

among multiple

states and state

machines

Enhances reuse and facilitates

maintenance by grouping all actions in

the same entity.

Actions are distributed on the classes of

each state, making reuse less intuitive and

harder to implement.

Number of

objects

State machine implementation results

in an overhead of one additional action

object.

No additional objects created for actions.

Actions

representation

State machine actions have first class

representation in the generated code.

Actions have no first class representation

in the generated code (implicit

representation).

Performance There is evidence of performance

degradation.

Distributing actions seems to reduce the

computational overhead.

Summary of tools design approaches

Table 2 summarizes a number of leading tools and the designs they incorporate. Out of the six

commercial tools and four open source tools we examined, three adopt the in-class design

pattern, three adopt the multiple-class pattern, and one adopts the extended-multiple-class

pattern. Three tools had little to no code generation support for state machines. Table 3 presents

design variations related to the state machine core behavioral implementation, representation of

states, and implementation of guard conditions.

2 In the case of the in-class design approach, the whole state machine is considered to be a single entity, and is

therefore implemented in a single class. In this case, there is no violation of standard object oriented design

principles, however, the power of object orientation is not harnessed.

40

Table 2: Tool design approaches

 Design Pattern Little to no

support In-Class Multiple-

Class

Extended-

Multiple-Class

C
o
m

m
er

cia
l

Telelogic Rhapsody X

Mentor graphics BridgePoint X

Telelogic Tau X

SmartState X

RSA and RSM X

RSA RealTime X

O
p

e
n

S
o
u

r
c
e

StarUML X

ArgoUML X

HUGO X

FSMGenerator X

FSM Framework [36] X

Table 3: Design variations implementation

 If

Statement

Switch

Statement

Table

Driven

Representation

of states

Guard Conditions

FSM framework X

BridgePoint X Ignore actions

Tau X User defined expressions

SmartState X Integer attribute

Rhapsody X Upfront State

object creation

FSMGenerator X String attribute

RSA RealTime X String Attribute3

Discussion of the three design approaches

Figure 8 illustrates the different design approaches and their variations. Some of the variations

apply to all three design alternatives, like “core behavioral logic” and “Guard implementation”.

Other variations are applicable only to a subset of the design alternatives, such as “object

creation”, which is only applicable to multiple-class and extended-multiple class design

alternatives.

3 RSA RealTime also creates an Index for states to identify parent state in the case of nested states.

41

Figure 8: summary of design approaches and variations

The three design approaches, and the design variations, illustrate the gap between the model and

the executable code that exists in state machine modeling. This gap induces the modeling tools,

as well as developers, to manage the modeling artifact and the executable code as two separate

entities. Making changes to one artifact will inevitably require some kind of synchronization;

otherwise the two artifacts quickly become out of synch.

The in-class approach results in a smaller number of classes, although the number of lines of

code inside that single class may be large, particularly if the state machine has many states or

actions, or responds to a large number of events. At the other extreme, the extended multiple-

class approach is assumed to provide for better reusability and maintenance, since all events,

actions, and guards are grouped in their respective classes. Gurp [36] argues that the maintenance

and evolution of the generated code from state machines, when actions are scattered, is very

complex. By grouping actions in a dedicated class, maintenance tasks become less complex. To

illustrate the complexity of the generated code, we applied a candidate of each design approach

to three state diagrams with varying complexity. The simple example is illustrated in Figure 4.

The nested example, illustrated in Figure 9, is comprised of four states, with two nested states.

42

The state machine in Figure 10 implements two concurrent states and is comprised of 5 states, as

well as join and merge elements.

Figure 9: Nested example

Figure 10: Concurrent example

Table 4 presents a comparison between the three design approaches and their corresponding

generated lines of code and number of classes.

43

Table 4: Design approach comparison

 #of

States
Least number of Lines of Code4 Least Number of classes5

In-

Class

Multiple-

Class

Extended-

Multiple Class

In-Class Multiple

Class

Extended-

Multiple

Class

Simple 3 78 114 106 1 4 6

Nested 4 115 147 142 1 5 7

Concurrent 4 140 182 180 1 8 106

The number of lines of code for the in-class design pattern is consistently the smallest, while

there is no significant difference in the number of lines of code for the multiple-class and

extended multiple-class design patterns. Table 5 presents a summary of the generated code from

Telelogic Tau and Mentor Graphics BridgePoint. Tau implements a variation of the in-class

design pattern where they make use of a superclass to implement some of the functionality of

state machine behavior. The reported number of lines of code corresponds only to the in-class

lines of code. On the other hand, BridgePoint implements a variation of the extended-multiple

class design pattern, with generated classes for actions, events definitions, the state-events matrix

that implements state machine behavior, as well as a header file for each class. BridgePoint does

not support Java code generation; the reported numbers are based on a generated C code. There

is no support for guard conditions; therefore, all guards are ignored when generating the code

using BridgePoint.

4 Measured by the number of Java code lines to implement the state machine behavior.

5 Measured by the least number of classes in each design approach. In some variations of a specific design approach, the number

of generated classes may be larger.

6 Variations in this design approach may result in a larger number of classes generated.

44

Table 5: Generated code from commercial tools

Lines of Code #of

States

Telelogic MentorGraphics

Tau BridgePoint

Simple 3 100 1507

Nested 4 958 N/A7

Concurrent 7 N/A9 N/A10

Assessment of the three design approaches based on Complexity, maintainability, and

performance

The fundamental question of which design approach is ‘better’ is not easy to resolve, as evident

by the diverse approaches and variations adopted by the commercial and open source tools

available today. We base our assessment on three factors; complexity, evolution, and

performance. Similar factors have been adopted for evaluating automated code generation [39].

Complexity

We measure complexity of the generated code by Lines of Code (LOC), number of generated

classes, and the separation of structure and behavior of the state machine. LOC, despite its

apparent simplicity, is arguably the most effective measure for complexity [40]. The number of

generated classes increases the complexity of the generated code. Separation of structure and

behavior is the main benefit of the extended multiple-class design approach. As with cohesion

[41], the separation of structure and behavior results in systems that are less complex.

LOC analysis. As illustrated in

Table 4, the in-class design pattern consistently resulted in a smaller number of LOC. On

average, code generated with the in-class design pattern is 74% smaller than the code generated

with the multiple-class design pattern and 77% smaller than the code generated with the

extended multiple-class design pattern.

7 This number ignores code in header files, as well as code comments.

8 Telelogic does not support transitions into an inner state. The reported lines of code hence implement a model that is

semantically different.

9 Telelogic supported orthogonal nested states.

10 BridgePoint does not support concurrent states.

45

Number of generated classes.

Table 6 illustrates the generated classes for the three examples.

Table 6: Number of classes for different design approaches

#of Classes #of States Design

In-

Class

Multiple-class Extended-Multiple class

Minimum Up to Minimum Up to

Simple 3 1 4 5 6 11

Nested 4 1 5 6 7 12

Concurrent 7 1 8 9 10 15

The in-class design pattern always results in the same number of classes for the three examples.

For the multiple-class pattern, the number of classes is equal to the number of states, but can

have an additional helper class. For the extended multiple-class approach, the total number of

classes is between three and eight more than the number of states. This variation depends on

whether there are separate classes for entry, exit, and do actions, as well as guards, and

transitions.

Separation of structure and behavior. The correspondence between the structure of the state

machine and the generated code is more evident in the multiple-class and the extended-multiple

class design patterns; this is because states are represented as classes. While in the case of the

in-class design pattern, this correspondence is less evident. From the state machine behavior

perspective, actions are distributed on all states in the multiple-class design pattern, while they

are grouped in a single class in the extended-multiple class design pattern.

However, since actions are implemented as functions, they are cohesively grouped together

within a single class in the case of in-class design pattern. A developer trying to understand the

behavior of the system will know exactly where to look for actions within the single class

implementation.

Maintainability

Maintainability, or evolution, from the perspective of this analysis, is the ease with which the

code of a state machine generated system can be maintained and modified. Ideally, evolution

and maintenance tasks should be performed on the state machine model and the code

regenerated. However, in many cases models are either lost, or they are not updated and quickly

become obsolete, then maintenance tasks are performed on the generated code itself. We

measure maintainability by the complexity of adding a new transition to a new state, and

46

measuring how much code needs to be edited, and where. Programmatically, to add a new

transition to a new state, the following micro tasks are required:

1. Edit core state machine behavior (whether it is switch, nested if statement, or table

driven)

2. Create Entry, do, and exit actions

3. Create transition from existing state to the new state.

4. Create transition from new state to existing states, if any.

For the in-class design pattern, the developer will accomplish all micro tasks by editing the same

single class. On the other extreme, in the extended-multiple class design pattern, the developer

needs to edit the core state machine class and the one or more action classes.

Performance

We implemented the simple and the nested examples using the three design approaches; in-class,

multiple-class, and extended-multiple class. The core state machine behavior was implemented

by using a nested switch statement, and all guards were implemented as Boolean variables. In

the case of in-class design pattern, states are represented by an integer variable. For the multiple-

class and the extended multiple-class patterns, the current state is identified by a reference to the

current state object. The code for the three design patterns was manually written in Java.

We evaluate the performance of the same 1 million state transitions, taking readings every 100th

transition. The sequence of events was randomly generated. Each event is assigned equal

probability of occurrence so that the number of occurrences of each event is probabilistically

equal. Because the number of events is vast (1 million) in comparison to the number of states (3

states in the simple example), each state was entered and exited at least once. All guards were

implemented on each transition, but were assigned a fixed true value. Since we are not

evaluating different guard implementations, assigned fixed true value to guard conditions ensures

that the performance analysis results reflect the design pattern of the state machine

implementation.

The concurrent example incorporates concurrent states that have implementation specifics

beyond the scope of analysis of the design approach, and we therefore exclude it from the

performance analysis. Our findings are summarized in Figure 11. The multiple-class design

pattern results in the best performance, only slightly better than the in-class design pattern.

While the extended multiple-class design pattern implementation exhibited the worst

performance. Because the extended-multiple-class design pattern implements separate objects

for guards and transitions that have to be referenced in response to each event, this results in an

additional computational overhead and hence relatively lower performance.

47

Figure 11 illustrates the results of our performance analysis for the three design approaches. The

y-axis represents time, and the x-axis represents the number of transitions. We note that our

results did not give a straight line. We believe this is due to memory exhaustion or some similar

operating system phenomenon.

Figure 11: Performance analysis of the three design approaches

Our results are in accordance with the performance analysis reported in [41]. In their work, they

analyzed a variant of the multiple class design pattern (that they named state pattern), and a

variant of the extended multiple-class design pattern (their proposed framework). Their

performance analysis concludes that the state pattern is more efficient if a lot of small transitions

take place, as was the case in our performance analysis. They also conclude, however, that this

difference becomes negligible if the actions on the transitions become more computationally

intensive.

2.4 Summary

The history and evolution of state machines was briefly surveyed in this chapter. We also

introduced Umple`s modeling approach for simple state machines. We presented a survey of

state machines code generation where we identified three code generation patterns:

1. In-class pattern, where the entire state machine code is generated within a single class.

2. Multiple class pattern, where each state is generated in a separate class.

3. The extended multiple class pattern is where additional state machine elements are

implemented in a separate class. For example, in this pattern, all state machine actions

can be implemented in a separate class.

We have drawn these patterns from studying existing modeling tools, both commercial and open

source. We made an assessment of each code generation pattern. This work laid down the

Extended multiple-class

In-class

Multiple-class

 100,000 500,000 1,000,000 transitions

48

foundation for our experimental development of state machines in the Umple platform. As we

demonstrate in the next chapters, we have chosen the In-class code generation pattern for Umple.

Reasons for this choice are discussed in the next chapter in section “Design decisions” on page

62.

49

Chapter 3: Syntax and semantics of simple state machines

State machines in UML have two types of states, simple states and composite states. Simple

states are the focus of this chapter. Composite states, the topic of the two next chapters, can be

nested states (substates) or concurrent states.

In this chapter, we present the incorporation of state machine features into Umple. We present

Umple state machine syntax and features related to simple states. We also present the language

grammar, meta-model, and various design decisions we made.

This chapter focuses on the following aspects of state machines:

1. Designating an attribute for control by a state machine.

2. Creation of an arbitrary number of states and transitions.

3. Support of guard conditions on transitions.

4. Support of transition actions.

5. Support of automated code generation for Java and PHP.

6. Support of inline implementation of guards and actions.

7. Support for reusable state machines.

8. Support for timer based events.

The next section introduces an example showing Umple state machine features.

3.1 State Machines in Umple: The Basics

An attribute in Umple can be declared to be a state machine. This means that its value is

determined by various events that may occur. When an attribute is controlled by a state machine,

Umple does not generate a public setter for that attribute since updates to that attribute will be

controlled by the state machine itself.

States: Any string or integer attribute can have an unbounded number of states. Listing 2

illustrates an example.

50

class CourseSection {

 status {

 Planned {//state contents, events, transitions and actions }

 Closed {//state contents, events, transitions and actions }

 }

}

Listing 2: Attribute controlled by a state machine in Umple

This defines the string attribute status to be controlled by a state machine. This state machine

has two states, Planned state and Closed state.

Umple by default makes the first state to be the start state. In our example, Planned state is the

start state. Any state that does not have any outgoing transitions is considered an End state.

We now can define the state machine behavior by adding events, guards, transitions, and actions.

Events: From a state machine perspective, events occur outside of the system; the system only

reacts to those events. Umple, therefore, implements event-handling functions. These event-

handling functions execute steps to check the current state of the state machine, and call any

entry and exit functions, and executing the transition action, if such an action exists.

Because Umple supports native code, the developer can write any function that could trigger any

Umple event. This is a powerful feature in Umple because it gives the developer the ability to

call Umple events at any time. However, it is the developer’s responsibility to make sure that the

event function does not have any side effects.

Before we show an example of Umple event syntax, we first introduce transitions.

Transitions: Umple supports syntax for state transitions. Umple also supports reflexive

transitions, where the new state is the same as the start state.

The next example adds a transition to our state machine.

status {

 Planned {

 registerStudent -> Closed;

 }

 Closed { }

}

The example above defines an event registerStudent that triggers a transition to the state Closed.

Umple events are implemented as functions that return a Boolean value. If the event results in

triggering a transition, true is returned, otherwise, false is returned.

51

Guards: Guards may prevent a transition from occurring. If the guard evaluates to true, the

transition is triggered, otherwise, the transition is inhibited.

Umple uses the square brackets [] which is the same as the UML syntax for defining guards.

The following code shows the addition of a guard to a transition.

[authorized] registerStudent -> Closed;

This guard means that only if the value of authorized is true, that the transition is triggered. Note

that authorized has to be a Boolean variable, a Boolean expression, or a Boolean function. The

guard syntax could also be written as:

[authorized == true] registerStudent -> Closed;

The code inside the square brackets has to match the native language code. So, if the user’s

intention is to generate Php, the user has to use Php syntax, and if the user’s intention is to

generate Java, the user has to follow the syntax for Java.

Umple also supports any function call within the square brackets, as long as the function returns

a Boolean value. This enables developers to create guards once, and reuse them in as many

transitions as they wish.

Umple also supports guards to appear syntactically after the event. This can enhance readability

and usability when there are many transitions and the developer wants the person reading the

code to more readily notice the names of events. For example, the transition above can be

written as:

registerStudent [authorized] -> Closed;

Actions: Umple supports the three types of state machine actions, transition actions, entry

actions, and exit actions.

A transition action is an action that is associated with a state machine transition. An entry action

is an action that is executed upon transiting into a state. Similarly, an exit action is an action that

is executed upon transiting out of a state.

The following shows a transition action.

52

registerStudent /{sendNotification();} -> Closed

This transition reads as follows: when the event registerStudent occurs, execute the action

sendNotification() and transit to state Closed. In this example, the transition action is a function

call.

Umple also supports actions to be any native code, or block of code. For example, the following

transition when triggered prints “transition” on the console:

registerStudent /{System.out.println("transition");} -> Closed;

As with guards, allowing actions to be any function call means actions can be reused across

transitions, state machines and classes. In addition, the same action can be reused as entry or exit

actions. An Umple user can create a method to call multiple actions and/or events. This approach

enhances the usability of the language by grouping together a number of actions and events

within the same method.

The following is an example of an entry and exit action for the state Closed.

Closed {

 entry /{ System.out.println(“entry action“);};

 exit /{ System.out.println(“exit action“);};

}

This creates one entry and one exit action for the state Closed. This means, whenever we transit

into Closed, the entry action is executed, and whenever we transit out of Closed, the exit action is

executed. Similar to transition actions, entry and exit actions can also be function calls, and can

be reused in the same way. In addition, it is possible to have more than one entry action or exit

action associated with the same state.

Do Activities: Actions take a negligible amount of time to execute. Do activities, on the other

hand, represent a longer-running computation while in a state. In languages such as Java that

support it, a thread will be started to execute the do activity. This allows the state machine to

'stay live' and be able to respond to other events, even while the do activity is running. A

transition out of a state terminates the do activity.

53

The following is an example of a do activity in the Closed state.

Closed {

 do {doThisContinuouslyWhileClosed();}

}

3.2 Grammar defining the syntax of Umple state machines

The grammar to parse state machine elements has to be embedded within the grammar that

parses classes, attributes and associations. This is because the parsing process has to recognize

the tokens for class and state machines at the same time. The grammar is published as part of the

Umple Google Code project [7] and can be found in the following directory:

svn/trunk/cruise.umple/src/umple_state_machines.grammar

54

R1 classContent : [[comment]] |...| [[stateMachine]] | [[extraCode]]

R2 associationClassContent:[[comment]]|...|[[stateMachine]]|[[extraCode]]

R3 stateMachineDefinition :

statemachine [name] { [[state]]* }

R4 stateMachine : [[enum]] | [[inlineStateMachine]]

R5 inlineStateMachine :

[name] { ([[comment]] | [[state]])* }

R6 enum :

[name] { } | [name] { [stateName] (, [stateName])* }

R7 state :

[stateName] { ([[comment]] | [=changeType:-|*]? [[stateEntity]])* }

R8 stateEntity- :

[=-||] | [[transition]] | [[entryOrExitAction]] | [[activity]] |

[[state]]

R9 transition :

[[guard]] [[eventDefinition]] -> [[action]]? [stateName] ; |

[[eventDefinition]] [[guard]]? -> [[action]]? [stateName] ; |

[[activity]] -> [stateName]

R10 eventDefinition- :

[[afterEveryEvent]] | [[afterEvent]] | [event]

R11 afterEveryEvent- :

afterEvery -([timer] -)

R12 afterEvent- :

after -([timer] -)

R13 action :

/ { [**actionCode] }

R14 entryOrExitAction :

[=type:entry|exit] / { [**actionCode] }

R15 activity :

do { [**activityCode] }

R16 guard :

[[**guardCode]]

Listing 3: Umple state machine grammar

3.2.1 Overview of the notation

The grammar notation that Umple uses is slightly different than the standard EBNF notation.

This is because the Umple language is unique in the way it supports the embedding of arbitrary

native languages. At the time of writing, Umple supported Java, Ruby, and Php. Additional

language support is underway. This means that an Umple user can choose to embed a wide

variety of native code within Umple. The grammar and the parser therefore need a mechanism to

be able to identify blocks of code and accept them as is without parsing. However, the grammar

notation developed for Umple resembles as much as possible the EBNF. The following

discussion clarifies Umple grammar notation.

55

Managing rule names

The Umple grammar introduces the minus character (“-”) which is a special control character

that controls whether the rule name is added to the tokenization string or not. The minus

character is useful when a rule acts as a place holder to help modularize the grammar. By adding

the minus character to the end of the rule name, it removes the rule name from the tokenization

string. For example, in rule R8 in Listing 3, the rule name stateEntity is not added to the

tokenization string. This helps keep the tokenization string for states relatively short and simpler

for testing and debugging.

Non-terminals

The Umple grammar supports two types of non terminals, simple non-terminals, and rule-based

non-terminals. A simple non-terminals is a sequence of characters that is non-whitespace and is

delimited by the next symbol as defined in the grammar.

inlineStateMachine : [name] { ([[state]])* }

In this example, name is a non-terminal followed by a curly bracket, a space, or a new line

character.

The rule-based non-terminal notation uses double square brackets. In the example above, state is

a rule-based non-terminals, which is defined in R7 in Listing 3.

Managing code blocks

As we explained, the tokenization process must be able to ‘skip-over’ code blocks without any

strict parsing rules. This special need for Umple is the main reason why Umple grammar does

not use Antlr [42]. The grammar notation supports two methods to accomplish this task.

entryOrExitAction : [=type:entry|exit] / { [*actionCode] }

This rule defines that an entry or exit action is defined by the terminal entry or the terminal exit,

followed by the terminal “/”, followed by a curly bracket. The *actionCode will match

everything until a new line character is reached. This is very useful for Umple because it means

that the action code can be specified in any target language, and allows the grammar to stay

unchanged as new languages are added.

Note that this means that an action code must be in one line. This is an undesired limitation.

Umple grammar therefore supports the following notation.

56

entryOrExitAction : [=type:entry|exit] / { [**actionCode] }

When the action code is preceded by two stars “**”, the rule will match everything, including a

new line character until the next character sequence is matched. This means that action can span

multiple lines with no limitation on the sequence of action code itself.

The following explains Umple grammar rules for parsing state machines that are in Listing 3.

R1 and R2 define that Umple classes and Umple association classes can have state machines as

attributes.

R3 defines a state machine by the keyword statemachine followed by a name followed by a

number of states between curly brackets. This is used to declare a state machine independently of

a class.

R4 defines two types of state machines in Umple that can be embedded in classes; enum, and

inline state machine.

R5 and R6: Inline state machines are defined as a name followed by a number of states (R5).

Enum state machines (R6) are empty state machines, or state machines with only states (with no

transitions or actions). These are logically equivalent to an enumerated data type. The only way

to change the state is to set the state using an assignment statement.

R7 and R8 define a state. Notice that a state contains state entities, which themselves can be

states. This supports the implementation of nested and concurrent states discussed in Chapter 4:

Syntax and semantics of composite state machines.

R9 defines Umple state machine transitions.

R10, R11 and R12: Umple defines three event types; afterEvery event, and after event, and the

generic event. The first two are timed events, causing a transition to be taken after a certain

amount of time has lapsed. The main difference between afterEvery and the after events is that

the timer automatically resets itself and starts counting again. While in the case of after event, it

is a simple timer that triggers the event after a specific amount of time.

R13 and R14: Umple supports three types of actions; transition action, entry action, and exit

actions.

R15: This defines do activities, that start a long-running and interruptible thread to perform some

lengthy computation, for example.

R16: Guards, similar to state machine actions, can be defined in any native language.

57

Notice that the grammar is agnostic about composite state machines. Concurrent states and

nested state machines are handled at the meta-model level. This is discussed in greater details in

Chapter 5: Implementation of composite state machines.

3.3 Umple state machine meta-model

The Umple state machine metal-model is similar to the UML 2.2 meta-model. There are

elements that are in our meta-model that are not in the UML 2.2 meta-model specifications [23].

We introduce our meta-model first, and then discuss the similarity and differences with the UML

2.2 specifications.

We built the state machine meta-model using Umple itself. Figure 12 illustrates the Umple state

machine Meta model visually, and using Umple syntax.

Figure 12: Umple meta-model

58

As shown in the meta-model, UmpleClass can be associated with many state machines. This is

because each Umple class can have multiple, or no, state machines. A state machine, however,

may, or may not, be associated with an UmpleClass. This is because Umple supports standalone

state machines; state machines that are not yet associated with any Umple Class. Umple uses a

novel approach for handling composite states (nested, concurrent, forks, joins, history and deep

history states) that requires only minimal meta-model dependency. This approach is the topic of

the next chapter. Because Umple supports reusing of actions and guards; guards have a 1-to-

many relationship with transitions. Similarly, a state can be associated with many Actions.

The differences in attributes with UML 2.2 are summarized in Table 7. Some of the differences

are because UML 2.2 includes specifications for the visual layout of the diagram. For example,

UML 2.2 specifies connection point, final state, and PseudoStateKind, which are related to the

visual layout of the state machine diagram. Umple supports regular events, and timed events;

therefore, we have additional attribute for the events, while UML 2.2 imports events

specifications from UML:: CommonBehaviours:: Communications :: Trigger.

59

Table 7: Comparison between Umple and UML 2.2 state machine meta-models

 Umple state machine meta-model UML 2.2 state machine meta-model

State string: name

boolean: isStartState

boolean: isComposite, isOrthogonal,

isSimple, isSubmachineState

Transition No attributes kind: internal, local, external

Pseudostate Umple handles some pseudostates

differently (refer to Chapter 4:

Syntax and semantics of composite

state machines and Chapter 5:

Implementation of composite state

machines). Entry and exit Points

are not supported.

initial, deepHistory, shallowHistory, join,

fork, junction, choice, entryPoint, exitPoint,

terminate

event string: name

boolean: isTimer

float: timerInSeconds

UML:: CommonBehaviours::

Communications :: Trigger

Action string: ActionType

string: actionCode

boolean: isInternal

UML :: CommonBehaviors ::

BasicBehaviors :: Behavior

Statemachine string: name No attributes

Activity string: activityCode UML :: CommonBehaviors ::

BasicBehaviors :: Behavior

Guard string: condition UML::Classes:: Kernel :: Constrain

Other

elements

No meta-model representation.

Refer to Chapter 4: Syntax and

semantics of composite state

machines and Chapter 5:

Implementation of composite state

machines for more information on

how Umple handles composite

state machines.

Region, Vertex, ConnectionPointReference,

FinalState

60

3.4 State Machine Design Decisions

In this section, we state our motivating goals and present the major design decisions we made

during the building of state machines in Umple.

3.4.1 Umple state machine goals

Our objective is to create a straightforward syntax that can enable developers to quickly,

efficiently, and sufficiently create executable state machines. Umple should provide a simple

syntax to create and define state machine elements. We have the following syntax, design, and

generated code related goals:

Goal 1: Minimal use of reserved words.

We should avoid the introduction of new reserved words as much as possible. Reducing the

number of reserved words reduces the complexity of the language and makes it easier to learn.

Wherever we do introduce reserved words, we should consider using reserved words that are

used for the same purpose in other languages.

Table 8 summarizes the keywords and symbols used in Umple.

Table 8: Umple state machine keywords

entry/ An element of a state. Designates an entry action.

exit/ An element of a state. Designates an exit action.

do An element of a state. Designates a do activity.

Final A special state when reached indicates that a state machine is completed.

[] A symbol for guard conditions.

-> A symbol for transition to a next state.

|| A symbol for a concurrent region.

{} Curley brackets used for actions code.

By using concise syntax grammar, we were able to eliminate the need to use keywords for the

following state machine elements (Table 9):

61

Table 9: Minimizing the number of keywords

State machine An attribute name followed by a bracket is identified as a state machine.

Start state The first state is the start state.

End state Any state without outgoing transitions is considered an end state.

Action code Action code is native language code between two curly brackets.

Transition

action

Transition action code follows a ‘/’.

Guard code A native language code that must evaluate to a Boolean value and is placed

between two square brackets.

Nested states Nested states use the syntax of nested curly brackets.

Goal 2: Umple syntax should be concise.

Developers should be able to create and specify state machine elements in a concise manner.

Concise syntax contributes to enhanced readability, comprehensibility, and reduced complexity.

Goal 3: Umple syntax should be easily extensible

Whenever possible, Umple syntax should allow for additional functionality with minimal

disturbance to the syntax, and underlying tokenization and parsing processes.

Goal 4: Umple syntax should look and feel like high level programming languages.

Developers who are already accustomed to writing code should find Umple familiar and easy to

learn.

Goal 5: Umple syntax should eliminate the need to edit underlying generated code.

Umple supports native code for all types of actions and guard conditions. The syntax should

enable developers to satisfy their development needs without requiring the editing or inspecting

the generated code. This is similar to how software developers do not generally inspect the code

generated by the high level programming languages compilers.

Goal 6: Umple generated code should be efficient.

By efficient we mean that the code should satisfy the state machine semantic behavior, while

having comparable performance levels to the best code written by hand.

Goal 7: Umple generated code should look like code written by hand.

The generated code should be as readable as the best state machine code written by hand. The

main reason for this is so that programmers can easily verify it. Note that there is no

contradiction between eliminating the need to edit the code (Goal 5) and this goal. We aim at

62

making Umple’s generated code easy to understand and verify, and at the same time, users can

edit Umple code itself to make any necessary changes.

Goal 8: Umple should exploit textual modeling potential.

Textual modeling, we claim, allows us to create state machines models in a unique and powerful

way. For example, Umple should maximize reuse of state machine models. It ought also to be

possible to, for example, merge several state machines or compose them from textual files

containing various components of a state machine. The appearance of multiple actions for the

same state should also be supported, with the compiler simply combining them.

3.4.2 Design decisions

This section presents the design decisions we have made. We present the design alternatives, the

decisions made, and align our decisions to our stated goals.

Decision Point 1: State machine design pattern

Contributes to goal 5 and goal 7

In section “Code Generation from State Machines” on page 31, we presented our survey of

existing design alternatives for state machine code generation as exhibited in the state-of-the-art

commercial, open source, and research prototype tools. Our Umple state machine

implementation adopts a variant of the In-Class design pattern. The In-Class design pattern has

the following properties that contribute to our Umple goals:

1. Number of lines of Code.

The In-Class design decision results on average in a smaller number of lines of code.

2. Performance considerations.

The In-Class design pattern performance analysis results in performance that is

significantly better than the extended multiple-class design pattern, and only negligibly

worse than the multiple-class design pattern.

3. Number of generated classes.

The In-Class design pattern always generates a single class. Comparison of the three

design pattern is summarized in Table 6 on page 45. In typical systems that are

comprised of a number of classes, having more classes generated for a state machine

implementation results in generated code that is less intuitive, and confuses the developer

since classes that represent real system entities become mixed with state machine

implementation classes.

63

4. State machine for attributes.

Because Umple supports state machines for attributes that are already within an Umple

class, it is more convenient to generate the state machine code within the same Umple

generated class. The simplicity can be even more significant when there are multiple

attributes in a given class, each with its own state machine controlling it.

There are factors that may result in other design patterns being more attractive. For example, our

Umple syntax and meta-model, as well as the parsing and tokenization mechanisms, support

reusable actions and reusable guards. Implementing reusable state machine elements may be

easier if another design pattern is adopted. For example, generating a dedicated class for all

actions may make it easier for developers to locate actions and reuse them. This is particularly

true for a state machine diagrams with a large number of actions. In addition, having more

classes means objects that are created are smaller in size, which could mean enhanced run-time

performance.

The mitigation of such compromises brings about the following alternatives:

Alternative 1: Always implement the In-Class design pattern regardless of the state machine

characteristics (size, reusable actions and/or guards, etc). This is the alternative that Umple

currently adopts.

Pros: The generated native code always looks the same regardless of the state machine

characteristics. In situations where developers need to inspect the generated code, the code will

look more familiar and predictable. The Umple platform is hence less complex, as we always

generate the code using similar templates.

Cons: Less flexibility, as the user cannot override the chosen design pattern.

Alternative 2: dynamically apply a design pattern based on the state machine characteristics.

This alternative implies that the characteristics of the state machine itself (i.e, number of states

and transitions) determine the design pattern used for code generation.

Pros: The generated code is customized to the type of state machine under implementation. The

size of the generated code may be well balanced on a number of classes if the state machine was

large in size.

Cons: The generated code is more complex, and the number of classes is larger in the case of

multiple-class pattern and extended multiple-class patterns. The generated code pattern is more

complex. Developers, particularly who need to validate the generated code, will be faced with a

number of different code patterns.

Alternative 3: Allow the developer to choose, or control, the type of design pattern to be

adopted.

64

This alternative implies that Umple user would be able to include a directive to control which

design pattern to be used for code generation.

Pros: maximum flexibility is given to the user to choose which design alternative to adopt.

Cons: This alternative shifts the burden to the developer to decide on the most appropriate design

alternative. This also increases the complexity in the language, and the underlying Umple

platform.

Decision Point 2: Handling of events

Contributes to goal 6 and goal 7

A state machine responds to the occurrence of events that are typically, but not always, outside

of the context of the state machine itself. The events that Umple state machine responds to are

implemented as public functions that can be called by any component of the system. The

functions return a Boolean value; true if the event has resulted in transition, and false otherwise.

This implementation results in maximum flexibility, as those public functions can then be easily

encapsulated into functions that can implement additional event types.

Decision Point 3: Core state machine behavior

Contributes to goals 5, 6, and 7

Unlike most code generated from the surveyed modeling tools, and even though we envision

Umple users to never edit the generated code, Umple generates code that resembles hand-written

code. We distributed the core state machine behavior for each event handler function. The event

handler function uses a switch statement on the current active states, and determines the

appropriate behavior.

Each transition requires the following steps:

- Check for guard conditions

- Execute exit action(s). There may be multiple exit actions for nested states.

- Execute transition action.

- Execute entry action(s). There may be multiple entry actions for nested states.

To hide such details, we encapsulated these actions within a function, similar to the approach

adopted in the Telelogic tau modeling tool [43].

Decision Point 4: Implementation of composite state machines

Contributes to goals 1, 2, 3, 4, 7, and 8.

65

Composite state machines are state machines with nested states or concurrent regions. Umple

supports nested states without introducing additional keywords. Umple uses the syntax of nested

curly brackets to define nested states. For concurrent regions, Umple uses the symbol ||.

For implementation of the code generation for composite states, Umple uses a novel

methodology. Traditional code generation from composite state machines results in generated

code that is exponentially large, harder to read, understand and maintain.

The syntax, semantics, and code generation for composite state machines are the topic of the

next two chapters.

3.5 State machine reuse and mixins

Contributes to goal 8.

Umple supports an unbounded number of state machines in every class, each of which can be

defined independently. The same event in Umple can trigger transitions in one or more state

machines. Simple functions defining guards and actions can be reused across a number of state

machines, or across classes and components, and again the definitions of these can be defined

independently, allowing mixing in of different sets to explore different requirements.

The following simple example illustrates a simple traffic control system, where the pedestrian

light is dependent on, or controlled by, another state machine controlling the car traffic. For

conciseness, we illustrate only partial models.

class trafficLightSystem {

 carTraffic {

 Red {

 entry / {goingRed();}

 after(redTimer)[!emergency] -> Yellow;

 emergencyNotice -> AllRed;

 }

 pedestrianTraffic

 DontWalk {

 goingRed [!emergency] -> Walk;

 emergencyNotice -> DontWalk;

} }

In this example, the event emergencyNotice triggers a transition in two separate state machines

in the same class. Similarly, the guard emergency is used in two transitions in two state

machines. The example also shows how an action in one state machine, goingRed(), can

function as an event and trigger a transition in an another state machine.

66

We have so far presented one aspect of reuse and mixins in Umple, where more than one state

machine can reuse elements and behave interdependently. We now illustrate another aspect,

where complete state machines are reused and customized.

A traffic light’s basic operation is timer-based transitions from three states, Red, Green, and

Yellow. This simple and basic model can initially be implemented as a stand-alone state

machine, and later incorporated into various classes:

For simplicity, we continue to present partial models.

Statemachine coreTrafficController {

 Red {

 After(redTimer) -> Green;

 After(greenTimer) -> Yellow;

 After(yellowTimer) -> Red;

} }

In systems where a basic traffic light is desired, the previous standalone state machine can be

referenced as follows :

class TrafficLightController {

 simpleController as coreTrafficController;

}

This example creates a state machine called simpleController that behaves identically to the

coreTrafficController state machine.

Some traffic lights may have additional states, like flashing red, or flashing yellow, that are not

part of the basic traffic light behavior. Let’s call this type of traffic light FrFy for short. Adding

such a feature can be accomplished as follows:

Class TrafficLightController {

 FrFy as coreTrafficController {

 Red {

 + midnightHour -> FlashingRed; }

 FlashingRed {

 morningHour -> Red;

} }

The previous example illustrates a scenario of adding to a basic state machine. The next

example illustrates removing an existing element of a state machine.

Let’s assume now we are modeling a traffic light for a high way entrance, and that the light is

either Red or Green. We call this traffic light H-way for short.

67

class TrafficLightController {

 H-way as coreTrafficController {

 - After(greenTimer) -> Yellow;

} }

This example illustrates a scenario where a transition is removed from the model.

The process of modeling controllers may reveal a number of reusable state machines. These

reusable state machines can then be refined and used as we described above. The outline view of

the Umple editor (discussed in Section 3.7.1 Umple textual on page 70) facilitates the discovery

of such reusable state machines.

3.6 State machine timers

Umple state machines support two types of timers. After timers and afterEvery timers. The after

timer fires an event to trigger a transition after a specified amount of time. On the other hand,

afterEvery timer fires an event on a specified intervals to trigger a transition. The following is an

example describing timers in Umple.

class Timer {

 boolean G = true;

 status {

 S1 {

 after(5) -> S2;

 }

 S2 {

 afterEvery(5) [G] -> S1;

 }

 }

}

In this example, while the state machine status is in S1, and after 5 seconds, a transition to S2 is

triggered. This timer expires only once, and if for any reason a transition does not occur (if there

is a guard that evaluates to false), the timer is not restarted.

In the same example, while in S2, and after every 5 seconds, a transition to S1 is triggered,

subject to the guard. This timer is restarted automatically every 5 seconds. The concept is that the

state machine will keep trying until the guard becomes true.

The implementation of this timer behavior uses the timerTask in Java. For this example, Umple

defines two helper variables as follows:

68

//Helper Variables

 private TimedEventHandler timeoutS1ToS2Handler;

 private TimedEventHandler timeoutS2ToS1Handler;

The event handling method is similar to any normal transition. The event name given to this

transition timeout <name of the source state> <name of the destination state>.

public boolean timeoutS1ToS2()

 {

 boolean wasEventProcessed = false;

 Status aStatus = status;

 switch (aStatus)

 {

 case S1:

 exitStatus();

 setStatus(Status.S2);

 wasEventProcessed = true;

 break;

 }

Since states may have other outgoing transitions, it is required to stop timers whenever we exit

states with active timers. The following method is called whenever state S1 or S2 is exited.

private void exitStatus()

 {

 switch(status)

 {

 case S1:

 stopTimeoutS1ToS2Handler();

 break;

 case S2:

 stopTimeoutS2ToS1Handler();

 break;

 }

 }

Similarly, any transition into either S1 or S2 should start the timer.

69

private void setStatus(Status aStatus)

 {

 status = aStatus;

 // entry actions and do activities

 switch(status)

 {

 case S1:

 startTimeoutS1ToS2Handler();

 break;

 case S2:

 startTimeoutS2ToS1Handler();

 break;

 }

 }

3.7 Umple textual editor and automated update site

Contributes to goals 4, 5, and 8

In order to enhance Umple adoption and increase the pool of available participants for our

grounded theory study, we need to enhance Umple editors. The challenge is that the Umple

system and language are under continuous development and modifications. The approach for the

textual editor has to accommodate this aspect of Umple. An Umple textual editor has to be

tightly related, and at the same time loosely coupled, with the underlying Umple components.

This allows us to quickly refactor changes in the Umple language and bring them to the editor,

and at the same time, not depend on the editor for any change in Umple.

Figure 13: Umple high-level system components

Figure 13 illustrates Umple components that relates to the editors. As we show in the next two

sections, the Umple textual editor relies solely on Umple Grammar and Umple Meta-model

respectively.

70

3.7.1 Umple textual editor

We have built an Umple textual editor based on Xtext technology [44]. Xtext is a language

development platform that supports the development of general purpose programming languages

and domain specific languages. We have identified Xtext to be a suitable approach to implement

an Eclipse-based Umple textual editor for the following reasons:

1. Xtext is open source.

2. The Xtext based editor becomes tightly related to Umple grammar. This means that to reflect

any change in the Umple grammar requires only straightforward changes to the

corresponding Xtext Umple grammar. As future work it is planned to be able to generate one

from the other.

3. We can easily extend the editor to limit side effects, where the developer may gain access to

aspects of the generated code that he is not supposed to; for example, a transition action that

may update the value of the state machine.

4. Most importantly, Xtext is built on standard technologies, like Java and Antlr [42]. Building

on standard technologies simplifies maintenance.

71

Figure 14: Umple textual Editor

Figure 14 illustrates some of the features in the Umple textual editor.

1. Umple perspective. Clicking on the Umple perspective opens the layout that is most

appropriate for Umple development.

2. Outline view shows the elements of the Umple model organized in a hierarchy. The

elements shown correspond to both Class and state machine modeling elements. Optionally,

the developer can choose to show the native code hierarchy.

3. Sophisticated error recovery in the Umple textual editor. In this case, the model is missing

the forward slash before the action code. The editor identifies the syntactic error, and

quickly recovers and continues parsing at best guess in the next token.

4. Error messages with expected tokens.

3.7.2 Automated update site

As the number of Umple contributors and users are expanding, we implemented a mechanism

whereby users running Umple plug-in get notified automatically whenever there is a newer

72

Umple release. We achieved this by implementing an automated update site. When a new

version is released, the Umple Eclipse plug-in notices the server version is newer than the local

version, and prompts the user to automatically download and install the newer version.

3.8 Summary

In this chapter, we introduced the syntax and semantics of simple state machines in Umple. We

introduced the Umple grammar, and the meta-model. We compared Umple’s meta-model to the

latest UML state machine meta-model. We discussed the major design decisions we took, such

as the code generation pattern used and the approach to represent state machine model elements

textually in Umple. Our decisions were largely driven by a number of goals, which themselves

were derived from the vision for the Umple technology. Umple design goals are:

1. Minimize the use of reserved words.

2. Keep the syntax concise and extendable.

3. Umple syntax should look and feel like high level programming languages.

4. Eliminate the need to edit the generated code.

5. The generated code should be efficient.

6. The generated code should look like code written by hand.

7. Exploit textual modeling potential.

We demonstrated how Umple supports reuse and mixing in of state machines. Finally, we

presented the Umple textual editor similar to editors available to other high level programming

languages, like auto-complete, code-assist, outline and error views. The Umple update site

enables Eclipse users to update their Umple compiler whenever a newer release is available.

73

Chapter 4: Syntax and semantics of composite state machines

The objective of this chapter is to explore the complexities brought about by UML composite

states and to outline the syntax and semantics of nesting and concurrency concepts. We

highlight some of the outstanding issues and demonstrate Umple’s approach in handling such

issues. We use UML 2.4 beta II specifications [23] as our reference (the latest published at the

time of writing). However, and as we demonstrate in this chapter, Umple is not just another

implementation for UML specifications. Umple does deviate from the standard when we find

objective justifications. Such deviations are not uncommon, many modeling and code generation

tools adopt different code generation styles, and occasionally, their own implementation flavor of

the semantics.

In addition, we explore the undefined semantics of UML composite state machines, and show

how some of such semantics can be unambiguously defined in Umple. UML specifications do

not specify code generation patterns. Umple, in this area, draws from related work, and existing

modeling tools in weighing the options. Umple’s approach in handing code generation from

composite state machine is novel. The approach avoids explosion of the generated code and

maximizes reuse of simple state machine semantics.

It is the topic of the next chapter to illustrate how such semantics are implemented in code

generation. The next chapter presents a modified flattening approach for code generation, and

demonstrates how the semantics issues discussed in this chapter are implemented.

This chapter is a deep investigation of the UML specifications that relate to composite states. We

assume the reader is well familiar with the basic semantics of state machine presented in Chapter

3: Syntax and semantics of simple state machines.

4.1 Syntax of Composite state machines

Encapsulation of state machines enables the modeling of complex behavior concisely. Every

composite state machine can be flattened in one or more simple state machines. The real power

in composite state machines is conciseness. Our objective therefore is to enable the textual

modeling of composite state machines in a way that maintains or enhances on this conciseness.

“The concept of hierarchical state machine is a true blessing only if it is easy enough to

implement in a main stream programming language” [45]. The grammar for simple state

machines was presented in the previous chapter (Chapter 3: Syntax and semantics of simple state

machines). For the purpose of this chapter, we only present the grammar for composite state

74

machines. We start by presenting the syntax for nested state machines, and then present the

syntax for concurrent state machines.

Nesting of state machines is defined recursively. As shown in grammar rules R7 and R8, a state

has a state entity. A state entity may itself contain a state. This enables the syntax to define

unlimited levels of nesting of states.

Concurrency is defined using the symbol ||. When a state entity is ||, Umple understands that the

next state to be defined is concurrent.

R7 state :

[stateName] { ([[comment]] | [=changeType:-|*]? [[stateEntity]])* }

R8 stateEntity- :

[=-||] | [[transition]] | [[entryOrExitAction]] | [[activity]] |

[[state]]

Umple uses nested brackets to represent nesting levels. The example below defines stateA2 to be

a substate of stateA1, which is itself is a substate of stateA.

stateA {

 stateA1 {

 stateA2 {

 }

 }

}

The following shows concurrent states.

state A {

 stateB { }

 ||

 stateC { }

}

In UML terminology, stateB and StateC are two concurrent regions of state A.

More examples are presented in the next chapter.

4.2 Semantics of composite states machines

The UML 2.4 Beta II specifications [23] leave significant room for undefined semantics (known

unknowns). More interestingly are the unstated undefined semantics (unknown unknowns). As

we tread over the semantics of composite states, we carefully expose these two aspects of UML

state machines and show how Umple addresses them.

75

We start by exploring composite state semantics by using the example in Figure 15 as a

playground to lay out our analysis of the semantics. The example is comprised of seven states,

one nesting level, two concurrent regions, and 11 transitions. For simplicity’s sake, the example

does not include any actions, guards, or activities, but our analysis can easily extend to include

such elements.

We now analyze the transitions in Figure 15 one by one in more depth.

X1:

The state machine exits the source simple state ‘X’ and enters the destination composite state

‘Y’. Instantaneously, the state machine is in state ‘A’ and state ‘C’.

Using UML specification terminology, this is a ‘default entry’ into the ‘containing’ composite

state Y (page 570 in the UML specifications).

X2:

This is an invalid transition. The state ‘Y’ is a concurrent state, and the two regions must at all

times stay active.

We determined that this is an invalid transition, despite the fact that UML specifications can be

interpreted in a way to make such transitions valid; a transition that crosses the boundaries of

Figure 15: Exploring the semantics of state machines

 X11

 X10

 X6
 Z X

 A B

 C D

 X7

 X5

 X9

 Y

 X8

 X2 X4 X1

 X3

76

concurrent regions forces exits of all regions and re-entry of all regions (page 591 in the UML

specifications).

X3:

This is a simple transition from state ‘A’ to state ‘B’.

X4:

This is an invalid transition, similar to transition X2.

X5:

The state machine exits the source state ‘D’ and also exits both regions of state ‘Y’, and enters

the simple destination state X.

X6:

This exits state Y, and any substates, and enter the simple destination state ‘Z’. The UML

specifications call this a ‘higher level transition’.

According to the UML specifications, a higher level transition with a target outside a composite

state forces exits of all substates and regions. But if the target is within the composite state, then

no exits are forced. But what if the target is in a different region (like X2 and X4 above)? UML

does not rule out the validity of such transitions as discussed earlier.

X5 and X6, despite their apparent similarity, bear significant semantics differences. X5 can only

be triggered while the state machine is state ‘D’, while X6 can be triggered while at any state

combinations of the inner states of ‘Y’.

Another issue with X6 is the question of which region is exited first? Imagine each of the two

regions has exit action A and exit action B. Which exit action is called first? UML specifications

specify that exiting the regions has to occur first before updating the state machine active state

(Page 571 in the UML specifications). But if the state machine is being executed in a single-

thread environment, the need to define which region is exited first becomes necessary.

Due to the linear nature of text, Umple will exit the region whose definition comes first in the

linear text. If the developer would like another behavior, he can simply alter the sequence in the

Umple source. This is one aspect where the linear nature of text clears potential ambiguity in the

visual model.

X7:

Enter state ‘D’, and instantaneously, enter state ‘A’. In UML 2.4 terminology, this is a transition

to a direct substate. The UML specifications calls this explicit entry (page 570 in the UML

77

specifications), as opposed to implicit entry in the case of X1, where the transition into state A

and state C are implicit.

X8:

Similar to X3, this triggers a transition from ‘D’ to ‘C’.

X9:

 This is a simple transition between two simple states within a composite state machine.

X10:

This transition triggers exiting all inner states of ‘Y’, exiting the state ‘Y’ itself, and then

entering state B. Instantaneously, the state machine also enters state ‘C’.

This is an undefined semantics (under specification) in UML 2.4 Beta II specification. The

specifications do not mention the semantics of this transition.

X11:

This exits all inner states of ‘Y’, exits ‘Y’ itself, and then enters states ‘A’ and ‘C’.

Similar to transition X10, this is an undefined transition in UML 2.4 specifications.

4.3 Final States

“A final state is a special kind of state signifying that the enclosing region is completed” (UML

2.4 Beta II specifications page 547). When all regions in a state machine reach a final state, then

it means that the entire state machine is completed.

According to the UML specifications [23] (page 547 on version 2.3), a final state has the

following constraints: 1. No outgoing transitions; 2. has no regions; 3. has no reference to a sub

machine; 4. has no entry behavior; 5. has no exit behavior; 6. has no do activity behavior. Umple

interprets a completion of a state machine to mean deletion of the object. An Umple class can

contain multiple state machines. A completion of any state machine in the class will delete the

entire object.

Similarly, in a composite state machine, completion of a region implies the completion of the

entire state machine, and object deletion follows. The UML specifications state that completion

of a region does not mean the completion of the entire state machine. This is an area where

Umple semantics differs from UML specification. We made the decision to delete the object

when a region is completed for the following reasons:

1. This makes the behavior of completion in the case of multiple state machines in the same

class work the same as a state machine with concurrent regions.

78

2. Supporting the UML alternative requires the introduction of the notion of partial completion,

which adds complexity that, we submit, will usually not be needed. Partial completion is the

concept that one region has completed, while one or more of its concurrent regions have not

yet completed. It would have been necessary to track which regions have reached partial

completeness, so that if all of them reach partial completeness then the state machine as a

whole can become complete, and the object can be deleted. But there are many other

complexities: For example, if a transition is taken out of a state with concurrent regions, one

or more of which are partially complete, then the partial completeness status would need to

be cancelled. But upon returning to ‘history’ this would need to be restored.

3. Any behavior supported in the UML preferred semantics can be supported by using Umple’s

End states in the following manner: Imagine there is the intent to transition to final when End

states s1 and s2 in two concurrent regions are both reached. The entry action in such end

states can set variable end1, and2 to true and trigger event s1s2final. Then there can be a

transition s1s2final to ‘final’ from the surrounding state machine, guarded by [end1 &&

end2].

We illustrate Umple syntax and semantics of final states in the following three cases.

4.3.1 Case 1: Final states in regions

Figure 16 illustrates a composite state machine with two regions. Each region has a Final state.

Note that the keyword Final is case sensitive.

class FinalState {

 stateMachine {

 M {

 T2 -> C;

 R1 {

 A {

 T1 -> Final;

 } }

 ||

 R2 {

 B {

 T4 -> Final;

 }

 }

 }

 C {T3 -> M}

 }

}

Figure 16: Final states in regions

R1

R2

A F1 T2

T1

1

B F2
T4

C

T3

79

When T1 occurs, the state machine becomes complete and Umple deletes the object. The UML

alternate interpretation would mean that the state machine would have been partially complete

since R2 would have been still active. In that case, the state machine would still have been able

to respond to T4 and T2.

4.3.2 Case 2: Transition from a composite state to a simple Final state

Figure 17 illustrates a transition from a composite state to a Final state.

M

class FinalState {

 stateMachine {

 M {

 T1 -> Final;

 R1 {

 A {}

 }

 ||

 R2 {

 B { }

} } } }

Figure 17: Transition from a composite state to a Final state

When T1 occurs, Both R1 and R2 becomes instantaneously inactive. The state machine reaches

a Final state and the state machine becomes completed. Object deletion follows.

4.3.3 Case 3: Final state in nested configuration

Figure 18 illustrates final states in a nested configuration.

class FinalState {

 stateMachine {

 L1 {

 L2 {

 t -> Final;

 }

 }

 }

}

Figure 18: Final state in nested configuration

When the state machine is in L2 state, and T occurs, the transition to the Final state takes place

and the whole state machine becomes completed.

In such a nested configuration, the exit action of L2 and L1 is called prior to object deletion.

R1

R2

A

B

F

T1

T1 T

L1

L2
F

t

80

4.4 Do Activities

UML specifies the do activity to be the execution of a behavior that takes place while in a

specific state. The execution of the thread representing the do activity starts when the state is

entered following the execution of the entry action of that state, if such an action exists. If the

state is exited before the do activity is completed, the do activity is aborted prior to its

completion.

In Umple, any state can have an associated do activity. We demonstrate the behavior of do

activities in Umple using three cases; 1) Nested configuration, 2) Concurrent configuration, 3) A

configuration where a single event triggering more than one transition in two separate state

machines within the same class.

4.4.1 Case 1: Do activity in nested configuration

This case demonstrates nested states with two do activities at two different levels.

class DoActivity {

 stateMachine {

 A {

 e -> C ;

 do {d1;}

 }

 B {

 do {d2;}

 C { do {d3;} }

 }

 }

}

Figure 19: Case 1: Do activity in nested configuration

The state machine starts in state A. At this state, Umple creates and executes the thread d1.

When the event e occurs, the thread d1 is stopped and the transition to the inner state C takes

place. Upon this transition, Umple creates two threads, one for d2 and one for d3.

4.4.2 Case 2: Do activities in concurrent configuration

This case demonstrates a concurrent state machine with two do activities executing in parallel.

e

T

A
Do {d1;}

B
Do {d2;}

C
Do {d3;}

81

class DoActivity {

 stateMachine {

 A {

 e -> M ;

 }

 M {

 e -> A ;

 m1 {

 C { do {d1;} }

 }

 ||

 m2 {

 D { do {d2;} }

} } } }

Figure 20: Case 2: Do activities in concurrent configuration

In this case, the state machine starts in state A. When the event e occurs, the transition to the

concurrent state M takes place, and an implicit transition into both C and D is fired. This is

because in both regions, m1 and m2, C and D are the start states by default. Once the state

machine enters C and D, both threads d1 and d2 start executing.

If e occurs again while the concurrent state M is active, a higher-level transition to state A takes

place, exiting both states C and D. Upon this transition, both threads d1 and d2 are stopped.

4.4.3 Case 3: Do activities in Multiple state machines within the same class

Umple’s support for multiple state machines in the same class enhances the simplicity with

which a developer can model parallel behavior. Using concurrent state machines can be

simulated by using multiple state machines in the same class. The example below demonstrates

this use case.

class DoActivity {

 stateMachineOne {

 A {

 e -> B ;

 do { d1; }

 }

 B { }

 }

 stateMachineTwo {

 One {

 e -> Two ;

 do { d2; }

 }

 Two { }

} }

Figure 21: Case 3: Do activities in Multiple state machines within the same class

e

M

m1

m2

e

A

C
do {d1;}

D
do {d2;}

e

e

A
do{d1;}

B

Two
One

do{d2;}

82

This Umple class contains two state machines, stateMachineOne and stateMachineTwo. The

event e triggers two transitions in the two separate state machines from state A to state B in the

first state machine, and from state One to state Two in the second state machine. These two

transitions result in the stopping of the two do activities, d1 and d2.

4.5 Outstanding issues

Our investigation of the latest UML composite states specifications uncovered a number of

outstanding issues. Some of these issues are known and stated in the UML specifications, others

are not mentioned.

4.5.1 A higher level transition to composite states with regions without start
state

Consider the higher-level transition X1 in Figure 22. What is the semantics of such transition?

The UML specifications discuss two alternate interpretations (page 566 in the UML

specifications). One interpretation is that such a model is invalid. The second interpretation is

that this is a valid model, and that the state machine enters the composite states, but does not

enter any of the substates. The UML specifications do not prefer either interpretation.

However, this model becomes more problematic if one of the two regions happened to have a

start state. If such is a valid model, then what is the resulting state?

Umple resolves such ambiguities by implicitly making the first state the start state. Hence, the

transition X1 implicitly enters the start state in the two regions.

X1

Figure 22: A higher level transition to a composite state

83

4.5.2 Conflicting transitions

A conflicting-transitions situation occurs when the same event fires two different transitions

(pages 581, 582, and 583 in the UML specifications). This can occur in unguarded transitions, or

in guarded transitions when the guard value is true (Figure 23). Conflicting transitions result in a

non-deterministic state machine.

The UML specification states that the state machine in such situation can choose a subset of

those transitions to fire; however, the sequence of the firing is not straightforward. Some of the

conflicting transitions are resolved by complex algorithms. For example, the innermost transition

always has a priority. But what if you have regions, which one has a priority then?

Umple’s linear nature resolves such ambiguity. The transition that comes first in the linear text is

always chosen first. This approach makes the state machine deterministic.

4.5.3 Forks and Joins with actions and guards

UML state machine forks and joins cannot have guards or actions associated with them. Figure

24 is therefore an invalid UML model (Constraint 1 on page 589 in the UML specifications).

Umple’s forks and joins can have guards and actions. The guard functions in a way identical to a

guard on a simple transition (i.e. if the guard evaluates to false, none of the forks transitions takes

place). A fork action is executed before the transition takes place, and a join action is executed

after the exit actions of all substates and regions are executed.

E1 [G]

E1

Figure 23: Conflicting transitions

Figure 24: Fork with actions and guards

/A [G]

84

Y
A B

C D

e1/set(x)

e1/set(x)

4.5.4 Partial Forks and Joins

UML specifies that regions 2 and 4 are entered explicitly (Figure 25). The remaining two regions

(region 1 and 3) are entered implicitly. UML does not specify any semantic difference between

the explicit and implicit entries (page 571 in the UML specifications). Semantically, this is

identical to a higher level transition to the boundary of the composite state machine (i.e.,

identical to X1 in Figure 15). There is a semantic difference only if the transition is pointing to

an inner state in region 2 and 4 that is not the start state. In situations where there is a transition

to two or more different inner states, with none being a default start state, support for partial

transitions makes semantic sense. Umple, however, does not currently support such a case.

4.5.5 Event processing in concurrent states

The same event cannot trigger two transitions; except if the transitions are in two separate

regions. Consider the event ‘e1’ in Figure 26. There is a need to unambiguously determine the

firing sequence of the event e1.

The UML specifications include a transition selection algorithm (TSA) that resolves most, but

not all, conflicting transitions (we refer to semantics section on page 581 and transition selection

algorithm on page 583). The TSA assigns priorities to transitions based on their relative nesting;

the highest priority is given to the inner most state in the active state (in Figure 26, state Y is the

1

2

3

4

Figure 25: Partial fork

Figure 26: Event processing in concurrent regions

85

active state). This algorithm works well for transitions that are at different nesting levels, but

does not address the transitions similar to those in Figure 26. Umple gives higher priority to the

region defined first in the linear nature of its textual notation.

4.6 Large State Machine Example

We have so far presented relatively simple state machine examples. In “Chapter 7:

Experimentation” we also experiment with relatively small models. Here, we illustrate how

larger and more complex state machines can be effectively represented textually in Umple.

Figure 27: Complex state machine model

Consider the example in Figure 27 when more action code and guard conditions are inserted in

the visual representation, and model elements have more expressive naming. The image can

quickly become too cumbersome to maintain. Another consideration is model refinements and

edits; as the model grows, additional model modifications entail increasing effort to adjust the

model layout and spacing.

Software engineers spend a considerable amount of their time modifying and maintaining models

[46]. One would expect that model maintenance to grow at a higher-than-linear rate as model

size increases. This is because increasing effort is needed to rearrange and position increasing

86

numbers of model elements. We claim that Umple handles modifications more effectively

especially for larger models. Some aspects of this claim is investigated in “Chapter 7:

Experimentation”.

The equivalent model is illustrated in Listing 5 below using Umple notation.

87

class StateMachineTest {

 Integer v = 0;

 status {

 S1 {

 e2 -> S2C;

 S1A {

 e1 -> S2;

 }

 S1B {

 entry /{setV(0);}

 e5 -> S1A;

 S1B1 {

 e3 -> S2B;

 e4 -> S1B2;

 }

 S1B2 {

 e1 [v>4] -> S3;

 e1 [v<1] -> S2;

 e3 -> S1A;

 e4 -> S1B1;

 }

 }

 }

 S2 {

 exit / {setV(6);}

 S2A {

 e3-> S1B1;

 e1-> S2;

 e4 -> S1;

 }

 S2B {

 e4 -> S2A;

 }

 S2C {

 e1 -> / {setV(5);} S2B;

 e2 -> S3;

 e5 -> / {setV(2);} S3;

 e4 -> S2B;

 }

 }

 S3 {

 exit / {setV(3);}

 e1 -> S1A;

 e2 -> S2;

 e3 -> S2C;

 e5 -> S1;

} }

Listing 4 : Complex state machine model

88

In the visual representation of this model, we found it difficult to use fully expressive event

names and we had to minimize the use of actions and guards to keep elements from overlapping.

Using Umple notation, it was relatively more effective to use full naming, actions and guards.

Textual features such as refactoring and ‘find-and-replace’ were handy in implementing such

changes.

4.7 Test Driven Development

The Umple platform and tools are developed using a Test Driven approach [47] which provides

for confidence that new development in Umple does not result in regression defects. The test

Driven Development (TDD) approach adopted in the development of Umple is well explained in

Forward’s thesis [2]. In this section, we briefly describe the process, giving examples specific to

the Umple state machine features. We also demonstrate how the TDD approach was instrumental

in the development of the composite state machines.

4.7.1 Umple Testing Process

The Umple compiler starts by parsing the input Umple code into tokens. The tokens are then

used to populate the meta-model, which is in turn used to drive a number of code generation

templates to generate the target language code. The generated system can then itself be tested to

make sure that Umple models generate code that behaves as expected. This testing process is

summarized in Figure 28 below.

Figure 28: Testing Process [2]

4.7.2 Parsing Umple code into tokens

Consider the following simple state machine.

89

class LightFixture

{

 bulb

 {

 On {

 push -> On;

 }

 }

}

The parser analyzes the input text and identifies tokens. Parsing this simple state machine

generates the following tokens:

[classDefinition][name:LightFixture][stateMachine]

[inlineStateMachine][name:bulb][state][stateName:On]

[transition][event:push][stateName:On]

There are 80 test cases covering the parsing for state machines ranging from very simple state

machines to a larger more complex composite states. The complete listing of test cases is

published as part of the Google code project and can be found at the following location:

http://code.google.com/p/umple/source/browse/#svn/trunk/cruise.u

mple/test/cruise/umple/compiler/

4.7.3 Meta-model tests

The objective of this group of test cases is to ensure that Umple maintains an accurate internal

representation for the input model. The meta-model is tested to verify that an input model, after

being correctly parsed, populates the right elements into an instance of the meta-model. For the

simple example, we test the following are populated correctly:

- State machine name

- The number of states within a state machine.

- The first state name (start state name).

- The number of transitions.

- Events names.

Listing 5 illustrates the JUnit code that tests these aspects of the model.

90

 UmpleClass c = model.getUmpleClass("LightFixture");

 StateMachine sm = c.getStateMachine(0);

 Assert.assertEquals("bulb", sm.getName());

 Assert.assertEquals(1, sm.numberOfStates());

 State state = sm.getState(0);

 Assert.assertEquals("On", state.getName());

 Assert.assertEquals(1, state.numberOfTransitions());

 Transition t1 = state.getTransition(0);

 Assert.assertEquals("push", t1.getEvent().getName());

Listing 5: Meta-model test

The number of meta-model test cases is similar to the number of the parser test cases. This is

because for each model tested from a parsing perspective, is also tested from a meta-model

population perspective.

4.7.4 Code generation tests

For each target language, we test to make sure that the generated code matches exactly our

expectation. This can be done by writing by hand the expected generated code, and then testing

to make sure that what is actually generated matches our expectations. For our sample model, if

the target language is Java, the expected generated code is shown in Listing 6.

91

/*PLEASE DO NOT EDIT THIS CODE*/

/*This code was generated using the UMPLE *Umple Version* modeling language!*/

public class LightFixture

{

 //------------------------

 // MEMBER VARIABLES

 //------------------------

 //LightFixture State Machines

 enum Bulb { On }

 private Bulb bulb;

 //------------------------

 // CONSTRUCTOR

 //------------------------

 public LightFixture()

 {

 setBulb(Bulb.On);

 }

 //------------------------

 // INTERFACE

 //------------------------

 public String getBulbFullName()

 {

 String answer = bulb.toString();

 return answer;

 }

 public Bulb getBulb()

 {

 return bulb;

 }

 public boolean push()

 {

 boolean wasEventProcessed = false;

 Bulb aBulb = bulb;

 switch (aBulb)

 {

 case On:

 setBulb(Bulb.On);

 wasEventProcessed = true;

 break;

 }

 return wasEventProcessed;

 }

 private void setBulb(Bulb aBulb)

 {

 bulb = aBulb;

 }

 public void delete()

 {}

}

Listing 6: Generated Java code

92

There are about 98 code generation test cases. All test cases follow the same pattern; test the

expected or desired output to the real output and make sure both are identical. These test cases

are published as part of the Umple Google Code project and can be found at the following

location:

http://code.google.com/p/umple/source/browse/#svn/trunk/cruise.umple/t

est/cruise/umple/statemachine/implementation/

4.7.5 Generated-systems tests

The final stage of testing involves testing the behavior of systems generated by Umple. For

example, we feed the compiler the model shown in Figure 27, and then test the generated system

using a sequence of events, and make sure that the resulting state is the expected state.

Composite state machines are built by means of reusing the implementation of simple state

machines (see Chapter 5: Implementation of composite state machines). This testing approach

has enabled us to efficiently build the composite state machines in Umple with few regression

defects.

Listing 7 illustrates a sample generated system test. The system shown below is fed as an input to

Umple and tested is performed on the generated system

class GarageDoor

{

 status {

 Open {

 buttonOrObstacle -> Closing; }

 Closing {

 buttonOrObstacle -> Opening;

 reachBottom -> Closed;

 }

 Closed {

 buttonOrObstacle -> Opening; }

 Opening {

 buttonOrObstacle -> HalfOpen;

 reachTop -> Open;

 }

 HalfOpen { buttonOrObstacle -> Opening; }

 }

}

Listing 7: Sample generated system test

93

This example is for a simple garage door system. The testing of the generated system is

performed by feeding the system with a number of events, and checking whether the system is in

the expected state or not. For example, the system can be fed the following events.

buttonOrObstacle

reachedButtom

buttonOrObstacle

reachTop

After these events, the expected state is Open. If the test case succeeds, we have more confidence

that Umple generated systems work as expected. If such a test case fails, then we investigate

where the failure took place.

4.8 Summary

Concurrent and nested state machines are the main topic of this chapter. We first introduced

Umple syntax for these. We then presented the semantics of Umple’s composite state machines,

which were drawn to a large extent from the UML specifications. We also highlighted some of

the outstanding issues that exist in the latest UML specifications and demonstrated when such

inconsistencies occur. In some cases, Umple deviated from the UML specifications when there

were convincing reasons. In other cases, Umple ironed out some of the undefined semantics.

Composite state machines tend to be larger and more complex than simple machines. We

demonstrated how Umple’s textual representation can effectively represent large and complex

state machine models. We also demonstrated the test-driven development approach adopted in

Umple.

94

Chapter 5: Implementation of composite state machines

This chapter focuses on code generation of composite state machine in Umple. As we explained

in Chapter 4: Syntax and semantics of composite state machines, the code generation of

composite state machine in Umple is novel. Umple uses a flattening approach termed Compress-

Flatten Code Generation (CFCG). In this chapter, we demonstrate this approach, and compare it

to other code generation approaches for composite state machines.

5.1 Convention

Throughout this chapter, we adopt a convention to help illustrate the CFCG process. In the

following sections, we illustrate how Umple flattens and generates the implementation code.

Umple’s meta-model (see Figure 12: Umple meta-model on page 57) is unaware of composite

states. The CFCG process therefore adds additional state machine elements to the meta-model to

simulate the behavior of composite state machines, without adding additional complexity for the

code generation templates. This approach allows us to make significant reuse of the

implementation of simple state machines. For example, a region in Umple is defined internally

as a full state machine. This approach is explained in detail in this chapter.

Clearly, this approach is not language specific. However, we use Java as a representative

language. To distinguish between Java and Umple in this chapter, Java code will always appear

in grey boxes.

The code generation implementation approach presented in this chapter aims at generating code

for all possible, and valid, state and transition combinations, while maintaining the relatively

concise size of the generated code. This approach is termed Compress-Flatten Code Generation

(CFCG) summarized in Figure 29.

Read input

Model

Build the

Parse Tree

simple state

machine?

Generate

Code

Add dummy

states

Flatten state

machine

Populate

Meta-Model

Insert

additional

actions

Yes

No

Figure 29: CFCG Process

95

The CFCG process works as follows. Umple reads the input model, and builds the parse tree.

The process distinguishes between two types of state machine models; a state machine that has at

least one nesting level, or one concurrent region, is considered a complex state machine. The

rationale is that such state machines require additional processing (compression and flattening) in

order to generate concise state machine code. The path for simple state machines is discussed in

“Chapter 3: Syntax and semantics of simple state machines”. Here, we limit our discussion on

aspects of the CFCG process related to nested and concurrent states.

5.2 Composite state cases

We demonstrate the code generation of composite states by demonstrating a number of cases. A

case is a composite state pattern. For example, a transition from an outer state to an inner state in

a nested states environment is one case. Each of the following cases demonstrates one specific

aspect of a composite state machine. For each case, we show 5 items as follows:

1. The top left quadrant shows the input model visually.

2. The top right quadrant shows the input Umple model.

3. The lower left quadrant shows the flatted state machines visually.

4. The lower right quadrant shows the algorithm adopted for code generation.

5. The bottom shows an excerpt of the generated code.

Note that for each case, only an excerpt of the generated code is presented. This is because the

analysis of each case focuses on a specific aspect of code generation. Therefore, some questions

may be left unanswered for some cases and should be cleared in the cases to follow.

We use Java for the code generation language. But arguments in this chapter can easily be

extended to any high level programming language.

For simplicity, the models illustrated in this chapter ignore all types of actions, guards, and do

activities. The analysis, however, does address these model elements. Later in this chapter, we

present expanded examples that include all types of actions.

5.2.1 Case 1: Transition to an inner state

The first case we address is a transition to an inner state. In our example, the state machine starts

in state A. When the event ‘e’ occurs, the transition to the inner state C takes place. This is

equivalent to transition from state A to B, and then from state B to state C.

Any exit action(s) from state A are called first, then transition actions, followed by any entry

actions into B, and finally, entry actions into C.

96

class ToInnerState {

 stateMachine {

 A {

 e -> C;

 }

 B {

 C {}

} } }

StateMachine

StateMachineB

1. Flatten by generating stateMachine and

StateMachineB.

2. Set stateMachine to A (the start state)

3. Set stateMachineB to Null (state B is not

active)

4. When event e occurs:

 If state A is active, set stateMachineB

to stateMachineB.C

 Return true to indicate the event was

processed.

// Flattened state machines

enum StateMachine { A, B }

enum StateMachineB { Null, C }

// Construction

public ToInnerState(){
 setStateMachine(StateMachine.A);
 if (stateMachineB == null) { setStateMachineB(StateMachineB.Null); }
}

// Event prcoessing

public boolean e(){
 boolean wasEventProcessed = false;
 switch (stateMachine) {
 case A:
 setStateMachineB(StateMachineB.C);
 wasEventProcessed = true;
 break;
 }

}

Figure 30: Transition to an inner state

A

B

C
e

e

A B

e

Null C

97

As shown in the abstracts of the generated code, Umple internally creates two state machines, the

first state machine has two states, A and B. The second state machine is Null and C.

Upon construction the first state machine is set to state A, and the second state machine is

updated to state Null. As a matter of fact, the state Null is used to indicate that stateMachineB is

not active; i.e., the higher level state machine is in some other state than B (here it is in state A).

As with simple state machines, the event handler is generated as a public method. This method

updates the state machine state by calling a private method setStateMachineB(). This method

encapsulates calls to any actions and do activities. This encapsulation is very important to our

code generation approach for two reasons:

1. It makes all event processing methods relatively small in size; they become easier to read and

understand.

2. It simplifies the code generation patterns. All event processing methods look very similar,

and can therefore use the same code generation template.

This state machine method is very simple: it encapsulates all method calls when transitioning

from some state to another state. But also, this method allows for arbitrary complexity in the

state machines the modeler can create; there are an unlimited number of combinations of source

and destination states. For this reason, we will ignore the complexity of this method while we are

discussing these code generation cases. The specifics of the code generation for this method are

discussed in section 5.3 in this chapter.

5.2.2 Case 2: Transition from an inner state

This case is similar to the previous case except that the transition originates from an inner state to

an outer state.

98

class FromInnerState {

 stateMachine {

 A { }

 B {

 C {

 e -> A;

 }

} } }

stateMachine

StateMachineB

1. Flatten by generating stateMachine and

StateMachineB.

2. Set stateMachine to A (the start state)

3. Set stateMachineB to Null (state B is not

active)

4. When event e occurs:

 If state C is active, set stateMachineB

to Null.

 Set stateMachine to A.

 Return true to indicate the event was

processed.

A

B

C
e

e

A B

e

Null C

Figure 31: Transition from an inner state

99

// Flattened state machines

enum StateMachine { A, B }
enum StateMachineB { Null, C }

// Construction

 public FromInnerState()

 {

 setStateMachineB(StateMachineB.Null);

 setStateMachine(StateMachine.A);

 }

// Event processing

public boolean e() {
 boolean wasEventProcessed = false;
 switch (stateMachineB) {
 case C:
 setStateMachine(StateMachine.A);
 wasEventProcessed = true;
 break;
 }

}

Continued Figure 31: Transition from an inner state

The code generation for this case is similar to the previous case, which is an objective we strive

to maintain in Umple; similar state machines should have similar code generation patterns.

The difference here is in the event processing method. In response to the event ‘e’, and if the

state machine is in state C, we update the state machine state to A. This is also encapsulated in a

single method call setStateMachine().

The coming cases entail regions and concurrency. In our implementation, we consider every

region to be a full-fledged state machine; a region may have one or more state machine elements

of any type, such as a start state, end states, ordinary states and transitions. This view of regions

allows us to recursively define regions without having to define a new region element. This is

similar to a nested state, where a state can itself contain a state (a substate).

5.2.3 Case 3: Transition to a concurrent state

In this case (Figure 32), the state machine starts in state A. When the event ‘e’ occurs, the

transition from state A to the composite state M takes place. Instantaneously, the two regions C

and D become active.

100

Umple creates internally three state machines; StateMachine that has two states, A and M;

StateMachineC that has two states, null and C; and finally StateMachineD that has two states

null and D.

Note that we use the dummy state null in a consistent manner. If a state machine is in state null,

it means that the state machine is not active. In this case, if the state machine is in state A, then

both regions C and D are set to null.

class ToConcurrentState {

 stateMachine {

 A {

 e -> M; }

 M {

 C {}

 ||

 D {}

} } }

stateMachine

stateMachineC

stateMachineD

1. Flatten by generating stateMachine and

StateMachineC and stateMachineD.

2. Set stateMachine to A (the start state)

3. Set stateMachineC to Null.

4. Set stateMachineD to Null.

4. When event e occurs:

 Set stateMachine to M.

 Set stateMachineC to C

 Set stateMachineD to D.

 Return true to indicate the event was

processed.

A

M

C

D

e

e

A M

e

Null C

e

Null D

Figure 32: Transition to a concurrent state

101

// Flattened state machines

enum StateMachine { A, M }
enum StateMachineC { Null, C }
enum StateMachineD { Null, D }

// Construction

public ToConcurrentState() {

 setStateMachineC(StateMachineC.Null);

 setStateMachineD(StateMachineD.Null);

 setStateMachine(StateMachine.A);

}
// Event prcoessing

public boolean e() {
 boolean wasEventProcessed = false;
 switch (stateMachine) {
 case A:
 setStateMachine(StateMachine.M);
 wasEventProcessed = true;
 break;
 }
 return wasEventProcessed;
}

Continued Figure 32: Transition to a concurrent state

At construction, the state machine is set to state A. The two other state machines (stateMachineC

and stateMachineD) are set to state null.

When the event ‘e’ occurs, the state machine becomes in state M. The method

setStateMachine(stateMachine.M) updates the states for the two regions C and D and calls entry

and exit actions, if any.

Notice the level of similarity between event processing methods in the previous cases, even

though the transition is of a different nature. This similarity was achieved by means of hiding

the transition details in a single method call.

5.2.4 Case 4: Transition from a concurrent state

This case demonstrates a scenario when a transition out of a composite state is taking place. In

this example, the state machine starts in state M, which has two concurrent regions, C and D.

The event ‘e’ triggers a transition out of the composite state.

102

class FromConcurrentState {

 stateMachine {

 M {

 e -> A;

 C {}

 ||

 D {}

 }

 A {}

} }

stateMachine

stateMachineC

stateMachineD

1. Flatten by generating stateMachine and

StateMachineC and stateMachineD.

2. Set stateMachine to M (the start state)

3. Set stateMachineC to C.

4. Set stateMachineD to D.

4. When event e occurs:

 Set stateMachine to A.

 Set stateMachineC to Null

 Set stateMachineD to Null.

 Return true to indicate the event was

processed.

A

M

C

D

e

e

M A

e

C Null

e

D Null

Figure 33: Transition from a concurrent state

103

// exiting a composite state

public boolean exitM() {
 boolean wasEventProcessed = false;
 switch (stateMachineC) {
 case C:
 setStateMachineC(StateMachineC.Null);
 wasEventProcessed = true;
 break;
 }

 switch (stateMachineD) {
 case D:
 setStateMachineD(StateMachineD.Null);
 wasEventProcessed = true;
 break;
 }

}

Continued Figure 33: Transition from a concurrent state

When exiting a simple state, a single switch statement suffices. In our case, a concurrent state

with two regions requires two switch statements. The first switch statement checks if the region

C is active, and if so, updates the state machine to null using the method setStateMachineC,

which also handles any exit actions. The second switch statement performs the same steps for

region D.

5.2.5 Case 5: Reflexive transition of a concurrent state

This case focuses on the implementation of a reflexive transition. A reflexive transition is just

another transition whose source state and destination state are the same.

A reflexive transition of a composite state with two concurrent regions behaves as follows:

1. Call exit actions associated with any state being exited, including the composite state itself.

Starting with the innermost state and working your way outward.

2. Exit all regions of the concurrent state;

3. Call transition actions, if any;

4. Re-enter the concurrent state;

5. Re-enter each concurrent region;

6. Call entry actions of any state being entered including the composite state itself.

104

According to the state machine semantics, exiting both regions takes place at the same time.

However, if you are executing the state machine in a single threaded environment, one region

will be exited before the other. Due to the sequential nature of the Umple textual notation, Umple

determines that the region that is declared first will be exited first. To override such behavior,

one can simply re-order the regions so that region D is declared before region C. The same

applies for entering a concurrent region in step 5 above.

class Reflexive {

 stateMachine {

 A {

 e -> M;

 }

 M {

 e -> M;

 C {}

 ||

 D {}

} } }

e

A

M

C

D

e

Figure 34: Reflexive transition of a concurrent state

105

stateMachine

stateMachineC

stateMachineD

1. Flatten by generating stateMachine and

StateMachineC and stateMachineD.

2. Set stateMachine to A (the start state)

3. Set stateMachineC to Null.

4. Set stateMachineD to Null.

5. When event e occurs:

 Set stateMachine to M, set

stateMachineC to C, and set

stateMachineD to D.

6. When event e occurs (triggering the

reflexive transition):

 Call exitStateMachine() method, which

exits all regions of M and exits M itself.

 Set stateMachine to M (re-entering

composite state)

 Set stateMachineC to C

 Set stateMachineD to D.

 Return true to indicate the event was

processed.

e

e

A M

e

e

Null D

e

e

Null C

Continued Figure 34: Reflexive transition of a concurrent

state

106

// Reflexive transition of a concurrent state

public boolean e() {
 boolean wasEventProcessed = false;
 switch (stateMachine) {
 case A:
 setStateMachine(StateMachine.M);
 wasEventProcessed = true;
 break;

 case M:
 exitStateMachine();
 setStateMachine(StateMachine.M);
 wasEventProcessed = true;
 break;
 }
 return wasEventProcessed;
}

Continued Figure 34: Reflexive transition of a concurrent state

Note the switch statement in the generated code. The first case handles the behavior when the

state machine is in state A. The second case handles the situation when the state machine is in

state M. Our focus here is on the second case. The following takes place:

1. Calling the method exitStateMachine() which encapsulates the logistics of exiting all

regions.

2. Re-entering the state M by calling the method setStateMachine(StateMachine.M())

3. Updating the Boolean variable to indicate that the event was processed

5.2.6 Case 6: Transition into an inner state in a concurrent region

This case explores a scenario when a transition to an inner state which lies inside a concurrent

region. This case is special because even though the transition explicitly enters one region, the

second region must also be activated.

In our example below, the state machine is initially in state A. When the event ‘e’ occurs, the

state machine instantaneously enters the concurrent state M and also instantaneously enters state

E. In that situation, the state machine is in state M, and in state E. Both regions C and D are

active.

107

class ToConcurrentState {

 stateMachine {

 A {

 e -> E;

 }

 M {

 C {

 E { entry/{inside_E;} }

 }

 ||

 D {}

} } }

stateMachine

stateMachineC

stateMachineCC

stateMachineD

1. Flatten by generating stateMachine and

StateMachineC, stateMachineCC, and

stateMachineD.

2. Set stateMachine to A (the start state)

3. Set stateMachineC to Null.

4. setStateMachineCC to Null.

5. Set stateMachineD to Null.

5. When event e occurs:

 Set stateMachine to M.

 Set stateMachineC to C.

 Set stateMachineCC to E.

 Set stateMachineD to D.

 Return true to indicate the event was

processed.

e

e

Null D

e

A M

e

Null C

e

Null E

A

M

C

D

E

Figure 35: Transition to an inner state in a concurrent

region

108

// Flattened state machines

enum StateMachine { A, M }
enum StateMachineC { Null, C }
enum StateMachineCC { Null, E }
enum StateMachineD { Null, D }

// Event processing

public boolean e() {
 boolean wasEventProcessed = false;
 switch (stateMachine) {
 case A:
 setStateMachineCC(StateMachineCC.E);
 wasEventProcessed = true;
 break;
 }
 return wasEventProcessed;
}

private void setStateMachineCC(StateMachineCC aStateMachineCC) {
 stateMachineCC = aStateMachineCC;
 if (stateMachineC != StateMachineC.C && aStateMachineCC !=
 StateMachineCC.Null) { setStateMachineC(StateMachineC.C); }

 // entry action
 switch(stateMachineCC) {
 case E:
 inside_E;
 break;
 }
 }

}

Continued Figure 35: Transition to an inner state in a concurrent region

This case results in four internal state machines as shown in the generated code above. Notice

how the event processing method is very similar to other cases. This is because the public

method ‘e’ delegates to the method setStateMachineCC that calls the entry action and updates

the state machine’s states.

5.2.7 Case 7: Transition from an inner state of a concurrent region

This case is similar to the previous case. When the state machine is in the M state, and the event

‘e’ occurs, the transition from the inner state E, which lies in the concurrent region C, takes

place.

109

class FromConcurrentState {

 stateMachine {

 M {

 C {

 E {

 e -> A;

 }

 }

 ||

 D {}

 }

 A {}

} }

stateMachine

stateMachineC

stateMachineCC

stateMachineD

1. Flatten by generating stateMachine and

StateMachineC, stateMachineCC, and

stateMachineD.

2. Set stateMachine to M (the start state)

3. Set stateMachineC to C.

4. setStateMachineCC to E.

5. Set stateMachineD to D.

5. When event e occurs:

 Call the method exitStateMachine()

which handles exiting substates and

calling actions.

 Set stateMachine to A.

 Return true to indicate the event was

processed.

e

A

M

C

D

E

e

D Null

e

M A

e

E Null

e

C Null

Figure 36: Transition from an inner state of a concurrent

region

110

// Event processing

public boolean e() {

 boolean wasEventProcessed = false;

 switch (stateMachine) {

 case M:

 exitStateMachine();

 setStateMachine(StateMachine.A);

 wasEventProcessed = true;

 break;

 }

 return wasEventProcessed;

}

Continued Figure 36: Transition from an inner state of a concurrent region

5.2.8 Case 8: Concurrent state is the start state

This case shows a situation when the state machine start state is a concurrent state. This is a

controversial model. We discussed this controversy in the previous chapter in the section “A

higher level transition to composite states with regions without start state” on page 82. The

execution semantics of such a model can be interpreted in one of three ways;

1. The model is invalid and Umple should throw a syntactic error.

2. The state machine becomes in state M, and enters the two concurrent regions, and enters

states S1 and S2.

3. The state machine becomes in state M, but does not enter any of the states in the concurrent

regions.

In Umple we adopt alternative 2, following the rule that when in a region, you must always be in

a substate of that region.

111

class ConcurrentState {

 stateMachine {

 M {

 C {

 S1 {}

 }

 ||

 D {

 S2 {}

} } } }

stateMachine

stateMachineC

stateMachineCC

stateMachineD

stateMachineDD

1. Flatten by generating stateMachine and

StateMachineC, stateMachineCC,

stateMachineD, and stateMachineDD.

2. Set stateMachine to M

3. Set stateMachineC to C.

4. setStateMachineCC to S1.

5. Set stateMachineD to D.

5. Set stateMachineDD to S2.

// Construction

 setStateMachineC(StateMachineC.Null);

 setStateMachineCC(StateMachineCC.Null);

 setStateMachineD(StateMachineD.Null);

 setStateMachineDD(StateMachineDD.Null);

 setStateMachine(StateMachine.M);

Figure 37: Concurrent state is the start state

As shown, the constructor initiates the state machine M and sets the start state for the two

regions.

C Null

S1 Null

M

D Null

S2 Null

S1

S2

112

5.3 State transition method

As we have demonstrated in the previous code generation cases, there are many variations of

state transitions. The following are the characteristics of such variations:

1. Is the source state a simple state or composite state?

2. If the source state is composite, is it nested or concurrent?

3. Are there any states being exited that have exit actions associated with them?

4. Does the transition have any transition action associated with it?

5. Is the destination state a simple state or a composite state?

6. Are there any entry actions associated with any state being entered?

The answers to the questions above demonstrate some of the complexity inherent in

implementing transitions. Even though Umple’s philosophy states that a software developer need

not to look at or modify the generated code, we strived to make the generated code simple and

easy to understand.

It turns out that simpler code generation is also easier to implement. If we are able to make event

processing functions look similar, we will be able to use simpler code generation templates to

implement them.

We were able to achieve this simplicity by abstracting common processing elements in any event

processing method and encapsulating the details in other methods (typically private methods)

that are called internally. It is worth mentioning that the abstraction process was achieved

incrementally by means of trial and error. As we were adding additional features into the state

machine, we hit roadblocks of highly complicated code generation templates. Rather than

struggling with complicated code generation templates, we tried to take a few steps back, and

reconsider the implementation of code generation. Encapsulation of details worked well in many

situations. We will demonstrate by drilling down in the state transition function of two of the

cases described before.

To demonstrate the complexity of implementing a transition, and how Umple handles this

complexity, we will reuse two of the cases presented earlier in this chapter. For this analysis, we

assume that all transitions have both a guard G and an action A associated with them. We also

assume that every state has an entry and exit action.

113

5.3.1 Entering a composite state

This analysis is based on a modified state machine in case 3 above. The modified Umple model

looks as follows

class ToConcurrentState {

 stateMachine {

 A {

 e [G] -> /{transition_action();} M; }

 M {

 entry/ {entering_M;}

 C { cState {entry/ {entering_C();} } }

 ||

 D { dState {entry/ {entering_D();} } }

} } }

Listing 8: Entering a composite state

This model adds a guard, and two entry actions. The code that implements the transition from A

to M is as follows:

Step1: Public function to handle the event processing

public boolean e() {
 boolean wasEventProcessed = false;
 switch (stateMachine){
 case A:
 if (G) {
 transition_action;
 setStateMachine(StateMachine.M);
 wasEventProcessed = true;
 }
 break;
 }
 return wasEventProcessed;
}

Listing 9: Step 1

The public method is named after the event name. In this case, the public method is named ‘e’.

This method returns a Boolean value to indicate whether the event has been processed or not.

Checking for the guard takes place within this method (as highlighted above). The method also

calls the transition action right after checking for the value of the guard. The method then

delegates the rest of the transition execution to setStateMachine(StateMachine.M).

114

Step 2: setStateMachine(StateMachine.M)

This is a generic method that is used to update the state of any state machine.

private void setStateMachine(StateMachine aStateMachine) {
 stateMachine = aStateMachine;
 // entry actions
 switch(stateMachine) {
 case M:
 entering_M;
 if (stateMachineC == StateMachineC.Null) {
 setStateMachineC(StateMachineC.C); }
 if (stateMachineD == StateMachineD.Null) {
 setStateMachineD(StateMachineD.D);

 }
 break;
 }
}

Listing 10: Step 2

This method will call any entry actions. In this case, entering_M is called.

We note here that the entry action is called prior to updating the state machine configurations (i.e

prior to updating the state machine attributes). Therefore, if the entry action queries the state

machine, inaccurate values will be returned.

Notice that initially, both regions’ states are set to null (see Case 3: Transition to a concurrent

state on page 99). This method checks if the region is in the null state, and if so, it will delegate

to setStateMachineC and setStateMachineD respectively. For brevity, we only analyze

setStateMachineC.

115

Step 3: setStateMachineC(StateMachineC.C)

private void setStateMachineC(StateMachineC aStateMachineC) {
 stateMachineC = aStateMachineC;
 if (stateMachine != StateMachine.M && aStateMachineC != StateMachineC.Null)
 { setStateMachine(StateMachine.M); }

 // entry actions

 switch(stateMachineC) {
 case C:
 if (stateMachineCC == StateMachineCC.Null) {
 setStateMachineCC(StateMachineCC.cState);

 }
 break;
 }

 }

}

Listing 11: Step 3

This method would call any entry actions. In this case, there are no entry actions associated with

the stateMachineC. The method updates the state machine state to cState by means of delegation

to StateMachineCC.cState.

Step 4: setStateMachineCC(StateMachineCC.cState)

private void setStateMachineCC(StateMachineCC aStateMachineCC) {
 // entry actions
 switch(stateMachineCC) {
 case cState:
 entering_C;
 break;
} } }

Listing 12: Step 4

This method finally calls the entry action for the cState.

5.3.2 Exiting a composite state

The steps for exiting a composite state machine are very similar to entering a composite state

machine. Again, this similarity makes it easier to follow the generated code, and makes the code

generation templates less complex. For brevity, we show the method for exiting the composite

state M.

116

public boolean exitM() {
 boolean wasEventProcessed = false;
 switch (stateMachineC) {
 case C:
 exitStateMachineC();
 setStateMachineC(StateMachineC.Null);

 wasEventProcessed = true;

 break;

 }

 switch (stateMachineD)

 {

 ..

 ..

} }

Listing 13: Exiting the composite state

When exiting the composite state M, we also exit stateMachineC and stateMachineD. For

brevity, we analyze the steps for exiting stateMachineC.

Again, we delegate to exitStateMachineC for the handling of exit actions, if any, and for

updating the state machine state. Notice that when we exit the state machine, we set its state to

null.

5.4 Code generation templates

Umple uses Java Emitter Templates (JET) technology to specify what the generated code should

look like [48]. The JET templates are then compiled into Java code that generates the code in

various languages, given an instance of the Umple Metamodel.

Each supported language in Umple has its own JET templates. For Java alone, there are 138 JET

templates. The complete listing of Umple JET templates is part is available on the Umple Google

Code project. The templates supporting Java is available at this location:

 http://code.google.com/p/umple/source/browse/#svn/trunk/UmpleToJava

The following table summarizes key templates and briefly describes their function.

117

Table 10: Key code generation templates

 Template name (*.JET) Function

1 members_AllStateMachines Loops over all state machines and handles naming for

state machine generated code.

2 state_machine_Event Handles code for state machine events and events

handling methods.

3 state_machine_Event_StartStopT

imer

Outputs the method for starting and stopping timers for

time-based events.

4 state_machine_Events_All High level template that calls the

state_machine_Event template.

5 state_machine_IsFinal Handles code for final states.

7 state_machine_SetSimple Handles the code for setting simple state machines.

8 state_machine_Set_All High level template that loops over all state machines.

For simple states the template calls

state_machine_setSimple, and calls

state_machine_Set.jet otherwise.

9 state_machine_doActivity Handles code for do activities.

10 state_machine_doActivityThread Handles the generated code for threading in Java.

11 state_machine_doActivity_All A high level template for handling do activities.

12 state_machine_timedEvent_All High level template for handling timed events.

5.5 Multiple state machines in the same class

An Umple class may contain an unbounded number of state machines. Those state machines may

interact with each other in a number of ways. The following Umple model (Listing 14)

illustrates two examples of such interactions.

In this example, the class Phone has three state machines; ringerSound, screenLight and

Vibration. Initially, the ringer, the screen light and vibration are Off. When a call is received, the

ringer sounds, the light turns on, and the vibration starts vibrating. The model abstracts some of

the remaining common phone functionality.

118

class Phone {

 Integer t_ringer;

 Integer t_light;

 ringerSound {

 Off{

 callReceived -> On ;

 }

 On{

 silentButton -> Off ;

 pickUp -> / {setVibration(Vibration.Off);} Off ;

 rejectCall -> / {turnOffVibration();} Off ;

 after(t_ringer) -> Off ;

 }

 }

 screenLight {

 Off{

 callReceived -> On ;

 }

 On{

 callReceived -> / {resetTimer();} On ;

 after(t_light) -> Dimmed;

 }

 Dimmed{

 callReceived -> On ;

 after(t_light) -> Off;

 }

 }

 vibration {

 Off {

 callReceived -> On ;

 }

 On{

 turnOffVibration -> Off ;

} } }

Listing 14: Phone state machine

There is a difference between the semantics of multiple state machines in the same class, and

concurrent regions in a composite state machine. In a concurrent state machine, the two regions

are executing in parallel, while in a multiple state machine in the same class, the state machines

are executing in sequence. The main benefit of supporting multiple state machines within the

119

same class is to allow every state machine to handle one aspect of the behaviour of the object.

This approach helps in separation of concerns and can enhance the usability of mixins and state

machine inheritance.

5.5.1 Single event causing multiple transitions

Within a single state machine, an event can at most cause a single transition. However, and

because an Umple class may have more than one state machine, a single event may actually

trigger a transition in more than one state machine.

In Listing 14, the callReceived event may cause a transition in the three state machines within the

class Phone. Umple recognizes this special event, and groups all the behavior to implement the

event handling into a single method (Listing 15).

public boolean callReceived() {

 boolean wasEventProcessed = false;

 switch (ringerSound) {

 case Off:

 ..

 break;

 }

 switch (screenLight) {

 case Off:

 ..

 case On:

 ..

 case Dimmed:

 ..

 }

 }

 switch (vibration){

 case Off:

 ..

 }

 return wasEventProcessed;

 }

}

Listing 15: Single event causing multiple transitions

120

5.5.2 Action in a state machine triggers an event of another state machine

An action within a state machine (entry, exit, or transition) can trigger an event that may cause a

transition in another state machine. In the ringerSound state machine, when a call is rejected, a

transition to Off is triggered. This transition calls an event of another state machine that results in

another transition being triggered, a transition from On to Off in the Vibration state machine.

5.5.3 Action in a state machine updates the state of another state machine

An action within a state machine (entry, exit, or transition) can update the state of another state

machine. Consider this transition in our example:

 pickUp -> / {setVibration(Vibration.Off);} Off ;

When a call is picked up, a transition from On to Off takes place. The action on this transition

updates the Vibration state machine to Off. This is commonly called a side effect of a transition;

not a desirable feature of a state machine and developers must use it with care.

Notice that there is a difference between this action (setVibration(Vibration.Off);)) and (turnoff

Vibration();). The first action updates the Vibration state machine without calling any entry, exit

or transition actions within that state. However, the second action would result in execution of all

involved actions in the transition. This feature enables the users to easily override a state

machine behavior when needed.

5.6 Traditional flattening approach

The explosion phenomenon that occurs when flattening a composite state machine is explained

here [49]. To briefly demonstrate this phenomenon, we present a modified example from

Schaumont’s book [50].

121

class TraditionalFlattening{

 status {

 R {

 One {

 e -> Two;

 }

 Two {

 e -> Three;

 }

 Three {

 e -> One;

 }

 ||

 M {

 A {

 e -> B;

 }

 B {

 e -> C;

 }

 C {

 e -> A;

 }

 }

 }

}

Figure 38: explosion phenomenon

This composite state machine can be in nine possible configurations (A and 1, A and 2, A and 3,

B and 1, B and 2, B and 3, C and 1, C and 2, C and 3). Therefore, to flatten this state machine,

the resulting simple state must have at least nine states (A1, A2, A3, B1, B2, B3, C1, C2, C3). If

there was another region with another 3 states, the total number of flattened states jumps to 27

(3*3*3).

There are several research streams that are investigating the ability to generate code from state

machines without the need for flattening the state machine to avoid un-scalable exponential

growth in the generated code [51, 52] . However, these approaches typically ignore practical

considerations for the generated code; as we explored in this chapter, one consideration for

example is that similar state machine models should generate similar code.

In the case of 3*3 (Figure 38), using Umple results in eight states. Not a significant improvement

over the standard flattening that results in nine states. But in the case of 3*3*3, the standard

flattening results in 27 states, and Umple generates 12 states. Figure 39 summarizes the

comparison for the number of generated states for Umple and the traditional flattening approach.

The figure shows the number of generated states for the simple case of a state machine with 3

One Three

A C

e
e e

e
e e

R

M

B

Two

122

states, a concurrent state with 3*3 states, and up to a concurrent state machine with five

concurrent regions with 3 states each.

Figure 39: comparison of flattening approaches

As shown in the figure, the traditional flattening approach quickly outnumbers the number of

states generated by Umple, even when the null dummy states are included.

5.7 Comparison of code generation approaches

In this section, we compare our CFCG code generation approach to that of a commercial tool

(Rhapsody) and a research tool whose authors (Niaz et al) claim a novel approach of generating

efficient and compact code for composite states.

Rhapsody implements state machines using the multiple-class pattern and creates objects that

represents states upfront; i.e, as soon as the state machine becomes active. These objects stay in

memory as long as the state machine is executing. Rhapsody uses a switch statement and a

helper class to implement the state machine behavior. We discuss the pros and cons of multiple-

class pattern in section “ Multiple-class pattern” on page 35.

The research tool proposed by Niaz also uses multiple-class pattern where each state is

implemented in a separate class. However, objects are not created upfront, rather, objects are

created and deleted at run time. This makes the expected performance of this tool to be better

than Rhapsody. Niaz’s approach implements composite state machines by using object

composition and delegation. In our comparison, we adopt a criteria similar to Niaz’s [53] that

123

relies on the number of lines of code, number of bytes, and number of classes. For the base

comparison, we consider the example in Figure 40.

In many cases, we were unable to compare our approach to other tools discussed in section

“Code Generation from State Machines” on page 31 due to the fact that many of the available

commercial and research tools do not support composite states in a way complete enough to

allow this comparison. For example, Bridgepoint [28] does not allow substates or guards.

Wasowski’s approach[51] evaluates code generation for composite states with a focus on

efficiency of the execution time of the generated code. Our focus is on the number of lines of the

generated code.

The example is comprised of two simple states, and one state with two concurrent regions.

Table 11: code generation comparison

Generated code Rhapsody Niaz, I.A Umple generated Code Umple

Number of lines 675 250 125 8

Number of bytes 24,270 6,420 5,010 197

Number of classes 7 11 1 1

As shown, the number of lines of code is significantly lower in the case of Umple (reduction of

about 50% as compared with Niaz`s approach). The number of bytes are less in the case of

Umple (a reduction of about 22%).

5.7.1 Generated code growth analysis

The comparison in the previous section does not tell us how the generated code grows as the

input model grows. We have conducted an estimate of the code generation by studying the

generated code. We measured a factor of growth for every code section (a function of a code

blocks) by analyzing how the code would grow when the number of states grows. For example,

E

B

C D

A

F

Figure 40: Composite state comparison example

124

an event is translated into a public event handler method (i.e one line of code). Two events are

translated into two lines of code (a growth factor of 1).

This study results in a growth analysis summarized in Figure 41.

Figure 41: Factor of growth analysis

The study looks at models growth at a factor of 10, 20, and 50. The study compares Rhapsody,

Niaz I.A, Umple generated Java, and Umple source models. This study implies that CFCG code

generation approach results in significant reduction in code generation for larger models.

5.8 Summary

The majority of the modeling tools we surveyed did not handle code generation for composite

state machines, maybe on the premise that any composite state machine model can be flattened

into a simple state machine model. We quickly realized that we can further distinguish Umple by

a careful analysis of all possible combinations of states and transitions. In the course of this

analysis, we identified some undefined semantics in the UML specifications that we tried to

handle in Umple.

We named our approach for code generation “Compress-Flatten Code Generation”. This

approach avoids explosions of composite state machines by internally creating dummy states and

transitions. This chapter demonstrated this novel code generation approach by demonstrating a

number of ‘code generation cases’. Each case uncovers some aspects of the compress-flatten

code generation technique.

We also presented, in great detail, how we implement the state transition method, and how

Umple supports having an unbounded number of state machines in the same class. Finally, we

compared Umple to two other modeling tools. This comparison indicates that Umple syntax is

concise and tends to generate relatively fewer lines of code.

125

Chapter 6: A Grounded theory study of Umple

This chapter presents a grounded theory study to gather knowledge about perceptions of the

usability of the Umple language. This is a long-running study that we conducted as the state

machine capability in Umple was being developed. The objective is to gather user’s feedback for

existing aspects of Umple as they were being developed and use the findings to guide future

development. Hence, a significant portion of the study addresses the work done prior to state

machines being implemented in Umple, namely associations and attributes.

Grounded theory studies do not have hypotheses. Rather, the analysis of the data is expected to

bring about theories about the domain being investigated. Our study does not have a hypothesis

either. Our goal is that by studying Umple early adopters feedback, we can guide Umple’s

experimental development so that the resulting product can achieve the benefits claimed.

We start by first exploring the domain of using grounded theory (GT) studies in the area of

software engineering. This survey helps us understand how GT have been used in the software

engineering domain. We then present the grounded theory study of Umple users.

6.1 Survey of grounded theory in software engineering

Grounded theory (GT) is a systematic qualitative research methodology, originating in the social

sciences, and emphasizes the generation of theory from qualitative data in the process of

conducting research. Grounded theory, in its original form, was proposed by Glasser and Strauss

in 1967 [54]. However, it was not until 1993 that we could find the first significant grounded

theory work applied in software engineering [55]. Since that date, more researchers have

adopted the process and the GT has been supported by promising results. There is a limited, but

increasing, body of literature reporting the application of grounded theory in software

engineering (SE) disciplines. Nevertheless, GT applications in SE are still very limited, mostly

likely due to the complexities of conducting GT methodology in SE. The GT methodology, we

argue, requires adaptation for successful employment in the SE world. The contribution of this

chapter is to provide meta-codes that can be used to drive the initial coding phase of GT. We

also provide an analysis of existing GT applications in software engineering and the

characteristics of such applications as exhibited in the existing literature.

This section is organized as follows. We first present a brief history of grounded theory and its

application in the software engineering arena. Then, we present the methodology we adopt to

survey, categorize, and analyze GT coding. The subsequent three sections present a literature

review and the meta-codes thematically organized by the application of grounded theory in agile

development, distributed development, and requirements engineering. The remainder of this

126

section presents some GT characteristics that are specific to applications in software engineering

and an overview of where GT has been successful and where challenges exist in the application

of GT in software engineering.

6.1.1 Background and History

Grounded Theory is a systematic qualitative research methodology that emphasizes the

generation of theory from data. Grounded theory operates almost in a reverse fashion to the

traditional scientific method. Rather than proposing a hypothesis and gathering data to support

it, data collection is pursued first, without any preconceptions. This ad-hoc characteristic is of

great interest from our perspective because it allows us to study Umple user’s perspective

without having to have any hypothesis. The process continues by marking key points in the data

with a series of ‘codes’, which are then grouped into similar concepts, or categories. These

categories become the basis of a theory. The coding process is typically performed in two steps,

initial then focused coding. The categorization process is normally referred to as axial coding.

Grounded theory emerged as a research methodology in the 1960s, during a time when

sociological research practices were particularly reliant on quantitative methodologies. In 1967,

Glaser and Strauss coined the term grounded theory in their book “The Discovery of Grounded

Theory” [56]. The term refers to the idea of a theory that is generated by – or grounded in – an

iterative process of analysis and sampling of qualitative data gathered from concrete settings,

such as interviews, participant observation, and archival research.

The roots of this methodology can be traced back to the work of Wilhelm Dilthey who argued

against the pursuit of causal explanations at the expense of establishing understanding. Grounded

theory methodology can also be traced back to the symbolic interactionist perspective of Herbert

Blumer [57]. The term "symbolic interaction" refers to the peculiar and distinctive character of

interaction as it takes place between human beings. The peculiarity consists in the fact that

human beings interpret or "define" each other's actions instead of merely reacting to each other's

actions.

Since GTs’ inception in the social sciences, grounded theory has become increasingly popular in

information systems as a research methodology. This is evident by the growing literature on the

methodology and its applications. The first publication we were able to identify as an

application of grounded theory in the area of software engineering was the work by Calloway

and Ariav [58] and Torasker [59] in 1991. In these publications, the researchers described how

they adopted grounded theory in understanding how managerial users evaluate their decision

support systems.

The first international journal publication of a grounded theory application in software

engineering is that of Orlikowski in 1993 [55]. In this work, the researcher presents findings of a

study into the adoption of CASE tools. The researcher justified the use of grounded theory as a

127

research methodology on the basis that it provided “a focus on contextual and processual

elements as well as the action of key players associated with organizational change elements that

are often omitted in IS -Information Systems- studies” [55].

More recently, Baskerville and Pries-Heje [60] employed grounded theory combined with action

research to enhance the rigor and traceability in the theory-development part of their work.

Action research is a reflective process of progressive problem solving led by individuals working

with professionals to improve the way they address issues and solve problems. Other work has

employed grounded theory to initiate more focused data collection activities [61].

Grounded theory applications have extended to other arenas within software engineering. While

the literature is limited, the most prominent discipline of grounded theory work is in software

development methodologies, as evident in the quantity of published work in this discipline. Out

of the 60 research papers identified as applications of grounded theory in software engineering,

25 addressed software development methodology. Other sub-disciplines with significant bodies

of GT research include requirements engineering and distributed software development

practices.

We believe that GT is a research methodology particularly useful for software engineering

research for reasons that include:

- Software development is a human intensive process; software is used by humans with

complex interaction and usage patterns, where quantitative evidence is nonexistent or

difficult to formulate,

- GT provides an effective approach for qualitative validation.

The low and slow adoption of GT methodology in SE is due to a number of factors. GT

originated in the social sciences, and since its adoption in SE, there is little guidance on how to

employ the methodology, in addition, it is not clear what characteristics of the GT needs

adaptation to better fit the nature of SE research. Some researchers in the software engineering

field are not familiar with the GT methodology, and can frequently be skeptical of its

effectiveness. In addition, as our survey highlights, the number of researchers that have reported

using GT is small which contributes to barriers of more GT adoption.

6.1.2 Discussion of Sources

Surveying the application of grounded theory in software engineering turned out to be more

challenging than anticipated. Grounded theory work is published in a large variety of journals

and conference proceedings. A significant portion of grounded theory research can be located in

journals dealing with empirical studies. Nevertheless, a growing number of grounded theory

projects deal with development processes, requirements engineering, tooling, and development

practices. Such work is typically published in journals not related to empirical studies. What

128

follows is a review of the methodology used to identify candidate GT sources to ensure that we

covered the full gamete of papers on the subject.

We located more than 60 published papers that explicitly reported the use of grounded theory in

the analysis of their data in an area related to software engineering. While the determination of

the use of grounded theory as a research methodology was relatively clear, the scope that defines

what software engineering is, is more challenging. Hence, we found a thematic presentation was

most appropriate. The surveyed resources are organized under three main themes; agile

development, distributed development, and requirements engineering. These three disciplines

contain a major portion of the grounded theory work within software engineering.

Some grounded theory approaches recommend starting with high level codes to drive theory

building [62]. This is particularly challenging due to the small amount of literature available on

the application of GT in software engineering. In order to help SE researchers, we collected all

codes and categories that were reported in each GT application theme. We then analyzed those

codes in a GT approach to create what we call meta-codes, or codes of codes. We first collected

all codes and sub codes from the grounded theory papers in each theme separately. Those codes

were then analyzed, rearranged, and merged to create a final shallow hierarchy of meta-codes.

Each meta-code is associated with tags that summarize a larger number of codes and sub codes

as exhibited in the literature within a specific theme. It is our conjecture that the meta-codes can

be of value to future applications of GT in the software engineering themes presented in this

chapter; they can function as high level codes that drive theory building in these areas.

6.1.3 Grounded Theory in Agile Development Methodologies

We were able to identify 32 published papers that applied grounded theory to study software

development methodologies. Of these, nine reported studying agile methodologies.

Agile software development refers to a group of methodologies that share and promote principles

such as development with short iterations, teamwork, collaboration, and process adaptability

throughout the life-cycle of the project [63]. The roots of agile development can be traced back

to 1974 when an adaptive software development process was introduced by Edmonds [64].

However, the definition of modern agile development processes evolved in the 1990s. For

example, eXtreme Programming was formally introduced in 1996 [65].

Out of all surveyed papers, nine reported research into agile methodologies using grounded

theory. This number reflects the fact that agile development processes are a relatively new and

evolving concept. In addition, applications of grounded theory work in software development

methodology in general are limited [61]. The earliest work that reported a grounded theory

methodology in an agile development process setting is that of Kähkönen and Abrahamsson [66].

129

Some of the most prominent work is that of Coleman et al. [65, 67, 68], who report on how

software process and software process improvement (SPI) is applied in the practice of software

development. Their study focused on a number of indigenous Irish software companies at

various stages of development. In the first phase of the study, they performed four interviews in

three different companies; each interview contained 53 questions. In the second phase, they

investigated 11 more companies, performing interviews of about an hour each. They initially

performed focused and axial coding, which resulted in three themes and 17 core categories. The

theory they present represents a form of ‘experience’ road map illustrating some of the potential

pitfalls a software product company could face and how others have avoided or resolved them.

Their findings also included supporting evidence and justifications regarding the low level of

adoption of CMM/CMMI and ISO 9000 by Irish software companies. They cited cost of

implementation and maintenance, the added burden on the development efforts, and increased

documentation and bureaucracy as the main factors behind the low adoption of the SPI

initiatives. For example, they report that smaller companies believed SPI would negatively

impact their creativity and flexibility.

Another example of use of the grounded theory approach in an agile environment involved

exploring the socio-psychological characteristics of agile teams and to learn about the type of

experiences acquired in such software development teams [69, 70]. The findings contribute a

better understanding of the link between agile practices and positive team outcomes such as

motivation and cohesion.

Meta-codes for Agile development methodologies

We collected codes and sub codes from the 9 studies that adopted GT to investigate agile

development methodology. We constructed the meta-codes by analyzing 50 codes, and 206 sub

codes. Meta-codes and tags are summarized in Table 12.

Table 12: Meta codes for agile development methodologies

No. Agile development Meta-
codes

Tags / Description

1 Characteristics/Practices of
agile development

communications, processes, negotiations, skills, team, commitment,
management, implementation, knowledge sharing trust, software builds,
team rooms, workspaces, meetings.

2 Challenges of agile
development

Requirements, communications, people oriented process, formality, team
cohesion

3 Company characteristics Domain, number of projects, market sector.

4 Project Characteristics Duration, complexity, development sites, customer locations, team size.

6 Lessons Tools, expertise, culture, trust, training, commitment, resource management.

Table 12 presents a summary of the meta-codes we constructed in the agile methodology theme.

Each meta-code represents a large number of codes and sub-codes, samples of which are

presented in Table 12. Here we provide a description for each of the meta-codes.

130

Characteristics/Practices of agile development. This meta-code is used to group codes and

sub codes that refer to a characteristic specific to an agile software development project. This

includes the nature of communication within teams, knowledge sharing, and the characteristics

of trust within a development team, management, and the client. It also includes team rooms,

and the nature of the workspaces and meetings.

Challenges of agile development. This code groups challenges in agile development related to

requirement gathering activities, requirement stability, nature and frequency of changes in

requirements, communications, about the people-oriented rather than process-oriented control,

lack of formality, and lack of team cohesion.

Company characteristics. Company-related codes were reported in two studies. This meta-

code groups tags related to the company domain, the number of agile projects in execution and in

total, as well as the targeted market sector.

Project characteristics. This meta-code groups all codes related to the agile project

characteristics. This includes duration of the projects on average and individually, complexity of

the project as perceived, and objectively, the number of development sites and development team

size.

Lessons. This meta-code collects all lessons learned that are related to agile development.

Lessons learned were related to the tools being utilized, the importance of expertise within the

team, the culture role in the success of projects, and the role of trust. In addition, it includes the

importance of formal training, and the commitment of every team member to the success of the

agile activities, and the importance of proactive resource management.

6.1.4 Grounded Theory and Geographically Distributed Development (GDD)

Out of our surveyed literature, we identified seven studies on Geographically Distributed

Development (GDD) using GT. GDD, also known as Distributed Software Development (DSD),

has grown to be a common practice in today’s industry [71]. Despite the limited number of

publications, GDD seems to be a fertile discipline for grounded theory application for the

following reasons:

- GDD has grown, and is still growing, exponentially in the last decade [72].

- GDD brings about additional complexity to any development process.

- There is a wealth of data sources that can be analyzed using grounded theory analysis.

For example, communications in GDD are typically written communications (Email, chat

sessions) that can be easily recorded over an extended period of time with little effort and

little disruptions to existing business activities. Such data are typically absent in normal

settings, or require significant effort to facilitate data collection.

131

There are situations when a surveyed GT work addressed both GDD and agile methodology at

the same time, as we show in this section. In such situations, we actually classified the paper

under both themes, including their codes and sub-codes in the analysis and construction of meta-

codes in both themes.

GDD becomes extensively complex and challenging when an agile method is adopted [73].

Agile processes depend heavily on information, short informal meetings, and face-to-face

communications. Ramesh [72] has reported a grounded theory approach that analyses data from

three different organizations, attempting to answer the question whether distributed software

development can be agile. Ramesh has identified a number of challenges specific to distributed

agile development processes, nevertheless, he concluded that distributed and agile can be

combined.

Layman [71] pursued a different approach. Layman studied a successful distributed agile

development project in the U.S and Czech Republic in an attempt to uncover the characteristics

of these successful projects. They collected the data from archives of emails, as well as semi-

structured interviews. Quantitative data (number of source file lines for example) was

supplementary to their qualitative data. Their work’s main contribution is the recommendation

of four success factors for a distributed XP methodology; the facilitation of communication by

the management, short asynchronous communication loops, identifiable customer authority to

resolve requirement related issues, and a high process visibility.

It is typical for grounded theory research activities to take place in real life situations, by

interviewing or collecting data from real projects. However, one study [74] reported grounded

theory methodology using student subjects comprising 21 virtual teams collaborating in the

completion of a given task. In this study, the researcher aimed at uncovering how distributed

projects are managed and executed. The study concludes with characteristics of managing a

distributed project, as well as proposing a model for distributed project management. A similar

work [75] also utilized students in a study of distributed development using student participants.

The study relied on the analysis of electronic communications collected during the performance

of a distributed development task by the students.

Managing requirements in a distributed development setting presents unique challenges.

Requirements engineering is a communication-intensive and dynamic task. When stakeholders

are geographically distributed, requirement engineering tasks become even more complex.

Damian and Zowghi [76] present their field study work that investigates requirements

engineering challenges introduced by stakeholders’ geographical distribution in a multi-site

organization. Their goal is to examine requirements engineering practice in global software

development and formulate recommendations for improvements. In the next section, we discuss

grounded theory-based requirements engineering research in non-distributed projects.

132

Meta-codes for geographically distributed development

Out of the seven identified GT studies on GDD, we analyzed the codes extracted from six

studies. One study did not provide adequate reporting on their codes and subcodes. We

collected 31 codes, and 95 sub codes resulting in eleven meta-codes presented below in Table

13.

Table 13: Meta-codes for geographically distributed development

No. GDD Meta-codes Tags / Description

1 Communication communication patterns (generating ideas, confirmation,

consensus, conflict, humor, attitude), positive and negative,

2 Coordination Time zone (delay in responses) collaboration, Involvement

3 Adaptation social, work, technological, conflict resolution, lateral thinking

4 Company background company size, maturity levels, existing development

approaches, company’s culture.

5 Stakeholders project under study’s stakeholders related information, years of

experience, etc..

6 Collaboration

technologies

simple emails, advanced collaboration technologies

7 Requirements

challenges due to

distance

inadequate communication, knowledge management, cultural

diversity, time difference

8 Requirements activities elicitation, prioritization, negotiation, validation, examining

current system, managing uncertainty specification

9 Involvement of users achieving appropriate participation of system

users and field personnel,

10 Trust checking project status, concern about a member doing his

task, trust built progressively,

11 Delay Sources and nature of delay, perceived causes, delay mitigation

actions

Table 13 presents a summary of the meta-codes we constructed in the geographically distributed

development theme. Each meta-code represents a large number of codes and sub-codes, samples

of which are presented in the table above. Here we provide an analysis and description for each

of the meta-codes.

GDD projects are after all software development projects, so it was expected to see a number of

codes that can be found in a typical software engineering project. Communications in a GDD

project plays a more prominent role, and it was found in almost every set of codes analyzed.

Coordination and adaptation meta-codes are closely associated with the GDD nature of the

project. That code represented codes related to time zone issues, collaboration, level of

involvement, and social and cultural issues. All these aspects are related to the geographical

133

nature of the project. Collaboration technologies, requirement challenges due to distance,

involvement of users, delay and trust are meta-codes that were found specific to GDD projects.

6.1.5 Grounded Theory and Requirement Engineering

Requirements engineering is particularly attractive for a grounded theory methodology for a

number of reasons. Applications and systems are growing increasingly more complex, and

involve ever-increasing numbers of users and stakeholders. Grounded theory can help discover

patterns from a stakeholders’ perspective of the system under development that may increase our

knowledge of the users’ needs, and how those stakeholders may perceive aspects related to the

new system, like organization impact of the new system, and changes in business tasks and

activities.

Requirements management tools now incorporate discussions, communications, and issues

related to requirements. This large amount of data can serve as the basis for extensive grounded

theory work. Data collection techniques that are typically applicable in social sciences and

psychology, from which grounded theory has emerged, are not always as applicable in software

engineering. Such requirements management tools provide unbiased data that is otherwise hard,

or sometimes impossible, to collect without some level of disturbance of existing business

activities.

A prominent work in applying grounded theory to the requirements engineering discipline is the

work of Damian and Zowghli [76], where they report on the investigation of requirements

engineering challenges introduced by stakeholder’s geographical distribution in a multi-site

organization. In addition to conducting semi-structured interviews, they also analyzed existing

documents, and observed requirement meetings. In this work, and due to the geographically

distributed organization, stakeholders heavily relied on Emails and automated requirements

engineering tools that provided recorded, as well as detailed, history of discussions and

communications.

Qureshi and Liu [74] applied grounded theory methodology on a case study of distributed

software project management activities. Their study spanned all project phases and used

observations and transcripts of electronic communications as their data sources.

A study of the Hewlett-Packard requirements engineering process considered two projects [77].

The first project was small, agile, and characterized by quick releases, while the second project

was large, complex, and outsourced some of the development. Hewlett-Packard has a large and

varying collection of requirements engineering processes. The selection of such processes is

influenced by business drivers and constraints, as well as characteristics of the project itself.

Alan Padula [77] has reported on how Hewlett-Packard selects the requirement engineering

process based on project attributes. Requirements engineering is inherently dynamic due to the

nature of continuous change put forward by the various stakeholders. It is argued that

134

information system contexts are soft and ambiguous, and are therefore mainly characterized by

qualitative data. Such characteristics make grounded theory a suitable methodology for research

in the requirements engineering discipline. Galal and Paul [78] presented an analytical

technique, based on grounded theory, for developing qualitative scenarios against which

statements of requirements can be evaluated [78].

Meta-codes for requirements engineering

For requirements engineering, we collected 26 codes and 54 sub-codes for analysis that resulted

in eleven meta-codes. We summarize meta-codes in Table 14.

Table 14: Meta-codes for requirements engineering

No. Requirement Engineering

Meta-codes

Tags / Description

1 Challenges Distance, communications, knowledge management,

customer culture, awareness of processes for RE,

2 Elicitation

These meta-codes refer to the standard RE activities [79].

3 Prioritization

4 Negotiation

5 Validation

6 Specification

7 Examining current system Existing system attributes.

8 Business objectives Business objectives of the current software project to

which RE is being performed.

9 Primary business attributes Nature of users, expected project contribution to business

goals, etc..

10 Primary project attributes Type of requirements, RE process, complexity of

requirements, ..

11 RE process attributes Iterative development, development team and business

analysis team, ..

Our meta-codes include five of the standard requirement engineering activities. It is possible

that the referenced studies has used the standard requirement engineering activities as code seeds

to initiate their coding process.

6.1.6 Other Applications of Grounded Theory

Grounded theory has been applied to a number of other subjects within software engineering that

do not fall under our three main themes. Grounded theory has been employed to investigate tool

and technology adoption [80], the impact of background knowledge of the performance of

software developers [81], the motivation of open source software developers [82], questions

developers ask during software maintenance tasks [83], knowledge repositories in software

companies [84], barriers to adoption of software reuse [85], cognitive patterns used when

135

explaining or understanding software [86], and new product development management issues

and decision-making approaches of development managers [87].

We opted not to include the analysis of codes and sub-codes of this type of GT application for a

number of reasons. First, we could not find sufficient literature of the application of GT to create

meaningful new themes. And due to the lack of papers, construction of meta-codes using our

approach will inevitably result in biased meta-codes that reflect more the surveyed studies, rather

than the emergence of a pattern observed from a broader coding or sub-coding processes.

6.1.7 Opportunities and Challenges of GD Application in Software Engineering

Our analysis of the surveyed papers, as well as our experience in applying GT in software

engineering, highlights a number of opportunities unique to the software engineering field that

makes GT an even more promising research methodology. With opportunities, come challenges

that SE researchers should be aware of while preparing for their research. The analysis we

present in this section is extracted from the surveyed literature, and does not reflect our own

experience with GT.

Opportunities:

- The lack of integrated theories in the literature related to a number of areas in software

engineering practices suggest the use of an inductive approach that allows theories to emerge

based on pragmatic accounts of professionals themselves. For example, the role of

communication and trust in distributed development is not formalized in a theory. However,

a number of studies reported in this chapter have addressed the role of communication and

trust in distributed development as reflected by the experience of professionals in GDD

projects.

- Grounded theory has well-established guidelines for conducting inductive, theory-generating

research.

- Software development is a human-intensive activity and development processes are

characterized by heavy reliance on human compliance, emphasizing the human aspects of

software engineering. Grounded theory is renowned for its application to the analysis of

human behavior.

- Grounded theory is a burgeoning methodology in the information systems arena, and has

been an established and credible methodology in sociological and health disciplines.

- Grounded theory (for the novice researcher or the experienced researchers new to interpretive

studies) provides a useful template and as such serves as a comfort factor in the stressful and

uncertain nature of conducting qualitative research [88].

136

- Software engineering relies significantly on software tools for managing artifacts, as well as

documentation and communications. These tools make available recorded communications,

potentially over an extended period of time, that become valuable assets for grounded theory

analysis. In comparison to typical social settings, such information is either non-existent, or

significantly harder to collect.

Challenges:

- Data collection within an organization for research purposes is typically challenging. There

are a number of business priorities that take precedence over participation in research

activities. Ethics committee and managerial approval is required prior to performing such

research. The requirement for management approval raises the question of whether the data

sampling is actually unbiased and is an honest representation of the organization or activities

under study or not.

- The use of semi-structured interviews, centers data collection on users’ opinions. This can

lead to an over-emphasis on the participants’ perception of what is taking place, which could

be at odds with reality. Despite the occasions when there is no supporting evidence, the

researcher is obliged to accept what the respondents say during the interviews [89].

However, in certain situations such as decision-making processes, managers base their

decisions on their own perceptions, and therefore it is the perception that matters [68]. In

addition, semi-structured interviews need not be the only data collection activities: As

discussed earlier, there are a number of papers reporting the utilization of electronic

communications, documentations, and archives as data sources.

6.1.8 Adaptation of Grounded Theory

Because grounded theory as a methodology has emerged from the social sciences, one could

justifiably adapt the methodology when adopting it in software engineering research. The

existence of some variations of grounded theory in social sciences is reported in the literature

[90]. In addition, rigid application of grounded theory has been critically questioned [76]. We

have noted three major characteristics specific to grounded theory work when applied to

software engineering. Those characteristics are related to a) literature review prior to the study,

b) selection of participants, and c) data sources. In this section, we briefly highlight those

characteristics.

A prominent characteristic of grounded theory is captured by the advice offered by Glaser [54,

91]: "There is a need not to review any of the literature in the substantive area under study. This

dictum is brought about by the desire not to contaminate...it is vital to be reading and studying

from the outset of the research, but in unrelated fields".

Contrary to this advice, a number of grounded theory researchers have explicitly advocated the

benefits of literature and background knowledge of the researcher prior to conducting data

137

gathering activities [61, 88]. It is reported that prior knowledge helps in guiding research and the

use of seed categories (such as our meta-codes) helps inform analysis. This deviance from the

original methodology is justifiable as some background knowledge is needed to help the

researcher in the process of interviewing and data collection. The researchers’ personal

constructs and skills help structure data, and it is the researcher’s hermeneutic perspective that

maintains the interpretive style rather than the grounded theory method [88].

Selection of participants was particularly challenging for a number of reported research activities

in the software engineering arena. While there is normally a criterion for the selection of

subjects (based on their role in the study case for example), subject selection was largely affected

by management and the participants’ availability [89]. In such situations, management could

deliberately select participants that would present a favorable picture. Informing management of

the objective and purpose of the research, and guaranteeing an adequate level of privacy and

confidentiality of the data can help mitigate such risks.

Data sources in grounded theory work seem to be overwhelmingly reliant on semi-structured

interviews. However, in a number of studies, particularly those addressing distributed

development, researchers made significant use of documented email communications and chat

session histories. Such data sources are typically nonexistent in normal social sciences settings.

Researchers also made use of existing manuals and archives.

6.1.9 Analysis of meta-codes

We present the following remarks about our meta-codes presented in Table 12, Table 13, and

Table 14:

1. Communications and trust tend to be central to all GT applications in the three themes under

study.

All themes included communications and trust at the first or second level. This may reflect the

importance of communication and trust in software development activities. It may also indicate

that the existing GT studies focused on studying communications and trust. This may be due to

the nature of how GT is developed from interviews, meetings, etc. Such data sources may

inevitably reflect communications and trust aspects of software development projects.

2. Meta-codes derive their significance from the specific GT application.

In the process of developing our meta-codes, we were careful to only select codes from studies

that sufficiently addressed its corresponding theme using the GT approach. However, each study

had its own unique settings, procedures, and study objective and findings. For example, Padula

[77] was studying the requirements engineering process with Hewlett-Packard, and focused on

the study of two particular HP products, while other studies had a different focus. In our

analysis, we were careful to select codes and sub codes that were, as much as possible, not

138

related to a specific product or study. At the same time, we also want our meta-codes to

represent adequate coverage of the existing literature.

3. Overlapping of themes and codes.

The three themes presented in this paper are not mutually exclusive. For example, the study [76]

addressed GT application for requirements engineering in a GDD environment. This paper was

justifiably classified under the two themes GDD and RE. During the process of code analysis,

additional care was required to properly select codes that addressed aspects of the project that

corresponded to the theme under which the meta-codes were listed. For example, in the study by

Damian, D [76] codes that related to GDD was listed under GDD theme, and similarly for RE

codes.

6.2 Grounded Theory study of Umple

Umple is being used by a variety of people, including students, in an exploratory manner. The

aim of this study is to gather information about Umple as it stands, and also to gain experience in

studying Umple that will be applied as Umple is improved and maintained.

The research activities are comprised of a questionnaire and an interview of participants who

have experience using Umple. The questionnaire provides data for simple statistical analysis,

and the interviews are analyzed using a grounded theory approach.

6.2.1 Purpose

We claim that using Umple will enhance the quality and reduce the effort required to develop

software systems and enhance learning about UML and object-oriented programming. While we

maintain neutrality in the process of conducting this research activity, we aim at verifying the

claim that Umple enhances developer’s productivity. The study will also help the researchers

understand how users implement systems using Umple, possible usage patterns, and discover

new features useful for Umple users. The results of this research activity will help guide

ongoing and future Umple development activities.

We obtained ethical approval from the University of Ottawa’s Health Sciences and Science

Review Ethics Board number H12-08-04 approved on February, 18
th
, 2009.

6.2.2 Objective

The main objective of the study is to determine what is needed to enhance Umple with

adjustments or features directly related to the needs of end users. Other objectives are to

enhance modeling practices, increase consistency among models and code, and provide a tool

139

aimed at educating students with the value of UML models. We have iteratively used findings

from this study to help guide Umple development activities.

6.2.3 Methodology

Our methodology is to conduct a questionnaire and an interview of users who have previous

experience with Umple. The interview results were analyzed following a grounded theory

approach. The analysis aims at identifying implementation patterns and helping in the process of

assessing the modeling and coding consistency of the implemented solutions.

6.2.4 Participants

The community of users of Umple consists of people who have downloaded it for use in

developing software, or have used it live online at UmpleOnline. Since Umple is developed at

the University of Ottawa, early adopters include graduate and undergraduate students. The

process of encouraging adoption of a new programming technology includes putting it on the

web, and publishing papers about it.

We were able to recruit seven participants. These participants have been graduate and

undergraduate students who have used Umple in their university course work. The participants

experience with Umple includes creating class diagrams to model a small class domain problem,

modeling behavior using state machine concepts, generate code, and analyze the generated code.

6.2.5 Participants’ tasks

Participants are asked to fill a short questionnaire and are interviewed for about 30 minutes each.

The questionnaire and interview questions are related to their experience using the Umple

language, major challenges, and code generation experiences using Umple. The questionnaire

data is analyzed quantitatively, while the interview is analyzed in a grounded theory approach.

6.2.6 Questionnaire

The questionnaire is estimated to take 10 minutes to answer. The questionnaire is anonymous

and the questions focus on the participants’ Umple user experience, their perception of the

syntax, the generated code, and Umple’s role in past, present, or future software development

activities. The questionnaire questions are presented in

140

Table 16: Questionnaire responses summary on page 142.

6.2.7 Interview

The objective of the interview is to better understand user’s experience using Umple as a

modeling, programming and code generation tool. The interview will also clarify decisions the

participants made during their work with Umple.

The interview is semi-structured and is comprised of the following open ended questions.

Table 15: Interview questions

1. What were the main things you liked about Umple?

2. What were the main difficulties you experienced using Umple?

3. For the system you used Umple with, did you start by drawing a diagram on paper, by

using RSM [Rational Software Modeler], using some other tool or by writing Umple

code?

4. An objective of Umple is that it becomes a full programming language; you shouldn’t

need to look at the generated code. Nevertheless what do you think of the generated Java

code?

5. Did you have to edit the generated code from Umple? What were the problems you had

to fix, if any?

6. How much code did you have to write to complete the system implementation? For

which components of your system?

7. For future work, how would you go about modeling and implementing the system? How

would your approach change, if at all, if you are solving a different problem?

8. What new features would be useful in Umple? Do you think embedding state diagrams

would be useful? How about design patterns?

9. Assuming Umple was turned into a production quality compiler with good error

messages, do you think you would use Umple in your future development projects? Why

or why not?

The interview questions were made purposely generic so that they apply to Umple class and state

machine models. The exception being question number eight that explicitly referred to state

141

machines and patterns as being features planned in the future. This question therefore was

modified when state machines were developed.

6.3 Results and Analysis:

Questionnaire data are analyzed quantitatively. Interviews are transcribed and analyzed using a

grounded theory approach. During the analysis activities, we removed all data that may reveal

participants identities, and ignored all quotes that may compromise the identity of the

participants.

6.3.1 Questionnaire results

Table 16 presents the results of the participants’ responses to the questionnaire. Note that some

participants did not provide answers to all questions on the questionnaire. This happened when

participants did not have experience with Umple feature that relates to the question. Or, in other

cases, the participant opted to skip the question.

142

Table 16: Questionnaire responses summary

Q Question description SA

=5

A

=4

N

=3

D

=2

SD

=1

weighted

Average

1 Umple syntax for attributes and associations is easy to

learn?
2 4 0 0 0 4.3

2 Umple syntax covers all my programming needs,

except user interface and database access?
0 3 0 3 0 3.0

3 Programming in Umple allows me to be more

productive than programming in Java?
0 3 3 0 0 3.5

4 I find it easier to edit Umple code than to edit Java

code?
0 0 3 2 0 2.6

5 Java code generated from Umple is easy to

understand?
0 4 0 0 0 4.0

6 I am satisfied with how Umple implements

associations in the generated Java code?
3 3 1 0 0 4.3

7 I am satisfied with how Umple implements attributes

in the generated Java code?
3 3 0 0 0 4.5

8 Syntax errors in Umple are easy to identify? 0 2 0 0 0 4.0

9 Error messages that appear when I compile Umple are

very useful?
0 0 0 3 0 2.0

10 It will not be necessary to look at the generated Java

code to use Umple, just like you do not need to look at

object code or bytecode?

0 3 2 2 0 3.1

11 I usually had to edit the generated Java code? 0 2 0 2 0 3.0

12 It was easy to reuse the generated Java code? 0 3 1 0 0 3.8

13 It was easy to reuse the Umple code? 0 4 0 0 0 4.0

14 Umple has the potential to be a major advance in

programming?
0 3 2 0 0 3.6

15 Umple code is easier to understand than the equivalent

Java code?
2 4 1 0 0 5.8

16 Umple has lots of bugs? 0 0 4 0 0 3.0

17 The code generated from Umple is bug-free? 0 3 2 0 0 3.6

18 I will recommend Umple to my team members or

colleagues?
0 3 3 0 0 3.5

19 I will use Umple in my future development projects? 0 3 1 1 0 3.4

20 Umple can help students to understand how to create

proper models?
0 3 1 0 0 3.8

21 Umple can help make object-oriented programming

easier?
0 2 2 0 0 3.5

143

Question number 15 “Umple code is easier to understand than the equivalent Java code?” has

yielded highest weighted average on our likert scale. This result could be because either Umple

code is in fact easy to read and understand, or that the equivalent Java code is relatively complex

and harder to understand. By investigating other questions, we note that question number 6

“Java code generated from Umple is easy to understand?” has high score in the weighted average

scale. This means that participants find the generated Java code is relatively easy to understand.

We can, therefore, with more confidence conclude that Umple code is in fact easy to understand.

This aspect of comprehensibility of the Umple and the equivalent Java code inspired us to

conduct a formal experimentation that we present in “Chapter 7: Experimentation”. Briefly, the

experiment results imply that Umple is indeed more comprehensible than the equivalent Java

code.

The least weighted average question is question number 9 “Error messages that appear when I

compile Umple are very useful?” This was expected because Umple, being a research platform

under constant development, has few error messages that are not yet very meaningful; in

particular the Umple compiler usually only refers to where the error has occurred, and provides

little to no support on how to fix the error. Participants have also reported error messages that

were unjustified and hard to interpret.

We also interpret this low average for this question to mean that Umple users did consider

Umple to be a programming language, and therefore had expectations of the editor similar to a

typical IDE for other high level programming languages. Users familiar with, for example, the

Eclipse IDE expect the Java editor to provide features such as auto-complete, syntax

highlighting, syntax errors reports in near real-time fashion, and others. This result motivated us

to implement two components in Umple; first the sophisticated editor, second, syntax and

semantic error messages. Umple editor is presented in the section “Umple textual editor and

automated update site” on page 69. The error messages are in early stage of development and is

documented as part of the Umple open source project [7].

6.3.2 Interview qualitative analysis

We conducted interviews with seven participants who had used Umple for about four hours each.

The recorded interviews made up about 145 minutes of recorded audio, and their transcripts are

about 27 pages of text (~ 10,800 words). The coding process was performed by the same

researcher who performed the transcription of the interviews.

144

6.3.3 Coding process

We used a word processor to conduct our coding process. The resulting codes are presented in

Figure 42.

Figure 42: Codes

The coding process was performed iteratively with the interviewing process. In addition, as new

major features were added to Umple, answers to the generic interview questions addressed more

recent features of Umple. This means that codes presented in Figure 42 were not equally

embedded in the data. For example, Code generation for associations and attributes were more

embedded in the data than the codes on state machines. This is because state machines in Umple

were developed at a later stage than associations and attributes. Moreover, the development of

state machines in Umple were influenced by user’s feedback on associations and attributes. For

example, we noticed that some provided answers that imply that they did not analyze the

generated code carefully, even when the tasks they were performing required closer analysis. As

an example of this, a user reporting that the code generated for associations are sometime

unnecessarily replicated in the generated code. We therefore realized that we need to enhance the

use of inline comments in the generated code so that when and if a user investigates the

generated code, he shall be able to locate and comprehend the piece of code he is trying to

investigate.

6.3.4 Codes summary

We now present a short description of each code along with some representative quotations from

the interviews, and discuss some of the codes we anticipate to emerge had this study included

users whose Umple experience was more extensive.

145

Umple feature

This is a top-level code that groups participants’ feedback relating to an Umple feature.

Usage pattern

This is a top-level code that groups participants’ feedback relating to the way Umple was used

and the environment in which it was used.

Challenges

This is a top-level code that we opted not to break down into sub-codes. This is because we

routinely referred to text under this code when justifying or weighing on a design or an

implementation decision. Samples of this code are:

- Associations being generated twice in the Java code (which was misconception of some

Umple users)

- Web based application being slow.

- Umple reported an error message for no apparent reason.

- Error messages unclear.

- The generated code is too long.

- Relative simple classes result in large Java code.

- Attributes always had a setter and getter.

- Umple documentation can be improved

- Misleading/meaningless error messages.

- The generated code, once edited, cannot be refactored into Umple.

- Limitations of what you can do with only Umple, i.e., building interfaces.

- Unexpected or unexplained behavior.

Note that many of these issues have been dealt with as Umple was developed.

Code Generation

The Code Generation code was used to highlight all transcript text that related to the Umple code

generation process, and the generated code itself. Examples are:

- Generated setters and getters for attributes;

- Handling of Associations and implementation approach for associations;

- Assessment of the generated code.

- The need, or lack thereof, to edit the generated code;

Syntax

The Syntax code refers to Umple textual syntax, and was used to highlight all portions of the

transcripts that reflected participants experience with creating the textual model. This covered

aspects that related to attributes, associations, state machines, impression of the participant on the

Java versus Umple code, effectiveness of writing code in Umple, etc.

146

Modeling / Coding process

The modeling-code process code covers aspects of the user experience that is related to the

software development process they adopt, or anticipate to adopt, using Umple technology. For

example, some users reported that they modeled on paper and then wrote the model in the Umple

language, others reported on their experiences trying to debug Umple as compared to debugging

Java. Some users reported that they used the visual editor to draft the model, and then fine tune

specifics textually.

Domain

This referred to the characteristics of the environment or framework under which Umple is used.

For example, the characteristics of the problems tackled by the participant using Umple. This

sub-code also covers the characteristics of the environment that can influence Umple’s

effectiveness. For example, some participant’s argued for and against using Umple in place of

their current IDE, others argued that it is good for larger systems, but not as effective for smaller

ones, others had the opposite argument. Further, some user’s debugged the generated code and

then implemented the fixes in the Umple because they had tool support for Java debugging and

none for Umple. This code also covered user’s experiences in using Umple in real development

projects.

Associations & Attributes

All code generation issues related to associations and attributes are under this sub-code.

State machines

All code generation issues related to state machines.

Simple state machines

All code generation experiences of simple state machines are under this sub-code.

Composite state machines

We did not conduct interviews with participants that used Umple’s composite state machine

features. This is why this code is grayed out in Figure 42.

Model only

Some participant’s had used Umple to model only, and not to build a full executable system.

Executable system

This code covers user’s who used Umple to build an executable system.

147

6.4 Findings

We have classified the codes under three main categories; Umple Features, Challenges, and

Usage Patterns. Umple features are further broken down onto Code Generation and Syntax.

Similarly, Usage Pattern is broken down onto Coding/Modeling Pattern and Domain.

The “Code generation” code groups users experience with the generated Java/PhP code of

Umple. We noted that some participants have, in one way or another, analyzed or edited the

generated executable Umple code.

The “Syntax” code is based on user’s remarks on the Umple syntax. Most of the text under this

code implies that Umple users are satisfied with Umple syntax.

(1) “it would be much easier for me, you know, to [write in

Umple] compared to Java.”

(2) “ I like its basic syntax having to do your associations in

one class or the other, that was straight forward .. that makes

associations easy..”

(3) “ You do not have to write setters or getters, these are

automatically generated for you”

(4) “I will use Umple to generate code for my state machines

online. I do not have to install RSA [Rational Software

Architect]if I need to quickly implement a simple state

machine ”

(5) “It is easy to implement state machine this way.”

There were no negative remarks in all of our transcripts about Umple syntax. We would expect

the Questionnaire to reflect a particularly positive user’s experience with Umple syntax.

However, question 1 resulted in weighted values of 4.3, out of a maximum of 5. The results of

this question did not particularly reflect the anticipated positive user experience with Umple

syntax.

Analyzing the syntax sub-code, we could not understand why some participants did not find

Umple to satisfy all their programming needs (see question 2 in the questionnaire results in

148

Table 16). This may mean that users are satisfied with Umple syntax, even though it may not

cover all their programming needs, or that the syntax is comparable to users’ functionality

expectation, or that participants accept less functionality in return of simplicity.

The “Challenges” code is used for Umple experiences that were particularly challenging, or

negative. This code can be further broken down into sub-codes that reflect the source of the

challenge. The source of the problem can be attributed to a number of root causes. Some of

those root causes are related to the Umple compiler’s sophistication, error messages, interface

functionality, code-assist-related features, and code generation. Many of challenges have since

been fixed or are on our research agenda. The root causes of some issues were most likely a

result of the participants’ unfamiliarity with the Umple specifications or modeling concepts, as in

quote number 7 below.

(6) “The generated code in our assignment was too long”

(7) [automatic generation of setters and getters] “That was

useful, and also that was annoying in some cases, because I

am not sure whether you are able to define whether that was

an accessor or not, it would automatically create setters and

getters for you.”

(8) “if you declare the association in certain way, it would end

up generating it twice in the generated code”

“Modeling/Coding pattern”. This code is concerned with the way participants have reported

their use of Umple as a modeling and coding tool. Our research’s ultimate objective is to

enhance modeling by the introduction of textual modeling approaches that fit traditional

programmers who are more used to efficiently write code in text.

(9) “you can look at the code, and it is almost visual”

(10) [Being presented by the visual and the textual] “I think that

was the best thing, because you kind of get the best of the two

worlds.”

(11) “like the traditional approach of writing the code, and that is

nice and all, but when you get a huge system, that needs to be

modeled.. “

Participants have frequently linked the usability of Umple approach to the domain and/or the

application characteristics.

149

(12) “Umple is good for simple applications”

(13) “.. but if you are going to make something visual that has

GUI components, .. and classes that adds listeners and stuff

like that, that sort of thing, I do not know, I have not done that

with Umple”

We can tentatively conclude that participants find Umple suitable for small and medium size

applications that do not require GUI components or special programming aspects, like

connecting to a server or listing on a channel. This users’ perception is, probably, a result of

their focusing on using the modeling aspects of Umple. Umple is built to be an extension to

existing high level programming languages, and therefore, should be suitable for implementing

all types of systems. The findings here bring about the following questions:

Q.1. Is the perceived limitation in Umple due to the prototype nature of Umple as it is today?

 Or is the limitation due to the basic Umple approach?

Q.2. Typically, larger applications are comprised of smaller size sub-components. If

 Umple is suitable for smaller applications; one would assume that it is also suitable for

 larger applications.

Participants

Our study participants have so far been university students at the undergraduate and graduate

levels who have had limited experience with Umple. This limited experience with Umple has to

some extent hindered our ability to extract more extensive usage information. For example, a

number of participants used only the Umple online tool [3] that has limited capabilities compared

to the Umple Eclipse plug-in. We expect to conduct more studies with professional industry

participants when such users are available.

6.5 Challenges

As we have discussed in this chapter, GT studies emerged from the social sciences where the

pool of potential participants is large. In this study, a major challenge, which was identified early

on, is the size of the pool of the potential participants. Another challenge is the level of Umple

experience the participants have with Umple.

Open sourcing Umple technology, and making it available to the public has had the effect of

increasing the pool of Umple users and contributors. However, by the time Umple open source

project was set up and the number of new visitors started to increase (Figure 43), the grounded

theory study was being finalized.

150

Figure 43: Number of unique visitors to the Umple Google Code site from March 1st to December 1st, 2011

(this does not include UmpleOnline).

Using Umple as an educational tool in classrooms has served well in increasing the pool of

Umple users [92]. But these users have typically used Umple in a classroom environment where

the modeling tasks they performed are limited.

6.6 Summary

We presented a survey of the use of grounded theory in the area of software engineering.

Particularly, in agile development methodologies, geographically distributed development, and

requirement engineering. We presented an overview of the challenges and opportunities of such

a research methodology in the software engineering domain.

We then presented a new approach to apply grounded theory methodology which has the

objective of supporting and guiding Umple experimental development and using participants’

feedback as an input when making design decisions. The study participants were undergraduate

and graduate students that have used Umple within a university environment. We also presented

our quantitative analysis of survey data and qualitative analysis of interview data using a

grounded theory approach.

151

Chapter 7: Experimentation

We conducted a controlled experiment aiming at understanding the effectiveness of using Umple

in performing simple software development tasks. This chapter reports on this experiment that

takes a human comprehension perspective on such tasks. Three different notations were

investigated: UML, Java, and Umple. Our experiment asked participants to answer questions that

reflect their level of comprehension. The results reveal that for simple comprehension tasks, a

pure visual notation and a model-oriented (textual) language are comparable. Java’s

comprehension levels were lowest of all three notations. Our results align with the intuition that

raising the abstraction levels of common object-oriented programming languages enhances

comprehensibility.

7.1 Experiment definition, context, and steps

The goal of this experiment is to evaluate the Umple textual modeling notation in comparison

with UML and Java. One of the objectives behind the development of Umple was that it should

gain the advantages of both visual modeling (UML) and textual programming (i.e. Java). This

experiment, therefore, seeks to validate the hypothesis that Umple has retained the advantages of

UML with respect to comprehension. We leave it as separate research to assess whether Umple

has also retained any advantages of textual programming.

A sub-goal of this experiment is to evaluate the effect on experimental results of using software

artifacts named with identifiers derived from the domain versus abstract names.

Step 1

Participants are asked pre-experiment profiling questions. Duration: 2 minutes.

Step 2

Participants watch a short video on class and state machine modeling using Umple and UML

[93, 94]. Participants are expected to be familiar with Java and require no Java training.

Duration: 6 minutes.

Step 3

Participants are provided with three instances of the experiment models, one at a time.

Participants are given 1 minute to review the model, and they are not allowed to ask any

questions. After each presentation, the participants are asked to answer a number of questions.

Duration: 25 minutes.

152

7.2 Experiment Metrics

The experiment employed the following metrics:

1. Number of questions answered correctly and incorrectly

2. For each question:

2.1 Time elapsed for the first answer

 2.2 Time elapsed for a correct answer

2.3 Number of incorrect answers (i.e number of trials)

3. Pre-experiment profiling questions

7.3 Null Hypotheses (H0)

The experiment employs three hypotheses:.

H1: A system written in Umple is more comprehensible than an equivalent Java implementation

of the system.

In other words, participants take on average less time to respond to questions when presented

with an Umple version of a system as opposed to a Java version.

The corresponding null hypothesis is:

H1o: Umple and Java do not differ in comprehensibility.

The next hypothesis is similar, comparing Umple and UML diagrams:

H2: A system written in Umple is more comprehensible than an equivalent UML diagram of the

system.

H2o: Umple and UML diagrams do not differ in comprehensibility.

The third hypothesis was of secondary interest:

H3: Whether names derived from the domain or abstract names has an effect on experiment

results regarding comprehensibility.

H3o: The use of abstract or domain-derived names makes no difference to comprehensibility.

153

Using systems with domain names or abstract names may or may not have an effect on response

time and number of inaccurate responses. The purpose of testing H3 is to determine whether, in

future experiments, we need to care about controlling for this factor.

7.4 Experiment Planning

We recruited 9 participants (none of whom had participated in the grounded theory study

presented in the previous chapter). Each participant was presented with three different models

(one, two, and three in Table 17: System example instances distribution) in three different

notations (Umple, UML, and Java).

Table 17: System example instances distribution

 Umple UML Java

Participant 1 One Three Two

Participant 2 Two One Three

Participant 3 Three Two One

Participant 4 One Three Two

Participant 5 Two One Three

Participant 6 Three Two One

Participant 7 One Three Two

Participant 8 Two One Three

Participant 9 Three Two One

Three of the system examples used names derived from the domain (student-supervisor domain),

while the remaining six models used abstract names (i.e. a, b, c) (see Table 18). Abstract names

were used since we wanted to test the ‘pure’ comprehensibility of the notations, and wanted to

avoid the threat to validity that people might understand the system simply because they

understand the underlying domain. On the other hand, we also used names derived from the

domain to reduce the opposite threat to validity, which is that systems with abstract names are

less realistic.

Prior to use, in the experiment, the example systems and the renderings of the systems in each

notation were reviewed by three independent researchers to help maintain consistent complexity

levels across the modeling examples.

154

Table 18: Domain and abstract naming distribution

 Umple UML Java

Participant 1 domain abstract abstract

Participant 2 abstract domain abstract

Participant 3 abstract abstract domain

Participant 4 domain abstract abstract

Participant 5 abstract domain abstract

Participant 6 abstract abstract domain

Participant 7 domain abstract abstract

Participant 8 abstract domain abstract

Participant 9 abstract abstract domain

7.5 Experiment objects

There are three system examples, each are presented in three notations; UML, Umple, and Java.

In total, there are nine variations of system examples. The system examples are very simple with

simple associations and state machine transitions. The objective of this variation is to eliminate

any learning a participant may accumulate from one experiment round to the other. The first

system examples are illustrated in Figure 44, Figure 45, and Listing 16: Example one Umple

code. The rest of the experiment system examples are listed in the appendix.

Figure 44: Example one class diagram

155

Applied Enrolled

Quit

quit / setSupervisor(null)

enrol [!hold]

quit

Graduated

graduate / setSupervisor(null)

Figure 45: Example One state machine diagram

class Person {

 name;

}

class Student {

 isA Person;

 Integer stNum;

 status {

 Applied {

 quit -> Quit;

 enroll [hold] -> Enrolled;

 }

 Enrolled {

 quit -> /{setSupervisor(null)}Quit;

 graduate->/{setSupervisor(null)}Graduated;

 }

 Graduated {}

 Quit {}

 }

 * -- 0..1 Supervisor;

}

class Supervisor {

 isA Person;

}

Listing 16: Example one Umple code

The following two tables (Table 19 and Table 20) show system examples properties. The

objective is to have three system examples with similar complexity levels.

The complete list of system examples are published in a technical report [95].

156

Table 19: Example model properties

 Number of

 Domain

Names

Notation Classes Assoc. Attr. States Trans Guards Unique

events

Unique

Actions

1 NO UML

3 3 3 4 4 1 3 1 2 NO UMPLE

3 NO JAVA

4 YES UML
3 3 3 4 4 1 3 1

5 YES UMPLE

6 YES JAVA

7 NO UML

3 2 1 3 5 1 5 5 8 NO UMPLE

9 NO JAVA

Table 20: Line and character numbers for Java and Umple examples

Example Number of

lines

Number of

characters11

Domain names? Notation

1 30 254 Yes Umple

1 42 570 Yes Java

2 29 154 No Umple

2 55 469 No Java

3 28 227 No Umple

3 49 576 No Java

Average Java Lines 146

Average Umple Lines 87

7.6 Question List

There are 12 core questions. The questions wording and correct answers have 9 variations. This

is because a question posed on a Java implementation must use different wording than a question

posed on a UML model. The questions for UML and Umple are almost identical. Presented

below are questions for UML and Umple for the first example instance.

11 Spaces are not counted.

157

Table 21: Question list for version E1 (UML and Umple)

 Questions for Version E1

 Umple and UML questions Correct Answer

Q1 Let’s assume the state machine is in the Applied state and hold

is false. Also assume the following events occurred in

sequence, enrol, quit, enrol. What is the resulting state?

Quit.

Q2 Assume the student has one supervisor. Can you add another

supervisor to the same student?

No.

Q3 Assume a supervisor has 6 students. Can we add another

student to this supervisor?

Yes.

Q4 Assume the state machine is in the Applied state, and the value

of hold is true. What happens when the event enrol occurs?

Nothing. No transition

occurs.

Q5 How many students can a supervisor have? Many. Unlimited

number.

Q6 What are the possible states the state machine status can have? Applied, Enrolled,

Graduated, and Quit. (in

any order)

Q7 What actions are called when the following transition occurs :

From Applied to Enrolled

Nothing. No actions are

called.

Q8 Can the state machine go directly from Quit to Enrolled? No.

Q9 Can the state machine go from Graduated to Applied? No.

Q10 Assume we are in the Applied state, what happens when the

event graduate occurs?

Nothing.

Q11 Can you create a Person Object? No.

Q12 Assume the state machine is in the Applied state. Also assume

the following events occur in sequence: graduate, quit, quit,

enrol. What is the resulting state?

Quit.

The other question lists, along with all experimental objects, can be found at [95].

7.7 Profiling information

The following profiling information is collected prior to the experiment.

158

Table 22: Information collected prior to the experiment

Education

Q1 Are you a bachelor’s student? Masters? PhD?

Q2 What year?

Q3 Which university?

Q4 How many Software Engineering courses have you successfully

completed?

Background

This scale is used for the following three questions: ? (Never heard of it,

know about it but not used it, used it a little, Have used it regularly, expert)

Q5 How familiar are you with Java?

Q6 How familiar are you with UML?

Q7 How familiar are you with Umple?

Experience
Q8 How many years/months of working experience in the software

development industry?

7.8 Selection of Participants

The 9 participants are selected randomly from the pool of university students who have

completed at least two courses in OO-programming.

Participation in the experiment is anonymous and voluntary. Participants are not compensated

for their participation.

7.9 Variables in the Study

This section presents the extraneous, independent, and dependent variables in the study.

7.9.1 Extraneous Variables

These variables may have an effect on the dependent variables. The experiment design attempts

to eliminate or minimize the effect of extraneous variables.

159

Table 23: Extraneous variables

Independent

variable

Description

Domain knowledge Participants knowledge of the domain should have no impact on their

responses. The system examples are very simple and domain knowledge

should not have an impact on answers.

System examples

complexity levels

All system examples instances used in the experiment have complexity

levels identical, as possible. This is insured by using the similar number of

model properties across system example instances (i.e number of classes,

associations, attributes, states, transitions, actions, guards, and events)

Java, Umple, and

UML background

and experience

Participants are expected to have good knowledge of Java. That is because

the pool of potential participants are university students who have

completed at least two courses in OO programming. Knowledge of UML

and Umple are variable. The following is performed in order to isolate the

impact such knowledge and background on results:

1. Training examples are presented to the participants prior to

commencing the experiment.

2. The system examples used are very simple, requiring only very

basic knowledge of the different notations (Java, Umple, UML).

Learning during

the experiment

Participants will inevitably learn aspects about the system examples

during the experiment. The following is performed in order to isolate the

impact of learning on results:

1. Example instances are slightly different. Participants cannot

answer questions about instance 2 based on knowledge of instance

1.

2. Every system example instance is presented in a different notation.

Environment

factors

Every effort is taken to eliminate or minimize external environmental

factors, such as noise and interruptions.

7.9.2 Independent Variables

These are the variables that are manipulated during the experiment.

160

Table 24: Independent variables

Independent

variable

Description

Notation The notation used to present a system example. This variable is

manipulated (UML, Umple, Java).

Domain Names

and Abstract

Names

System example element naming are manipulated (Domain names vs

abstract names).

The example system could be considered as a third independent variable, but this is introduced

only to minimize the learning effect, therefore, we do not consider it to be an independent

variable.

7.9.3 Dependent Variables

These are the responses observed during the experiment. The independent variables

manipulations should ideally be solely responsible for the variations in the dependent variables .

Table 25: dependent variables

Dependent

Variable

Description

Time to respond

to questions

The time the participant takes to find out the answer to the question is

dependent on the notation used.

Number of correct

responses

The number of correct responses on the first trial is dependent on the

notation used.

7.10 Threats of Validity

Table 26 summarizes the threats of validity for this experiment, along with mitigation strategy

for each threat.

161

Table 26: Threats of validity

Threat Description (Thread and Mitigation)

Expertise and

background of

participants

may affect

how fast they

respond to

questions

Participants may have varying background and experience with modeling using

UML and Umple. They may also have a varying background on object

orientation and state machine modeling. Their background may affect how fast

they are able to respond to questions.

1. We collect demographic information on the users and make sure that

distribution of background and experience is balanced.

2. At the beginning of the experiment, we present a short tutorial that covers

knowledge required for answering the experiment questions.

3. Experiment examples are very simple and require minimal expertise. This

has the effect of shifting the focus on the notation, rather than the subject’s

technical expertise

4. The experiment is balanced, participants with high levels of expertise will

most likely answer better and quicker answers in all three instances of the

model.

Number of

examples and

participants

may not be

representative

of the overall

population

This is an external validity threat. Can we generalize the results in this study to

the general population? This threat is strengthened by use of student

participants.

This validity threat exists in many controlled experiment reported in the

literature.

1. Using three examples, rather than one.

2. Randomly recruiting nine participants.

3. Making experiment design, procedure, and models public to invite

replication.

4. Use of non-parametric analysis techniques to minimize assumption of data

set distribution.

Question and

system

examples

variations

have an

impact on

response time

Each question has 6 variations; the question essence is the same, but the

wording is different. There is a threat that these variations affect the response

time of participants.

1. The questions have been reviewed by at least 3 experts independently to

make sure that the variations have no, or little, impact on response time.

2. Conducted at least one pilot study for each question list to make sure the

questions are unambiguously understood by participants.

162

7.11 Results

A total of nine participants provided answers to thirty six questions; 12 questions per example

system for three instances. In total, there are 324 response times recorded.

Seven participants reported to have a PhD or enrolled in a PhD program. Two participants

reported being a Master’s student. The majority came from University of Ottawa (six). There

was one student from Carleton and one from Cornell University.

Participants had an average of four software engineering courses. They had an average Java

familiarity score of 3.3, average UML familiarity of 2.7, and an average Umple familiarity of

1.67. Participants had an average of 9.9 months of professional software development

experience.

Table 27 summarizes the average response time for the 9 participants. For example, participant

number 1 responded to Umple questions in 5.5 seconds on average, and 4.7 to UML questions on

average, and 9.3 seconds to Java questions on average.

The table also shows the average per notation. For example, Umple’s overall response time is

3.57, compared with 3.61 for UML, and 6.87 for Java.

Also in the table is the average per participant. For example, participant number 1’s response

time was 6.5 on average across the three different notation types.

Table 27: Average results

Participant Umple UML Java Overall average

1 5.5 4.7 9.3 6.5

2 5.0 4.2 9.0 6.1

3 3.7 3.6 6.2 4.5

4 2.3 3.1 6.2 3.9

5 2.1 3.0 6.3 3.8

6 2.2 2.4 3.4 2.7

7 4.3 2.4 6.0 4.2

8 3.0 4.0 6.3 4.4

9 4.1 5.1 9.0 6.1

Average 3.57 3.61 6.87

It is our intention that the questions be straightforward and participants should be able to provide

the correct answer at the first attempt. However, it was not always the case; there were a total of

37 incorrect responses out of the 324 questions posed. Incorrect responses were distributed

among all three notations as follows: Umple with 8, UML 12, and Java 17.

163

The average response time per system example is summarized in Table 28.

Table 28: Average response time per example

Average Per Example

E1 4.67

E2 4.74

E3 4.67

Questions posed for system examples that use domain names had an average response time of

4.67 seconds. On the other hand, models that used abstract names had an average response time

of 4.79 seconds.

7.12 Results Analysis

This section presents our analysis and interpretation of the experiment data and is organized as

follows. We first re-examine the experiment threats of validity and make an assessment of the

identified threats. We then present the results of the parametric and non-parametric statistical

analysis and results.

7.12.1 Assessment of threats of validity

Profiling information indicate that participants have more Java background than UML, and much

less background on Umple. Therefore, if background were to have an impact, it will not be in

favor of Umple.

The results of the average response time per example (Table 28) reveals that system model used

does not seem to have had an impact on the response time of the participants.

7.12.2 Examining Data for Umple and Java

Figure 46 illustrates the average response time for Umple and Java.

164

Figure 46: Average response time for Umple and Java

Using a two-tailed t-test to measure the statistical significance, Umple is better than Java

(p=1.5x10
-8

).

Using Mann-Whitney test (U-test) Umple is better than Java (p = 8.9x10
-9

) and a W value of

2722.5.

Using the sign-test, Umple was better than Java in 83 occurrences, while Java was better than

Umple in 13 occurrences. The sign test results indicate Umple is better than Java (p=6.0x10
-14

).

7.12.3 Examining data for Umple and UML

Figure 47 illustrates the average response time for Umple and UML.

165

Figure 47: Average response time for Umple and UML

Using a two-tailed t-test to measure the statistical significance, Umple is not significantly better

than UML (P=0.9).

Using Mann-Whitney test (U-test) Umple is not significantly better than UML (P = 0.2) and a W

value of 4477.5.

Using the sign-test, Umple was better than UML in 53 occurrences, while UML was better than

Umple in 30 occurrences. The sign test results indicate Umple is not significantly better than

UML (P=0.864).

We also conducted mean and standard deviation analysis. For each participant’s results, we test

to see if the mean of Umple lies in the range of the mean of UML minus one standard deviation

and the mean of Java plus one standard deviation. The answer was positive in all nine

participants’ results. This technique is used to show that two data sets come from different

populations [96]. Here, we use it to show that the two data sets (Umple and UML) are not

significantly different to conclude that they come from different populations. Elsewhere in the

literature, this technique is also used to identify outliers [97].

Regarding the third hypothesis (H3), using the Mann-Whitney test (U-test), we cannot conclude

that using domain or abstract names can have any significant impact of the average response

time (W= 3, and P =0.6). We come to the same conclusion by using the standard deviation

analysis described earlier.

166

7.13 Discussion

There is evidence that Umple performed significantly better than Java. But such evidence is

lacking in the case of UML. Our interpretation of the results is as follows.

The tasks involved in this experiment focused on simple model comprehension and tracing

questions. These tasks resemble realistic software engineering tasks [98]. These tasks, however,

do not cover the wide spectrum of tasks performed by software engineers. In particular, the tasks

do not address model creation, tuning, implementation, and maintenance tasks. Therefore,

interpretation of the results must take into consideration the scope on which conclusion can be

drawn.

We can therefore infer that Umple is better than Java in understanding a system. We can also

infer that Umple is not significantly better than UML in this regard. We can with significant

confidence claim that Umple is not worse than the visual UML models. After all, Umple is not

meant to replace UML, but to complement it. Indeed, the UmpleOnline tool [3] allows both to be

used interchangeably.

A core lesson from this experiment is that people whose program development approach is

primarily textual, for any reason, should with confidence consider Umple as a viable textual

technology. It retains the advantages of text, while being easier to understand than Java, and

being just as comprehensible as UML diagrams when it comes to UML concepts such as state

machines and associations.

7.14 Related Work

One of the challenges with the evaluation of textual and visual modeling is the wide variety of

textual and visual modeling approaches available. The work of Hendrix [99] adopts a similar

approach towards measuring comprehensibility levels. In his work, Hendrix evaluated textual

code and control structure diagrams by measuring the time subjects took to respond to questions.

We, on the other hand, evaluated UML, Java, and Umple. Our work is the first that provides

empirical evaluation of the Umple modeling approach.

Briand el al. [100] evaluated two types of object-oriented documents. Similar to our experiments,

it is an evaluation of two different ways of presenting equivalent information. Briand el al

concluded that “Good object-oriented design is easier to understand than good structured

design”. He also found no evidence that “good structured design is easier to understand than bad

structured design”.

167

7.15 Future work

This experiment cannot be a final word on model notation effectiveness, and it is not intended to

be so. Future work to replicate this experiment can be of great value in two ways. First, by

increasing the number of participants; second, by recruiting more professional software

engineers and making conclusions on this group of subjects; and third, by using a variety of more

complex systems.

It is yet to be seen in future studies how Umple, UML, and Java compare in the performance of

other, possibly more elaborate, software engineering tasks. One variant of this experiment can

ask participants to spot flaws or defects in model elements, or match pieces of Umple models

and Java artifacts to UML models. Such tasks can shed more light on the nature of

comprehension of textual modeling.

We also noted that during the experiment, participants have used the visual notation to trace the

execution of events in the state machine. The experiment did not focus on tracing tasks and we

cannot draw any conclusion about the effectiveness of the visual notation as compared to the

textual notation in relation to tracing tasks. A tracing language is currently under development in

Umple. Experiments focusing on tracing may therefore reveal insights on this issue.

7.16 Summary

This chapter presented our evaluation of the Umple modeling approach, with a focus on state

machines. We have conducted a controlled experiment where participants were presented with

an example system and answered some questions. The systems were presented using three

notations, UML, Umple, and Java. The experiment took a human perspective on the

comprehensibility of models.

The results indicate that both Umple and UML outperformed Java. There was no statistically

significant difference between Umple and UML. These results aligned with our vision; Umple is

not meant to replace the visual UML models, but to complement them. This experiment did not

explore whether text-oriented individuals, like programmers, find it easier to comprehend and

edit models textually, while other individuals, like modelers, may find it easier to deal with

visual models. This is left for future experimentation.

168

Chapter 8: Related work

In this chapter, we position our research with respect to the existing related work. We classify

related work under two classes;

1. Work related to textual modeling.

In this section, we provide an overview of the growing trend of textual modeling in the software

engineering domain. We also explore in greater detail three instances of related work; state

machine development in the Ruby technology, State Machine Compiler (SMC) [101], and

Specification and Description Language (SDL) [14].

2. Work related to standardization of execution semantics of UML.

The latest UML action language emerging standards are presented in this section. We

demonstrate the need for action languages and briefly introduce Alf, The Action Language for

Foundational UML [102].

8.1 Textual modeling

There exist a number of textual UML approaches that target textual representation for UML

models. Some of these approaches are motivated by the claim that traditional mouse-centric and

drag-and-drop techniques to create models require a considerable amount of clicking and

dragging to fine tune the model. Therefore, textual model creation can be relatively effective.

For example, MetaUML [103] has the main objective of creating UML diagrams to be readily

usable in LaTeX documents. Other approaches facilitate the online creation of models, for

example, yUML [104] allows users to create UML models online by including the textual

description as part of the URL. Similarly, modsl [105] enables the textual creation of UML

diagrams by providing an online service that translates the textual representation, being part of a

wiki for example, into a visual model. WebSequenceDiagrams [106] allows users to create the

textual model and see the visual model on the same web page. Human-Usable Textual Notation

[107] was created to conform to human usability criteria, and was later sponsored by OMG. The

notation supported class diagrams only, and was aimed at replacing XMI; it does not support the

embedding of native code.

Textual representation of UML models is less evident in existing commercial tools, other than

the XMI format which is not meant for human consumption. Telelogic Tau and VP Suite 4.1

SP1 are two commercial tools that have some level of support for a textual notation. Diagrammr

[108] attempts to use a natural-language-like syntax to create diagrams that do not follow

169

specific modeling notation. SinelaboreRT [109] generates efficient code targeted towards

embedded applications, and relies on XMI for integration with third party tools.

Other textual modeling tools have taken a programming-like approach. For example, UML

Graph [110] uses Java syntax complemented by javadoc tags to create UML diagrams, and uses

Light UML [111] to integrate with Eclipse.

TextUML [112] is an Eclipse-based tool that supports textual UML class diagrams, with good

syntax highlighting and debugging features. TextUML claims creating models just like you

write code, but they do not support any code generation, and instead rely on integration with a

number of modeling tools for code generation, if code generation is desired. Such approaches

are characterized by their objective of manipulating visual models in a way that is easy and

creates neatly aligned models.

Other research directions have the objective of creating an executable subset of UML textually.

Such approaches are more challenging because the objective is not to only create a UML model,

but to also to define execution semantics and generate executable artifacts. For example, Ragel

[113] presents a usable syntax to specify finite state machines and generates code for a number

of high level languages (C, C++, Objective-C, D, Java and Ruby). Ragel supports finite state

machines targeted towards parsing text and creating lexical analyzers. Ruby on Rails has

recently added a built-in support for state machines.

In the next two sections, we present in more depth the analysis of State Machine Compiler and

Ruby on Rails implementation of state machines. These two tools were chosen because they

support two important aspects available in Umple; support of an executable subset of the UML

standard, and the use of a textual notation for state machine diagrams.

To demonstrate the basic syntax for these two tools, we will use a simple state machine model

(Figure 1).

Idle

Run / rejectRequest()

Active

Run [isValid] / Activate()

Figure 48: Simple state machine

The state machine has two states (Idle and Active), and two transitions. One transition is

guarded, and the other is reflexive.

170

8.1.1 State machines in Ruby

Similar to Umple, Ruby’s state machine syntax can be described as declarative. States and

transitions are declared similar to declaring variables in any high level programming language.

Figure 49 demonstrates our example state machine implemented in Ruby.

Umple state machine

class Engine {

 Motor {

 Idle {

 run [isValid] -> /{Activate();} Active;

 run -> /{rejectRequest()} Idle;

 }

 }

}

Figure 49: State machines in Ruby

Ruby state machine

class Engine < ActiveRecord::Base

include ActiveRecord::StateMachine

state_machine do

 state :Idle

 state :Active

 event :Run do

 transitions

 :to => :Idle, :from =>[:Idle],

 :on_transition =>:rejectRequest()

 transitions

 :to => [isValid] :Active, :from => [:Idle],

 :on_transition => : Activate()

 end

end

171

The declarative nature of implementing state machine syntax is evident in all state machine

elements. States, events, and transitions are declared independently. This declarative nature

extends to declaring other state machine elements, such as entry and exit actions (Listing 17).

Listing 17: Entry and exit actions in Ruby

Ruby on Rails

state :Idle,

:enter => [:startTimer(), :checkQueue()],

:exit => :stopTimer()

This declares an entry and exit actions in the Idle state.

8.1.2 State Machine Compiler

The State Machine Compiler (SMC) [101] is a Java based tool that enables developers to create

event-driven applications by providing state machine specifications. The state machine

specifications are provided textually. SMC uses multiple-class pattern to generate the executable

code to implement the state machine.

Notice that the comment like lines are compiler directives needed to tell the compiler what

elements are being parsed.

Listing 18: State Machine Compiler

State machine Compiler

// State

Idle {

 // Trans

 Run

 // Guard condition

 [isValid]

 // Next State

 Active

 // Actions

 { Activate(); }

 Run nil {rejectRequest();}

}

172

State machine compiler

// State

 Idle

 Entry {

 StartTimer();

 CheckQueue();}

 Exit {

 StopTimer();}

{

 // Transitions

}

SMC’s Transition to ‘nil’ state

SMC implements a dummy nil state to which any transition can transit to. Transiting to a ‘nil’

state means the next state is the same as the starting state. This is useful in availing the ability to

choose whether to execute the entry and exit actions of a state, or not. Listing 19 illustrates two

types of reflexive transition.

Listing 19 illustrates the usage of nil state. In SMC, there are two ways to implement this

reflexive transition; external loopback transition and internal loopback transition. In external

loopback transitions, the exit and entry actions of the Idle state are executed, as well as transition

actions, if any exists. On the other hand, in the case of the internal loopback transitions, only the

transition action is executed. This feature in SMC is not directly supported Umple. However,

this behavior can be simulated using composite states in Umple by having a reflexive transition

Listing 19: Nil states in SMC

External loopback transition Internal loopback transition
// State

Idle

 {

 // Trans Next State

 Actions

 Timeout Idle {}

}

// State

Idle

{

 // Trans Next State

 Actions

 Timeout nil {}

}

Idle

TimeOut

173

in an inner state. In Umple, we adopt UML semantics for the execution of entry and exit

actions.

8.1.3 Comparison with Umple approach

There are core differences between Umple, Ruby and SMC. We summarize these differences as

follows:

1. Language independence

Umple is language independent. Umple currently supports code generation for Java, C++, PhP

and can easily be extended to support other languages. Neither Ruby nor SMC are language

independent.

2. Readability

Umple’s syntax is very similar to high level programming languages. We claim that Umple is

more comprehensible than both Ruby and SMC syntaxes. Verification of this claim is left as a

future work. However, one factor supporting our claim is that SMC’s uses compiler directives to

identify and parse state machine elements. The state machine becomes immediately less readable

by humans. This is evident in the increased number of lines and reserved words.

3. Embedding of native code

Umple supports embedding of native code to implement various state machine elements. We

actually like to say that Umple’s syntax, for those modeling elements, happened to be identical to

that of Java or PhP.

4. Support for associations and attributes

Umple state machine elements are well integrated with other UML modeling elements in Umple,

such as associations and attributes.

5. Support for multiple state machines within the same class.

Umple supports unbounded number of state machines within the same class. See “Multiple state

machines in the same class” on page 117.

6. Support for composite state machines

Support for composite state machine was discussed in the previous chapters. Ruby and SMC

only support basic state machines.

7. The need for round tripping

174

One of Umple’s objectives of supporting native code is to eliminate the need to edit the

generated code. From Umple’s perspective, the generated code is just like the byte code

generated by other compilers. The need to edit the generated code is eliminated in Ruby, but not

in SMC.

8.1.4 Specification and Description Language (SDL)

SDL is an object-oriented formal language defined by the International Telecommunications

Union-Telecommunications Standardization Sector (ITU-T). The objective of the language is to

model event-driven real-time systems. Particularly systems that involve extensive signals and

communicating components.

SDL is designed to describe both the structure, data, and behaviour of real-time systems. The

language eliminates ambiguities by having precise interpretation for each symbol. There are

compilers that can generate high level programming language code for SDL. SDL has two

semantically equivalent notations, a graphical representation (SDL-GR) and a phrase

representation (SDR-PR). It is reported that the two equivalent notations enhance on clarity and

ease of use.

In this section, we give an overview of the main features of SDL, and make a comparison with

Umple’s approach.

Parallelism

Parallelism is a key concept in SDL. Each process has its own memory and processing space. In

other words, each process is an independent thread. A number of processes can be grouped to

form blocks. A sub-system is a number of logically grouped blocks. This is SDL’s approach to

representing a system hierarchy.

Process instances can be created and terminated at run time. Each process instance has a unique

process identifier (PId) allowing users of SDL to send signals and parameters to specific

instances of a process.

Communication

Signals are the means of asynchronous communications between blocks. Signals can have

optional parameters transmitted along with the signals. SDL also supports synchronous

communications by means of remote procedure calls. For real time systems, time is a critical

concept. SDL supports sophisticated timers and can measure and control response time of other

processes.

175

8.1.5 Comparing Umple and SDL

SDL has emerged from the communications and signals domains. Umple, on the other hand, is a

general purpose model oriented programming language. SDL provides better asynchronous

support and better handling of parallelism in general. Let’s consider the comparison at two

levels, syntax and semantics.

Syntax

In this comparison, we consider the language coverage of modeling abstractions, terminology

used in the notation and comprehension of the notation. Figure 50 is a simple example presented

in SDL graphical notation and textual notation.

P

process P;

 start;

 next state idle;

 state idle;

 input s;

 output t;

 next state active;

 end state idle;

end process P;

Figure 50: SDL graphical and textual notation

The same model is represented in UML and Umple as follows.

idle

t

S

active

176

Status {

 Idle {

 s -> / {t} Active;

 }

 Active {

 }

}

Figure 51: UML and Umple notations

Coverage

Umple provides a textual notation for UML constructs that define state machine, attributes and

associations. The textual notation is not intended to replace the UML visual language, rather, it is

supposed to complement it. The development of SDL is similar with respect to this aspect of

Umple. Both languages address the value added of the textual notation. In both cases, the textual

notation complements the visual representation.

Many of the modeling notations in SDL are also available in Umple. One can argue that any

model written in SDL can also be modelled in Umple. However, visa versa is not true. Umple

provides better support for data types (attributes) and also for associations, which are not

available in SDL.

Terminology

Because SDL has emerged from the communications domain, some of the terminology used is

unique to SDL. For example, input and output in SDL are similar to UML’s event and action.

However, with the UML profiling becoming part of the UML standard, using the real-time

profiles can address this issue. Umple, however, does not yet support profiles, but Umple user’s

can chose to name their modeling elements as they wish.

Comprehension

We can claim that Umple’s notation is significantly better suited for human consumption and

comprehension. As shown in the SDL and Umple textual notation examples, Umple uses

significantly fewer key words, and a model can be represented in Umple using fewer lines and

less overall text. In addition, Umple’s notation is similar to modern high level programming

languages, making it more familiar to more users.

s/t

Idle

Active

177

Semantics

Here we compare the two languages based on platform independence, fitness for general-purpose

programming, support for parallelism, support for timer-based computations and support for

asynchronous computations.

Platform Independence

Both Umple and SDL claim to be a portable notation. Using OMG MDD concepts, both can be

used as Platform Independent Models or PIMs. Umple, when purely modeling elements are

included, is completely platform independent. Umple supports the embedding of target language

code, a feature not supported in SDL. When such code elements are in the model, Umple

becomes Platform Dependent.

General purpose programming and modeling

Umple is designed to be a general-purpose modeling and programming language. Umple syntax

and semantics is most suited for general-purpose system development. SDL is most suitable for

communications and real-time systems, and would probably not be a good choice for a web-

based information system, for example.

Support for concurrency

Natively, the modeling notation in Umple supports concurrency using the do activity construct in

state machines. SDL’s native support for concurrent execution is superior. SDL’s processes run

in separate memories and can execute simultaneously on the same machine or in a distributed

environments. While many communications systems can be implemented in Umple, the

language itself does not provide much support ‘out of the box’ as compared with SDL. However,

Umple users can rely on the target language for the creation and management of independent

running threads.

Support for timer-based computations

Umple provides two types of timer that are also available in SDL. Timers in Umple are discussed

in section “State machine timers” on page 67. SDL provides superior capabilities in supporting

timers. In particular, it provides a mechanism to measure the time a remote running process has

taken to process or respond to a specific signal. Such sophisticated time management in

distributed systems has not been within the scope of the Umple language.

Asynchronous computations

A synchronous communications can be implemented in Umple using the do activity construct, or

by using embedded target-language code, if such communications is supported in the target

language. The rest of Umple’s semantics for events and actions are synchronous. SDL supports

synchronous communications natively by means of remote procedure calls. SDL is superior in its

178

support for asynchronous signals. A process in SDL can fire off a signal and continue execution

as normal without caring whether such a signal was ever processed or received.

8.2 Standardization of execution semantics of UML

In this section, we introduce and discuss the latest UML action language standard. We also

demonstrate the need for such languages, and show why existing high level programming

languages cannot be used as an action language. Alf, The Action Language for Foundational

UML [102], is the latest action language standard sponsored by OMG. We briefly introduce the

language and compare it to Umple.

8.2.1 Background and Introduction

A UML action language (UAL) is geared towards describing elements of a system, such as

actions, algorithms, and navigation paths, which are not readily described by typical UML

diagramming notation. Snippets of languages like C++ and Java can be used as a UAL, but such

languages are unaware of UML abstractions, resulting in mixed levels of abstractions and

‘boilerplate’ code.

OMG made available an RFP for a concrete syntax for a UML Action Language (UAL) [114].

Responses had to define a textual language for representing the UML subset defined in the

Foundation Subset for executable UML Models (fUML) [115].

The OMG proposal required that the UAL be suitable for use in executable UML models. A

proposed UAL had to meet a number of objectives including:

1. It must be computationally complete, meaning it must include standard arithmetic and

logical capabilities supported natively or by the use of libraries.

2. It must allow the invocation of user-specified external code such as legacy code.

3. It must allow embedding of native code. For example, if the target platform is Java, the

UAL should allow the embedding of java statements and constructs.

In November 2009, OMG published two proposals, one from IBM and one from Mentor

Graphics. In mid-February 2010, the two proposals were consolidated into one to be called

Action Language for Foundational UML (Alf). Alf version 1.0 – Beta-1 is the latest Alf standard

published to date. In the rest of this section, and without loss of generality, we routinely refer to

Alf as a representative UML Action Language.

179

8.2.2 Emergence of Action Languages

Action languages emerged to fill in the gap between the highly abstract (and visual) model

notations to manage structure and relationships, with the more algorithmic manipulation of the

model’s structure (i.e. programming language-like-statements). This gap, commonly referred to

as ‘execution semantics’, has not yet been completely formalized. Action languages can help

both modelers and coders to achieve the following goals:

Define the execution semantics of models

Models, by definition, are an abstraction of a system, where some details are purposely left out.

But to execute the model, missing details need to be defined using a Turing-complete language,

so that all needed computations can be performed and so that executing the same model results in

the same behavior. This is much like how different compilers for the same language should result

in a system with the same behavior (although perhaps different machine language

implementation and different characteristics like performance).

Express actions that natively interact with UML constructs.

UML introduces concepts that are more abstract than what is normally found in programming

languages. This includes associations, state machines, preconditions, etc. A UML Action

Language should define constructs that interact with, and fill in missing details of, such modeling

constructs. For example, an Action Language should define statements to add or remove objects

in an association, execute state machine actions, and define executable checks for pre- and post-

conditions where appropriate.

Express algorithmic details in the most usable and maintainable way.

To support an executable modeling environment, the need to unambiguously define algorithmic

computations is imperative. A UML Action Language should enable the modeler to define such

algorithmic computations at a level of abstraction that is as high as possible and which builds on

and complements modeling elements in a simple and elegant way.

Avoiding, or delaying, commitment to an execution platform.

The Action Language should allow modelers, and developers, to produce an executable system

and, at the same time, to delay commitment to an execution platform. For example, a modeler

should be able to define state machine actions in the UAL, and later in the development life

cycle, a developer can choose to generate or embed Java code (or both), after committing to a

Java execution platform. This is desirable in a model driven environments, where the same

model may be eventually implemented on more than one execution platform.

180

Early verification and enhancement of reuse [116]

Because a UAL would be defined over an executable subset of UML, it must be possible to

execute the UML models, along with the associated Action Language, early in the modeling

activities. Modelers can then see an executable prototype of their system, and refine their

modeling accordingly .

8.2.3 Why not use an existing programming or constraint language?

Reasons for not using an existing programming language can be summarized in the following

three points. These mirror the points expressed by Mellor et al [116]:

Programming languages provide much more than what an Action Language needs

The java console I/O statements, and the variety of UI frameworks for Java are examples where

the programming language is too powerful for what is needed from an action language. A

Programming Language (such as Java) provides a large number of statements and libraries to

accomplish the same or similar effect, which is to display output. Similarly, Java Programming

Languages provides considerable freedom regarding how instance variables and methods can be

used to represent and manipulate properties and relationships. The abstract UML concepts of

attributes and associations therefore have many concrete mappings; when presented with

implementation code, the software developer has a hard time seeing the abstractions. A UML

action language can hence abstract the most commonly used concepts and make the algorithmic

elements in models easier to understand.

Commitment to implementation

When programming an abstraction such as an association in a language like Java, one is forced

to choose the low-level details, such as the names of methods and the algorithms. It is hard to

change these later. As another example, when implementing a state machine one may choose to

use a string attribute, but one may later on decide to change to an enum and hence have to

change the code considerably. On the other hand, if using a UAL, this decision would be made

by the compiler or code generator, and could be changed simply by changing the some

configuration option.

Programming languages do not support directly UML concepts such as association or states

As mentioned, a language like Java does not have constructs for the representation of

associations or state machines, and consequently does not promote abstract thinking on the part

of programmers.

Declarative constraint languages, such as OCL, lack the support for algorithmic level

specification. OCL-like languages do a good job in navigating associations and defining pre and

post conditions, but generally, do not support effective implementation of algorithms.

181

8.2.4 Umple as an Action Language

The Umple approach to implementing a UML action language is distinct from the official OMG

approach in three aspects. First, Umple makes a textual representation available for UML

modeling elements and integrates the textual action language with the textual diagram

representation. This is, as we have demonstrated, done without loss of the visual representation

of UML models that can still be used along with the textual representation. Modelers can create

and edit models diagrammatically or textually, and can embed the action language textually. This

allows the modelers and the developers to reason uniformly about models and action language

statements. Second, Umple’s attempts to raise the abstraction level of the widely adopted

programming languages to include modeling abstractions and action semantics, effectively

overcomes limitations associated with programming languages used as action languages in UML

models.

Looking at Umple as an action language, Umple raises the abstraction level of programming

languages by availing the following language refinements (LRs):

L.R-1. Make available additional, and more abstract, language constructs

L.R-2. Restrict and modify statements so they become language independent

Thirdly, Umple provides native support for class and state machine abstractions. Current action

language approaches address class diagram abstractions only. An action language statement

should interact with abstractions from both class and state machine abstractions. For example,

action language statements that define the life cycle of an object may be more effectively

represented by a state machine diagram.

8.2.5 Overcoming limitations with existing programming languages

Umple addresses the limitations in programming languages for use as an action language as

follows:

Programming languages provide much more than what an Action Language needs.

This limitation can be easily overcome in Umple by limiting the scope of the programming

language into the subset required in the action language. Currently, Umple supports all

statements within the supported languages. For example, a state machine action or a guard

condition can be any valid statement or a function call.

Commitment to implementation.

Umple does not require the programmer to implement many abstract concepts; as in ordinary

compilers, the many implementation decisions are left to the compiler designers. The compiler

will select a suitable implementation based on the target environment.

182

Take for example a for loop in a typical high-level language compiler. The for loop is

implemented in a machine language in a number of different ways, all are deemed acceptable as

long as the semantics of the for loop is maintained. Taking the same concept to the modeling

abstraction, consider a state machine. There are a variety of approaches to the implementation of

state machine behavior (discussed in Chapter 2: Background); from an action language

perspective, all are acceptable as long as the semantics of the state machine is maintained.

Programming languages do not support directly UML concepts such as association or states.

This is one core aspect of Umple. Umple makes available those UML constructs in the language

itself. This becomes evident when we present the language syntax.

Declarative and constraint languages, such as OCL, lack the support for algorithmic level

specification.

Because Umple is based on object-oriented programming languages, this limitation is not

applicable to Umple. In addition, Umple supports aspects of the OCL, an example being pre and

post conditions. Discussion of pre and post conditions are not within scope of this thesis. The

reader can refer to the Umple open source project for additional information [7].

8.2.6 Comparison between Umple and UAL

Table 29 presents a summary of our interpretation of OMG’s stated objective of UAL. The table

also illustrates how Umple addresses these objectives. The listed objectives are only a brief

summary of the stated UAL objectives. The reader is referred to [114] for information on OMG

RFP.

183

Table 29: Objective of UAL standard

 The new standard objectives Umple Position

1 Define a concrete textual syntax so

that modelers can use text in

executable UML models.

Umple is a concrete syntax since we are able to

unambiguously generate executable artifacts.

2 Define a computationally complete

language.

By allowing for native code, Umple is

computationally complete.

3 Reuse existing OMG language

specifications where possible.

Umple is based semantically on UML 2. We are

able to generate UML diagrams from Umple.

4 Provide a mapping from statements

in the concrete syntax to the

foundational subset of actions in the
Executable UML Foundation.

Umple achieves objectives 4, 5, 6,7, and 8 by

delegating to high-level language. Umple does not

make any assumptions, or dependencies, on the

target executable language. Developers can use

capabilities provided by the target language, or the

platform, to accomplish input/output operations,

interfacing with other packages, and use the target
language arithmetic support.

With regard to objective 4, Umple does not

generally, with minor exceptions, provide mapping

since Umple does not support a concrete syntax

separate from the base programming language. We

are investigating adding such a concrete syntax in

state machine actions code.

5 Provide mechanisms for

input/output that map to the

corresponding input/output

constructs specified in the

Executable UML Foundation.

6 Provide mechanisms for interfacing

to user-specified input/output
packages.

7 Include standard arithmetic and

logical capabilities

8 Include mechanisms to invoke user-

specified operations.

9 Include a notation for comments. Umple uses the widely adopted comments notation;

// for line comments and /* */ for multi line
comments.

10 Have a mechanism for transferring

control to non-UML “programs”.

This is supported since arbitrary methods can be

embedded in Umple, and these can call any code.

11 Allow inline embedding of target

programming code.

The IBM and MentorGraphics proposal does not

address native code embedding. This is one

powerful aspect of Umple that enables the users to

accomplish a significant portion of the UAL

objectives using native code embedding.

184

12 Define a label so that modelers not

fully committed to an action

language may embed action

language fragments in Opaque

Expressions.

Umple does not support labeling. Native code is not

labeled.

We may provide labels in the case we support a

concrete syntax, in addition to native code. This is
still under investigation.

13 Define extension points Umple supports extension points and libraries as

much as the native code, or platform, supports it.
14 Support for libraries

8.3 Summary

This chapter discussed related work; namely, work related to textual modeling and work related

to code generation from state machine models. We have chosen to discuss state machines in

Ruby and State Machine Compiler in greater depth. These two approaches bear some

similarities to the state machine in Umple, but there are a few core differences. In particular,

state machines in Umple are language-independent. We also claim that Umple is designed with

readability and comprehensibility in mind. The state machines in SMC for example use compiler

directives that have a significant negative impact on readability. Another core difference is the

tight integration in Umple between state machine elements and associations and attributes. For

example, a state machine action can add a member to one side of an association. Umple supports

multiple state machines in the same class, and supports the reusing of actions within the same

state machine, and across multiple state machines. Umple has an extensive support for

composite state machines. At the time of writing, SMC had no support for composite state

machines, and Ruby supported only the concept of a parent state, or a super state.

Object Management Group is sponsoring an emerging standard to standardize the execution

semantics of a subset of UML. This chapter presented Alf, the latest OMG standard that defines

an executable subset of UML. We discussed the need for Action Languages, and explained why

the existing high level programming languages cannot be used in lieu of an action language. We

also explained how Umple overcomes the existing limitations of action languages. Finally, we

compared Umple to the objectives of action languages as stated in OMG RFP.

Continued Table 29: Objective of UAL standard

185

Chapter 9: Summary and conclusion

The evolution of human language [117] exhibits an increasing level of abstraction; new words

emerge to facilitate the effective representation of more complex situations and concepts. More

recently, the Oxford dictionary has accepted new words such as Google. Google means “search

for information about (someone or something) on the Internet, typically using the search engine

Google”. There is no evidence yet to indicate that this trend will come to an end.

The financial sector has witness a similar trend of ever increasing levels of complexity with new

concepts emerging along with new terminology to represent such complex financial instruments.

To name one, a derivative, defined to be “A security whose price is dependent upon or derived

from one or more underlying assets”. Derivatives enabled some financial institutions to hide the

real risks associated with some financial assets.

Biological evolution exhibits a similar trend. More complex organisms emerge that are more

capable of manipulating the environment or defending themselves.

Across all human activates, it seems that more complexity keeps on emerging as does the means

to deal with such complexity. The story of this ever-increasing complexity is well described in

Wright’s book “Non zero. The logic of human destiny.” [118].

The same argument can be applied to programming languages. At the beginning, it was all zeros

and ones. Assembly language was introduced to facilitate the reading and comprehension of

instructions. Constructs such as loops can be represented in an assembly language using go-to

statements, but these are hard to read and maintain. Sophisticated compilers emerged that take

procedural programming languages with abstract constructs as input and automatically generate

the assembly code. Object orientation abstracts entities and encapsulates them in classes with

procedures and attributes.

We like to think of Umple as the inevitable next level of abstraction in programming languages

after object orientation. We therefore use the term ‘Model-Oriented Programming Language’ to

describe Umple. Our view is that many UML modeling elements, which are typically more

abstract than what is available in today’s high level programming languages, can be effectively

represented textually. In fact, our view is that both model and code are just two manifestations

of the same underlying concepts. Therefore, a system can be equally specified textually or

diagrammatically. In this thesis, we have sufficiently proved that this is the case for most of the

UML state machine concepts.

If reality does support such a vision, we would expect that programming languages to continue to

incorporate ever more abstract concepts. We can speculate that next generation programming

186

languages to fully support many of the existing UML abstractions, and future languages to

incorporate system abstractions, maybe to be drawn from SysML [119]. Programmers may then

one day program a system using a super-high programming language, and then apply domain

specifications, and be able to quickly test and refine the system.

In this thesis, we have presented our research work that brought state machine abstractions to

Umple. We have demonstrated how some of the visual abstractions of state machine modeling

can be effectively represented textually using a programming-like syntax.

We outlined the hypothesis and the research direction in “Chapter 1: Introduction”. We presented

background research and investigation of existing state machine technologies in “Chapter 2:

Background”.

The core of our experimental development is presented in chapters three, four, and five. These

three chapters together present the implementation of state machines in the Umple technology.

The evaluation of our work is the topic of chapters six and seven. Chapter six presented a

grounded theory study of Umple users; chapter seven presented a controlled experiment. We

then presented the related work in Chapter 8.

The main contributions this thesis makes can be summarized in the following points:

- Incorporating a textual representation of most of the state machine abstractions into a high-

level-programming-like language where software developers (programmers and modelers)

can utilize to build complete systems.

- Introducing an interpretation and an implementation of the latest UML state machine

specifications. Exposing some of the ambiguities in the latest specifications and providing an

alternative for dealing with such ambiguities.

- Presenting an implementation for composite state machine code generation that avoids

explosion of the generated code.

- Providing a Model Driven Development environment where model and code are united;

where the need to modify the generated code is minimized or eliminated. An environment

where the generated artifacts are similar to those that are written by hand.

- Presenting an empirical evaluation for Umple that takes a human perspective on the

comprehensibility of such a technology.

Future work with Umple can be summarized as follows:

- Work to integrate model-level tracing. A textual modeling language like Umple can be

extended to include tracing at the modeling level. This direction is being investigated by a

PhD student.

187

- Support for an event queue. Currently, the state machine implementation in Umple

consumes events as they become available. This can cause problems when two events occur

and the processing of the second event starts before the processing of the first event is

completed (e.g. because action code triggered by the first event directly or indirectly triggers

the second event, or because of code executing in concurrent threads). The solution for this

can be achieved by the implementation of an event queue from which events ready for

processing can be processed in FIFO sequence.

- Support for firing of events when a do activity completes. The current implementation in

Umple is such that nothing happens when a do activity execution is completed. One useful

approach would be to take a certain transition when this occurs.

- Work to enhance the Umple language with additional modeling abstractions possible from

other UML modeling notations, such as sequence diagrams.

- Enhancements to address communications protocols and thread safety. Umple’s semantics

are mainly synchronous. Additional future work would involve providing better handling of

signals and asynchronous communication semantics.

- Enhancements to support state machine inheritance, as for example found in tools such as

IBM RSA-RT. Umple’s ability to add or delete elements of state machines using mixins

would also be used in this context.

- Empirical evaluation of larger systems built in Umple. The evaluation can involve real life

systems and professional software engineers. This work requires some enhancement to the

Umple platform to make it suitable for an industrial level system production.

188

Glossary

Action Semantics: The specification of operations and their interactions in a modeling

language. Action Semantics was added to the UML specification in 2001.

BNF Grammar (Backus–Naur Form): A notation used to describe the syntax of languages

used in computing, such as computer programming languages.

Church’s Thesis: (also known as the Church–Turing conjecture, Church's thesis, Church's

conjecture, and Turing's thesis) is a combined hypothesis about the nature of functions whose

values are effectively calculable; in more modern terms, algorithmically computable. In simple

terms, it states that "everything algorithmically computable is computable by a Turing machine.

Composite state machine: States that contain other states are called composite. In UML and

Umple, composite state machines are either concurrent or nested.

Compress-Flatten Code Generation (CFCG): An approach to flatten composite state

machines that avoids the explosion of the generated code.

Do Activity: In UML state diagrams, a do activity represents a long running computation; i.e a

computation that is expected to take a long period of time. If present, it is initiated in a separate

thread upon entry into a state.

Extended-multiple-class pattern: A state machine code generation pattern where more state

machine elements are implemented in dedicated classes than in the multiple-class pattern. See

also Multiple-class pattern and In-class pattern.

Event: A state machine event is any occurrence that the state machine responds to if it is in a

state with an outgoing transition labeled with that event. Events trigger state machine transitions

and may have actions associated with them.

Explicit transition: A transition that is explicitly defined in the state machine model. See also

implicit transition.

Final state: A special kind of state signifying that the enclosing region is completed. In Umple,

any transition to a Final state causes the object to be deleted.

Grounded Theory (GT): A systematic qualitative research methodology, originating in the

social sciences, that emphasizes the generation of theory from qualitative data in the process of

conducting research. Grounded theory, in its original form, was proposed by Glasser and Strauss

in 1967.

189

Implicit transition: A transition that is not explicitly defined in the state machine model. In

Umple, a transition to the start state is always implicit. See also explicit transition.

In-class state pattern: A code generation pattern for state machines where all the state machine

elements are implemented in a single class. See also Multiple-class pattern and Extended-

multiple-class pattern. Umple uses this pattern.

Mealy and Moore state machines: Mealy and Moore state machines are the basic models of

state machines. A state machine whose only actions are entry actions is called a Moore machine.

A state machine that instead relies on transition actions is called a Mealy machine.

Meta-Model: A model of models; a modeling methodology whereby a model is used to specify

what qualifies to be a valid model conforming to a specific meta-model.

Model-Code Duality: A notion or a view that code is model and model is code. Both are a

representation of an underlying system.

Model-Driven Development (MDD): Also known as Model Driven Software Development

(MDSD), Model Driven Engineering (MDE), and Model Driven Architecture (MDA). It is a

software development methodology that puts models as the main development artifact, and not

just as documentation.

Multiple-class pattern: A code generation pattern for state machine where some of the state

machine elements are implemented in a dedicated class. See also In-class pattern and Extended-

multiple-class pattern.

Simple state machine: A state machine where states do not contain other states. See also

Composite state machine.

Start state: In a state machine model, the first state that is active upon the creation of the object

(or upon entry into a sub-state in the case of a composite state machine) is the start state. Umple

by default specifies that the state which definition comes first is the start state.

State machine: A model defining the behavior of an entity based on a finite number of states,

transitions between those states based on events, and the actions or activities that occur in the

system as the entity changes states (e.g. entry and exit actions, or activities while in a state).

State Pattern: The state pattern is a design pattern that allows an object to change its behavior

depending upon its current internal state. The state pattern is useful when creating object-

oriented state machines, where the functionality of an object changes fundamentally according to

its state.

Test Driven Development (TDD): A software development process that relies on iterative and

short development cycles and where tests are written first to specify what must be developed.

The developer writes a failing automated test case that defines a desired improvement or new

190

function, then produces code to pass that test. Test cases can also be derived or generated from

the user requirements or use cases.

Unified Modeling Language (UML): A standardized general-purpose modeling language that

is managed by the Object Management Group.

Umple: A model-oriented programming technology that adds additional modeling elements as

first-class entities on top of existing object-oriented languages like Java, PHP and Ruby. Umple

supports class diagram entities like associations, attributes and multiplicity, it supports state

machine entities like states, events, transitions as well as software patterns like singleton,

equality, software mix-ins and aspect-oriented code weaving.

Xtext: A framework for building programming languages and domain specific language (DSL)

editors. Xtext is meant to be the EMF for IDEs.

191

Appendix

A.1 Example System One (UML)

Person

+name

Supervisor
Student

+stNum : int

+status

* 0..1

Applied Enrolled

Quit

quit / setSupervisor(null)

enrol [!hold]

quit

Graduated

graduate / setSupervisor(null)

192

A.2 Example System One (Umple)

Umple

class Person {

 name;

}

class Student {

 isA Person;

 Integer stNum;

 status {

 Applied {

 quit -> Quit;

 enrol [hold] -> Enrolled;

 }

 Enrolled {

 quit -> /{setSupervisor(null);}

 Quit;

 graduate -> /{setSupervisor(null);} Graduated;

 }

 Graduated {}

 Quit {}

 }

 * -- 0..1 Supervisor;

}

class Supervisor {

 isA Person;

}

193

A.3 Example System One (JAVA)

Student

class Student extends Person {

 private int stNum;

 boolean hold;

 private int status;

 private Supervisor mySupervisor;

 public Student(int stNum) {

 this.stNum= stNum;

 status=0;

 }

 public int stNum() {return stNum;}

 public void enrol() {

 if (!hold){

 if(status ==0) status=1;}

 }

 public void graduate() {

 if(status==1) {

 removeSupervisor();

 status=2;

 }

 }

 public void quit() {removeSupervisor(); status=3;}

 public boolean setSupervisor(Supervisor newSupervisor) { }

 public boolean removeSupervisor() { }

 }

Person Supervisor

class Person {

 public String name;

}

class Supervisor extends Person {

 List<Student> mentees = new

ArrayList<Student>();

 Supervisor() {}

}

194

A.4 Example System Two (UML)

+name

A

C
+number

+status

B * 0..1

One

Two

Three

Four

E2

E1 / set_S()

E3

E4

E1 [G]

195

A.5 Example System Two (Umple)

Umple

class A {

 name;

}

class B {

 isA A;

 * -- 0..1 C;

 Integer number;

 status {

 One {

 E1 -> /{set_S();} Three;

 E2 -> Two;

 }

 Two {

 E4 -> Four;

 }

 Three {

 E1 [G] -> One;

 }

 Four { }

 }

}

class C { }

196

A.6 Example System Two (JAVA)

Class B

class B extends A {

 public int number;

 private int status;

 private C myC;

 public B(int number) {

 this.number = number;

 status = 1;

 }

 public int number() {return number;}

 public void E1() {

 if(status == 1) {

 set_S();

 status = 3;

 }

 if(status == 3 {

 if (G) {privateInt_2 = 3;}

 }

 }

 public void E2() {

 if(status == 1) {status = 2;}

 }

 public void E3() {

 if (status == 2) status = 3;

 }

 public void E4() {

 if (status == 2) status = 4;

 }

 public boolean setC(C newC) { }

 public boolean removeC() { } }

197

A.7 Example System Three (UML)

Class1

Class3

-attribute

Class2 0..1 *

One Two

Three

E1 [G1] / A1

E3

E4 [G2]

E1

E2 / A2

198

A.8 Example System Three (Umple)

Umple

class class1 {

}

class class2 {

 isA Person;

 attribute;

 stateMachine {

 StateOne {

 E1 -> / {A1} StateThree;

 E2 -> / {A2} StateTwo;

 }

 StateTwo {

 E3 -> / {A3} StateOne;

 E4 -> / {A4} StateThree;

 }

 StateThree {

 E5 -> / {A5} StateOne;

 }

 }

 * -- 0..1 Supervisor;

}

class class 3 {

 isA class1;

}

199

A.9 Example System Three (JAVA)

Class2

class Class2 extends Class1 {

 private int attribute;

 List<Class3> role = new ArrayList<class3>();

 public Class2(int attribute) {

 this.attribute = 0;

 }

 public void E1() {

 A1();

 if(attribute ==1) attribute =3; }

 public void E2() {

 A2();

 if(attribute ==1) attribute =2; }

 public void E3() {

 A1();

 if(attribute ==2) attribute =1; }

 public void E4() {

 A1();

 if(attribute ==2) attribute =3; }

 public void E5() {

 A1();

 if(attribute ==3) attribute =1; }

 }

 }

 public void A1(){ }

 public void A2(){ }

 public void A3(){ }

 public void A4(){ }

 public void A5(){ }

}

Class1 Class3
class Class1 { }

import java.util.*;

class Class3 extends Class1 {

 private Class2 myClass2;

 Class3() {}

}

200

A.10 Training Example One (Classes, attributes, Associations)

UML Umple

+ID

Person

ManagerEmployee * 1

class Person {

 ID;

}

class Manager {

 isA Person;

 1 -- * Employee;

}

class Employee {

 isA Person;

}

A.11 Training Example 2 (State Machines)

201

A.12 Question list for example system one

Table 30: Question list for version E1 (UML and Umple)

 Questions for Version E1

 Umple and UML questions Correct Answer

Q1 Let’s assume the state machine is in the Applied state and hold

is false. Also assume the following events occurred in

sequence, enrol, quit, enrol. What is the resulting state?

Quit.

Q2 Assume the student has one supervisor. Can you add another

supervisor to the same student?

No.

Q3 Assume a supervisor has 6 students. Can we add another

student to this supervisor?

Yes.

Q4 Assume the state machine is in the Applied state, and the value

of hold is true. What happens when the event enrol occurs?

Nothing. Not transition

occurs.

Q5 How many students can a supervisor have? Many. Unlimited

number.

Q6 What are the possible states the state machine status can have? Applied, Enrolled,

Graduated, and Quit. (in

any order)

Q7 What actions are called when the following transition occurs :

From Applied to Enrolled

Nothing. No actions are

called.

Q8 Can the state machine go directly from Quit to Enrolled? No.

Q9 Can the state machine go from Graduated to Applied? No.

Q10 Assume we are in the Applied state, what happens when the

event graduate occurs?

Nothing.

Q11 Can you create a Person Object? No.

Q12 Assume the state machine is in the Applied state and that hold

is false. Also assume the following events occur in sequence:

graduate, quit, quit, enrol. What is the resulting state?

Quit.

202

Table 31: Question list for version E1 (Java)

 Questions for Version E1

 Java questions Correct Answer

Q1 Let’s assume the variable status equals zero, and the

following functions are called in sequence, enrol(),

quit(), enrol(). What is the value of the variable

status?

Two.

Q2 Assume the student has one supervisor. Can you

add another supervisor to the same student?

No.

Q3 Assume a supervisor has 6 students. Can we add

another student to this supervisor?

Yes.

Q4 Assume the value of status equals zero, and the

value of hold is true. What happens when the

function enrol() is called?

Nothing.

Q5 How many students can a supervisor have? Many. Unlimited number.

Q6 What are the possible values the variable status can

have?

Zero, One, Two, Three, and Four.

(in any order)

Q7 What functions are called when the value of the

variable status goes from zero to one?

Nothing.

Q8 Can the value of the variable status go directly from

two to one?

No.

Q9 Can the value of the variable status go from three to

zero?

No.

Q10 Assume the value of status equals zero, what

happens when the function graduate() is called?

Nothing.

Q11 Can you create a Person Object? No.

Q12 Assume the value of status equals to zero. Also

assume the following functions are called in

sequence: graduate(), quit(), quit(), enrol(). What is

the resulting value of the variable status?

Two.

203

A.13 Question list for example system two

Table 32: Question list for version E2 (UML and Umple)

 Questions for Version E1

 Umple and UML questions Correct Answer

Q1 Let’s assume the state machine is “One” state and G is false.

Also assume the following events occurred in sequence, E1,

E1, E2. What is the resulting state?

Three.

Q2 Assume B has one instance of C. Can you add another instance

of C to B?

No.

Q3 Assume C has 6 instances of B. Can we add another instance of

B to C?

Yes.

Q4 Assume the state machine is in the “One” state, and the value

of G is true. What happens when E3 occurs?

Nothing. Not transition

occurs.

Q5 How many instances of B can be associated with C? Many. Unlimited

number.

Q6 What are the possible states the state machine can have? One, Two, Three, Four.

(in any order)

Q7 What actions are called when the following transition occurs :

From One to Three.

Set_S()

Q8 Can the state machine go directly from One to Four? No.

Q9 Can the state machine go from Two to One? No.

Q10 Assume we are in the One state, what happens when the event

E3 occurs?

Nothing.

Q11 Can you create an A Object? No.

Q12 Assume the state machine is in the One state. Also assume the

following events occur in sequence: E2, E3, E3, E1. What is

the resulting state?

One.

204

Table 33: Question list for version E2 (Java)

 Questions for Version E1

 Umple and UML questions Correct Answer

Q1 Let’s assume the variable status equals to 1, and G is zero.

Also assume the following functions are called in sequence,

E1(), E1(), E2(). What is the value of the variable status?

Three.

Q2 Assume B has one instance of C. Can you add another instance

of C to B?

No.

Q3 Assume C has 6 instances of B. Can we add another instance of

B to C?

Yes.

Q4 Assume the status variable equals 1, and the value of G is 1.

What happens when the function E3() is called?

Nothing. Not transition

occurs.

Q5 How many instances of B can be associated with C? Many. Unlimited

number.

Q6 What are the possible values the variable status can have? 1, 2, 3, 4. (in any order)

Q7 When the variable status’s value changes from 1 to 3, what

function gets called?

Set_S()

Q8 Can the variable status value change directly from 1 to 4? No.

Q9 Can the variable status’s value change from 2 to 1? No.

Q10 Assume the value of status is 1, what happens when the

function E3() is called?

Nothing.

Q11 Can you create an A Object? No.

Q12 Assume the value of the variable status is 1, and G is false.

Also assume the following functions are called in sequence:

E2(), E3(), E3(), E1(). What is the resulting value of the

variable status?

1.

205

A.14 Question list for example system three

Table 34: Question list for version E3 (UML and Umple)

 Questions for Version E1

 Umple and UML questions Correct Answer

Q1 Let’s assume the state machine is in the One state and G1 is

false. Also assume the following events occurred in sequence,

E1, E1, E1. What is the resulting state?

One.

Q2 Assume the Class3 has one Class2. Can you add another

Class2 to the same Class3?

No.

Q3 Assume a Class2 has 6 instances of Class3. Can we add

another Class3 to this Class2?

Yes.

Q4 Assume the state machine is in the One state, and the value of

G2 is true. What happens when the event E4 occurs?

Nothing. No transition

occurs.

Q5 How many Class3 can a Class2 have? Many. Unlimited

number.

Q6 What are the possible states the state machine can have? One, Two, and Three.

(in any order)

Q7 What actions are called when the following transition occurs :

From Two to One

Nothing. No actions are

called.

Q8 Can the state machine go directly from Three to Two? No.

Q9 Can the state machine go from Two to Three? Yes.

Q10 Assume we are in the One state, what happens when the event

E3 occurs?

Nothing.

Q11 Can you create a Class1 Object? No.

Q12 Assume the state machine is in the One state. Also assume the

following events occur in sequence: E2, E3, E3, E2. What is

the resulting state?

Two.

206

Table 35: Question list for version E3 (Java)

 Questions for Version E1

 Umple and UML questions Correct Answer

Q1 Let’s assume the attribute status equals to 1. Also assume the

following functions are called in sequence, E1(), E1(), E1().

What is the resulting value of status?

Three.

Q2 Assume the Class3 has one Class2. Can you add another

Class2 to the same Class3?

No.

Q3 Assume a Class2 has 6 instances of Class3. Can we add

another Class3 to this Class2?

Yes.

Q4 Assume the value of the variable status equals to 1. What

happens when the function E4() is called?

Nothing. No transition

occurs.

Q5 How many Class3 can a Class2 have? Many. Unlimited

number.

Q6 What are the possible values the status variable can have? One, Two, and Three.

(in any order) (also

possible zero since the

code initialize to zero.)

Q7 What methods are called when the value of the variable status

changes from 2 to 1?

Nothing. No functions

are called.

Q8 Can the value of te attribute status changes from Three to

Two?

No.

Q9 Can the value of the variable status change from 3 to 1? Yes.

Q10 Assume variable status is equal to 1, what happens when the

function E3() is called?

A1.

Q11 Can you create a Class1 Object? (be flexible here) No.

Q12 Assume the value of the attribute status equals to 1. Also

assume the following methods are called in sequence: E2(),

E3(), E3(), E2(). What is the resulting value of the variable

status?

Two.

207

References

[1] Dyson, P. and Anderson, B. "State Patterns". 1998. Pattern languages of program design,

vol 3, Addison-Wesley Longman Inc.

[2] Forward, A. " Computer Science PhD Thesis, Appendices, and Supplementary Material",

accessed 2011, http://www.site.uottawa.ca/~tcl/gradtheses/aforwardphd/.

[3] Forward, A. " Umple Language Online.", accessed 2012, http://try.umple.org.

[4] Henry Babbage. Babbage's Calculating Engines. Massachusets, U.S.A: Tomash,

mitpress.mit.edu, 1982.

[5] Forward, A., Badreddin, O. and Lethbridge, T. C. "Perceptions of Software Modeling: A

Survey of Software Practitioners," in 5th Workshop from Code Centric to Model Centric:

Evaluating the Effectiveness of MDD (C2M:EEMDD), 2010. Available:

http://www.esi.es/modelplex/c2m/papers.php

[6] Skorkin, A. " Why Developers Never use State Machines", accessed 2011,

http://www.skorks.com/2011/09/why-developers-never-use-state-machines/.

[7] Lethbridge, T. C., Forward, A. and Badreddin, O. "Umple Google Code Project". 2012.

Available: code.umple.org

[8] Hodges, A. Alan Turing: The Enigma. ACM: Walker & Company; First Edition, 2000.

[9] Cohen, D. I. A. Introduction to Computer Theory. New York: Prentice-Hall, Second

Edition, 1997.

[10] Wagner, F., Schmuki, R., Wagner, T. and Wolstenholme, P. Modeling Software with

Finite State Machines: A Practical Approach. Auerbach Publications, 2006.

[11] Börger, E. and Stärk, R. F. Abstract State Machines: A Method for High-Level System

Design and Analysis. New York: Springer Verlag, 2003.

[12] Börger, E. "The Origins and the Development of the ASM Method for High Level

System Design and Analysis". 2002. Journal of Universal Computer Science, vol 8, pp.

2-74.

[13] G. v. Bochmann, G. Gerber and J.M. Scrre. "Abstract State Machine Semantics of SDL".

1989. IEEE Transactions Software Engineering., pp. 989-1000.

[14] SDL Forum Society. " Towards SDL-2010", accessed 2010, http://www.sdl-

forum.org/ftp/pub/SDL-2010/index.htm.

[15] Piefel, M. and Scheidgen, M. "Modelling SDL, Modelling Languages," in Cybernetics

and Information Technologies, Systems and Applications (CITSA), 2006. pp. 298.

http://www.site.uottawa.ca/~tcl/gradtheses/aforwardphd/
http://try.umple.org/
http://www.esi.es/modelplex/c2m/papers.php
http://www.skorks.com/2011/09/why-developers-never-use-state-machines/
http://www.sdl-forum.org/ftp/pub/SDL-2010/index.htm
http://www.sdl-forum.org/ftp/pub/SDL-2010/index.htm

208

[16] NTNU. " SDL-2000", accessed 2010, http://www.item.ntnu.no/fag/ttm4115/sdl-

2000.htm.

[17] Harel, D. "Statecharts: A Visual Formalism for Complex Systems". 1987. Science of

computer programming, vol 8, Department of Applied Mathematics, Weizmann Institute

of Science. pp. 231-274.

[18] Douglass, B. P. "UML Statecharts". 1999. Embedded systems programming, vol 12, pp.

22-42.

[19] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M. and Sherman, R.

"STATEMATE: A Working Environment for the Development of Complex Reactive

Systems," in Proceedings of the 10th International Conference on Software Engineering,

1988. pp. 396-406.

[20] Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2003.

[21] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. Object-Oriented

Modeling and Design. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1991.

[22] Booch, G., Rumbaugh, J. and Jacobson, I. "The Unified Modeling Language". 1996.

Unix Review, vol 14, pp. 5.

[23] OMG. " UML Specifications", accessed 2011, http://www.omg.org/spec/UML/.

[24] Adamczyk, P. "Selected Patterns for Implementing Finite State Machines," in The 11th

Conf. on Pattern Languages of Programs, 2004.

[25] Michael J. Blechar, "Magic Quadrant for OOA&D Tools, 2H06 to 1H07". Gartner Inc.,

Tech. Rep. G00140111, 30 May 2006,

[26] Norton, D., "Open-Source Modeling Tools Maturing, but Need Time to Reach Full

Potential". Gartner, Inc., Tech. Rep. G00146580, 20 April 2007, 2007.

[27] Telelogic. " Rhapsody", accessed 2012, http://modeling.telelogic.com/.

[28] Mentor Graphics Corporation. " Mentor Graphics BridgePoint", accessed 2012,

http://www.mentor.com/products/sm/model_development/bridgepoint/.

[29] Anonymous " Borland Together for Eclipse", accessed 2012,

http://www.borland.com/us/products/together/index.html.

[30] Anonymous " SmartState", accessed 2012, http://www.smartstatestudio.com/.

[31] Pavel Bekkerman. "FSMGenerator". [OpenSource]. 2002-2003. Available:

http://fsmgenerator.sourceforge.net/

[32] Croll, P., Duval, P. Y., Jones, R., Kolos, S., Sari, R. and Wheeler, S. "Use of Statecharts

in the Modelling of Dynamic Behaviour in theATLAS DAQ Prototype-1". 1998. IEEE

Trans.Nucl.Sci., vol 45, pp. 1983-1988.

http://www.item.ntnu.no/fag/ttm4115/sdl-2000.htm
http://www.item.ntnu.no/fag/ttm4115/sdl-2000.htm
http://www.omg.org/spec/UML/
http://modeling.telelogic.com/
http://www.mentor.com/products/sm/model_development/bridgepoint/
http://www.borland.com/us/products/together/index.html
http://www.smartstatestudio.com/
http://fsmgenerator.sourceforge.net/

209

[33] Knapp, A. and Merz, S. "Model Checking and Code Generation for UML State Machines

and Collaborations," in Proceedings of 5th Workshop on Tools for System Design and

Verification, Technical Report, 2002. pp. 59–64.

[34] Knapp, A., Merz, S. and Rauh, C. "Model Checking-Timed UML State Machines and

Collaborations". 2002. Lecture Notes in Computer Science, Springer. pp. 395-416.

[35] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. New Jersey: Addison-Wesley Reading, MA, 1995.

[36] Van Gurp, J. and Bosch, J. "On the Implementation of Finite State Machines," in

Proceedings of the 3rd Annual IASTED International Conference Software Engineering

and Applications, 1999. pp. 172-178.

[37] Yacoub, S. M. and Ammar, H. H. "A Pattern Language of Statecharts," in Proc. Fifth

Annual Conf. on the Pattern Languages of Program (PLoP’98), 1998. pp. 98-29.

[38] Tomura, T., Kanai, S., Uchiro, K. and Yamamoto, S. "Object-Oriented Design Pattern

Approach for Modeling and Simulating Open Distributed Control System," in IEEE

International Conference on Robotics and Automation, 2001. pp. 211-216.

[39] Mohan, M. A. "Spatial Complexity Metrics: An Investigation of Utility". 2005. IEEE

Trans.Softw.Eng. vol 31, pp. 203-212,

[40] Gold, N., Mohan, A. and Layzell, P. "Spatial Complexity Metrics: An Investigation of

Utility". 2005. IEEE Trans.Software Eng., vol 31, pp. 203-212.

[41] Stevens, W., Myers, G. and Constantine, L. Structured Design. Yourdon Press Upper

Saddle River, NJ, USA, 1979.

[42] Terence, P. " ANTLR Parser Generator", accessed 2012, http://www.antlr.org/.

[43] IBM. "Telelogic, TAU SDL Suite". [http://www-01.ibm.com/software/awdtools/tau/].

vol. 4.3, 2012.

[44] The Eclipse Foundation. " Xtext - a Programming Language Framework", accessed 2012,

http://www.eclipse.org/Xtext/.

[45] Samek, M. Practical UML Statecharts in C/C : Event-Driven Programming for

Embedded Systems. Newnes, 2008.

[46] G Sunyé, D Pollet, Y Le Traon. "Refactoring UML Models". 2001. Springer, Springer.

pp. 134-148.

[47] Gupta, A. and Jalote, P. "An Experimental Evaluation of the Effectiveness and Efficiency

of the Test Driven Development". 2007. Empirical Software Engineering and

Measurement, 2007.ESEM 2007.First International Symposium on, pp. 285-294.

[48] The Eclipse Foundation. " Eclipse Modeling - M2T - Home (Jet Project)", accessed 2009,

http://www.eclipse.org/modeling/m2t/?project=jet.

http://www.antlr.org/
http://www-01.ibm.com/software/awdtools/tau/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/modeling/m2t/?project=jet

210

[49] Wagner, F. and Wolstenholme. "Misunderstandings about State Machines". 2004.

Computing and Control Eng, vol 15, pp. 40-45.

[50] Schaumont, P. R. A Practical Introduction to hardware/software Codesign. Springer

Verlag, 2010.

[51] A Wasowski. "Flattening State Machines without Explosions". 2004. ACM Sigplan

Notices, vol 39, ACM. pp. 257-266.

[52] Lano, K. and Clark, D. "Direct Semantics of Extended State Machines". 2007.

TOOLS’07, pp. 35-51.

[53] Niaz, I. A. and Tanaka, J. "Code Generation from UML Statecharts," in Proc. 7
Th

IASTED International Conf. on Software Engineering and Application (SEA 2003), 2003.

pp. 315-321.

[54] Glaser, B. G. and Strauss, A. L. The Discovery of Grounded Theory: Strategies for

Qualitative Research. New York: Aldine de Gruyter, 1977.

[55] Orlikowski, W. J. "CASE Tools as Organizational Change: Investigating Incremental and

Radical Changes in Systems Development". 1993. MIS quarterly, The Society for

Information Management and The Management Information Systems Research Center of

the University of Minnesota. pp. 309-340.

[56] John T. E. Richardson. Handbook of Qualitative Research Methods for Psychology and

the Social Sciences. Massachusetts, U.S.A: Wiley, 1996.

[57] Blumer, H. Symbolic Interactionism: Perspective and Method. California: Univ of

California Press, 1986.

[58] Calloway, L. and Ariav, G. "Developing and using a Qualitative Methodology to Study

Relationships among Designers and Tools". 1991. Information Systems Research:

Contemporary Approaches and Emergent Traditions, pp. 175-193.

[59] Toraskar, K. "How Managerial Users Evaluate their Decision Support: A Grounded

Theory Approach," in Proceedings of the IFIP WG 8.2 Working Conference, 1991. pp.

195-225.

[60] Baskerville, R. and Pries-Heje, J. "Grounded Action Research: A Method for

Understanding IT in Practice". 1999. Accounting, Management and Information

Technologies, vol 9, Elsevier. pp. 1-23.

[61] Fitzgerald, B. "The use of Systems Development Methodologies in Practice: A Field

Study". 1997. Information Systems Journal, vol 7, Blackwell Science Ltd. pp. 201-212.

[62] Bowen, G. A. "Grounded Theory and Sensitizing Concepts". 2006. International Journal

of Qualitative Methods, vol 5, pp. 1-9.

[63] Markku, O. and Seija, K. S. "Product Focused Software Process Improvement 4th

International Conference, Profes 2002 Rovaniemi, Finland, December 9-11, 2002".

211

[64] Edmonds, E. "A Process for the Development of Software for Non-Technical Users as an

Adaptive System". 1974. General Systems, vol 19, Society for General Systems

Research. pp. 215-217.

[65] Coleman, G. "EXtreme Programming (XP) as a'Minimum'Software Process: A Grounded

Theory," in Computer Software and Applications Conference, 2004. COMPSAC 2004.

Proceedings of the 28th Annual International, 2004. pp. 30-31.

[66] Kahkonen, T., Abrahamsson, P., Center, N. R. and Espoo, F. "Digging into the

Fundamentals of Extreme Programming Building the Theoretical Base for Agile

Methods," in Euromicro Conference, 2003. Proceedings. 29th, 2003. pp. 273-280.

[67] Coleman, G. and O Connor, R. "Software Process in Practice: A Grounded Theory of the

Irish Software Industry". 2006. Lecture Notes in Computer Science, vol 4257, Springer.

pp. 28-39.

[68] Coleman, G. and O’Connor, R. "Investigating Software Process in Practice: A Grounded

Theory Perspective". 2008. The Journal of Systems & Software, vol 81, Elsevier. pp. 772-

784.

[69] Whitworth, E. and Biddle, R. "Motivation and Cohesion in Agile Teams". 2007. Lecture

Notes in Computer Science, vol 4536, Springer. pp. 62-69.

[70] Whitworth, E. and Biddle, R. "The Social Nature of Agile Teams". 2007. AGILE 2007,

vol 3, pp. 26-36.

[71] Layman, L., Williams, L., Damian, D. and Bures, H. "Essential Communication Practices

for Extreme Programming in a Global Software Development Team". 2006. Information

and software technology, vol 48, Elsevier. pp. 781-794.

[72] Ramesh, B., Cao, L., Mohan, K. and Xu, P. "Can Distributed Software Development be

Agile?". 2006. SPECIAL ISSUE: Flexible and distributed software processes: old

petunias in new bowls?, vol 49, ACM New York, NY, USA. pp. 41-46.

[73] Martin, A., Biddle, R. and Noble, J. "When XP Met Outsourcing". 2004. Lecture notes in

computer science, vol 3092, Springer. pp. 51-59.

[74] Qureshi, S., Liu, M. and Vogel, D. "A Grounded Theory Analysis of e-Collaboration

Effects for Distributed Project Management," in Proceedings of 38th Annual Hawaiian

International Conference on Systems Sciences, Big Island, HI, 2005. pp. 59-87.

[75] Last, M. "Understanding the Group Development Process in Global Software Teams".

2003. Frontiers in Education, 2003.FIE 2003.33rd Annual, vol 3, pp. 20-25.

[76] Damian, D. and Zowghi, D. "Requirements Engineering Challenges in Multi-Site

Software Development Organizations". 2003. Requirements engineering, vol 8, pp. 149-

160.

212

[77] Padula, A. "Requirements Engineering Process Selection at Hewlett-Packard," in 12th

IEEE International Requirements Engineering Conference, 2004. Proceedings, 2004. pp.

296-300.

[78] Galal, G. and Paul, R. "A Qualitative Scenario Approach to Managing Evolving

Requirements". 1999. Requirements Engineering, vol 4, Springer. pp. 92-102.

[79] Tat, E. H. and Kuan, M. H. C. "Requirements Engineering Processes". 1998.

Requirements Engineering, vol 4, pp. 2.

[80] Oliver, D., Whymark, G. and Romm, C. "Researching ERP Adoption: An Internet-Based

Grounded Theory Approach". 2005. Online Information Review, vol 29, Emerald Group

Publishing Limited. pp. 585-603.

[81] Carver, J. "The Impact of Background and Experience on Software Inspections". 2004.

Empirical Software Engineering, vol 9, Springer. pp. 259-262.

[82] Ye, Y. and Kishida, K. "Toward an Understanding of the Motivation of Open Source

Software Developers," in Software Engineering, 2003. Proceedings. 25th International

Conference on, 2003. pp. 419-429.

[83] Sillito, J., Murphy, G. C. and De Volder, K. "Questions Programmers Ask during

Software Evolution Tasks," in Proceedings of the 14th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2006. pp. 23-34.

[84] Dingsoyr, T. and Royrvik, E. "An Empirical Study of an Informal Knowledge

Repository in a Medium-Sized Software Consulting Company," in Software Engineering,

2003. Proceedings. 25th International Conference on, 2003. pp. 84-92.

[85] Sherif, K. and Vinze, A. "Barriers to Adoption of Software Reuse a Qualitative Study".

2003. Information & Management, vol 41, Elsevier. pp. 159-175.

[86] Murray, A. R. "Discourse Structure of Software Explanation: Snapshot Theory,

Cognitive Patterns and Grounded Theory Methods". Doctoral Thesis, University of

Ottawa, 2006.

[87] Yahaya, S. Y. and Abu-Bakar, N. "New Product Development Management Issues and

Decision-Making Approaches". 2007. Management Decision, vol 45, Emerald, 60/62

Toller Lane, Bradford, West Yorkshire, BD 8 9 BY, UK,. pp. 1123-1142.

[88] Hughes, J. and Jones, S. "Reflections on the use of Grounded Theory in Interpretive

Information Systems Research". 2004. Electronic Journal of Business Research Methods,

vol 7, pp. 1-10.

[89] Hansen, B. H. and Kautz, K. "Grounded Theory Applied-Studying Information Systems

Development Methodologies in Practice," in Proceedings of 38th Annual Hawaiian

International Conference on Systems Sciences, 2005. pp. 264-264.

213

[90] Goulding, C. "Grounded Theory: The Missing Methodology on the Interpretivist

Agenda". 1998. An International Journal, vol 1, Emerald, 60/62 Toller Lane, Bradford,

West Yorkshire, BD 8 9 BY, UK,. pp. 50-57.

[91] Glaser, B. G. Basics of Grounded Theory Analysis: Emergence Vs Forcing. California:

Sociology Press Mill Valley, 1992.

[92] Timothy C. Lethbridge, Gunter Mussbacher, Andrew Forward and Omar Badreddin.

"Teaching UML using Umple: Applying Model-Oriented Programming in the

Classroom". 2011. CSEE&T, pp. 421-428.

[93] Timothy C. Lethbridge, Omar Badreddin. "Umple - Associations and Generalizations".

vol. youtube video, 2011.

[94] Timothy C. Lethbridge, Omar Badreddin. "Umple - State Machines Details". Http://www.

Youtube. com/watch?v=mFczzVkTZ9g;, vol. youtube video, 2011.

[95] O. Badreddin. (2012) "An Empirical Experiment of Comprehension on Textual and

Visual Modeling Approaches". University of Ottawa, Available:

http://www.site.uottawa.ca/~tcl/gradtheses/obadreldin/

[96] Mohammad, S. "From Once upon a Time to Happily Ever After: Tracking Emotions in

Novels and Fairy Tales". 2011. ACL HLT 2011, pp. 105-114.

[97] Mohammad, S. M. and Turney, P. D. "Crowd-Sourcing a Word--Emotion Association

Lexicon". 2011. Computational Intelligence, Wiley Blackwell Publishing Ltd.

[98] Sjoberg, D. I. K., Anda, B., Arisholm, E., Dyba, T., Jorgensen, M., Karahasanovic, A.,

Koren, E. F. and Vokác, M. "Conducting Realistic Experiments in Software

Engineering," in Empirical Software Engineering, 2002. Proceedings. 2002 International

Symposium n, 2002. pp. 17-26.

[99] Hendrix, D., Cross II, J. H. and Maghsoodloo, S. "The Effectiveness of Control Structure

Diagrams in Source Code Comprehension Activities". 2002. IEEE Trans.Software Eng.,

Published by the IEEE Computer Society. pp. 463-477.

[100] Briand, L. C., Bunse, C., Daly, J. W. and Differding, C. "An Experimental Comparison

of the Maintainability of Object-Oriented and Structured Design Documents". 1997.

Empirical Software Engineering, vol 2, Springer. pp. 291-312.

[101] Charles W. Rapp. "The State Machine Compiler". vol. 6.0.1, December, 2009.

[102] OMG, "Action Language for Foundational UML - ALF". OMG, Tech. Rep. 1.0 - Beta 1,

2010.

[103] MetaUML, U. Diagrams for La T E X, Internet,

[104] [104] Harris, T. " YUML", accessed 2012, http://yuml.me/.

[105] [105] avishn. " ModSL - Text-to-Diagram UML Sketching Tool", accessed 2012,

http://code.google.com/p/modsl/.

http://www.site.uottawa.ca/~tcl/gradtheses/obadreldin/
http://yuml.me/
http://code.google.com/p/modsl/

214

[106] Hanov, S. " Web Sequence Diagram", accessed 2012,

http://www.websequencediagrams.com/.

[107] Steel, J. and Raymond, K. "Generating Human-Usable Textual Notations for Information

Models," in Proceedings of the Fifth International Conference on Enterprise Distributed

Object Computing (EDOC 2001), Seattle, Washington, USA, 2001. pp. 250-250.

[108] Kushal. "Diagrammr". Last Accessed January 2010., 2012. Available:

http://www.diagrammr.com/

[109] Mueller, P. "SinelaboreRT: Generate Efficient Source Code from UML State Diagrams".

vol. MD5, 2008-2009.

[110] Spinellis, D. "On the Declarative Specification of Models". 2003. IEEE Software, vol 20,

IEEE Computer Society. pp. 95-96.

[111] Hakala, A. " LightUML", accessed 2012, http://lightuml.sourceforge.net/.

[112] Chaves, R. " TextUML", accessed 2012, http://abstratt.com/.

[113] Thurston, A. D. "Parsing Computer Languages with an Automaton Complied from a

Single Regular Expression". 2006. Lecture Notes in Computer Science, vol 4094,

Springer. pp. 285-286.

[114] Object Management Group (OMG). " Concrete Syntax for a UML Action Language

RFP", accessed 2012, http://www.omg.org/cgi-bin/doc?ad/2008-9-9.

[115] Object Management Group (OMG). " Semantics of a Foundation Subset for Executable

UML Models", accessed 2012, http://www.omg.org/spec/FUML/.

[116] Mellor, S. J., Tockey, S. R., Arthaud, R. and Leblanc, P. "An Action Language for UML:

Proposal for a Precise Execution Semantics". 1999. Lecture notes in computer science,

Springer. pp. 307-318.

[117] Merritt Ruhlen. "The Origin of Language: Tracing the Evolution of the Mother Tongue".

1994. Wiley,

[118] Robert Wright. "Nonzero: The Logic of Human Destiny". 2001. Vintage,

[119] Weilkiens, T. Systems Engineering with SysML/UML: Modeling, Analysis, Design. 2006.

http://www.websequencediagrams.com/
http://www.diagrammr.com/
http://lightuml.sourceforge.net/
http://abstratt.com/
http://www.omg.org/cgi-bin/doc?ad/2008-9-9
http://www.omg.org/spec/FUML/

