
Common Warehouse Metamodel
(CWM) Specification

March 2003
Version 1.1, Volume 1

formal/03-03-02

An Adopted Specification of the Object Management Group, Inc.

Copyright © 1999, Dimension EDI
Copyright © 1999, Genesis Development Corporation
Copyright © 1999, Hyperion Solutions Corporation
Copyright © 1999, International Business Machines Corporation
Copyright © 1999, NCR Corporation
Copyright © 2000, Object Management Group
Copyright © 1999, Oracle Corporation
Copyright © 1999, UBS AG
Copyright © 1999, Unisys Corporation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the

event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . xv

1. Design Rationale . 1-1
1.1 Design Overview . 1-1

1.2 CWM and the MOF . 1-2
1.2.1 An Overview of the MOF 1-2
1.2.2 The Relationship between CWM and MOF . . . 1-5

1.3 CWM and UML . 1-5
1.3.1 An Overview of UML. 1-5
1.3.2 The Relationship between CWM and UML . . . 1-6

1.4 CWM and XMI . 1-7
1.4.1 An Overview of XMI . 1-7
1.4.2 The Relationship between CWM and XMI. . . . 1-8

1.5 Major Design Goals and Rationale. 1-8
1.5.1 Reuse of UML Concepts 1-8
1.5.2 Modularity . 1-9
1.5.3 Generic Model . 1-9

2. Usage Scenarios . 2-1
2.1 Overview . 2-1

2.2 Users of CWM . 2-1

2.3 Usage Scenarios . 2-4
2.3.1 ETL Scenario. 2-4
2.3.2 OLAP Scenario. 2-5
2.3.3 Questionnaire Scenario. 2-5
2.3.4 Warehouse Administration Scenario. 2-6
March 2003 OMG-Common Warehouse Metamodel, v1.1 i

Contents
2.3.5 Tool Scenarios . 2-7

3. CWM . 3-1

3.1 Overview . 3-1
3.1.1 The Roles of UML in CWM. 3-3

3.2 Organization of the CWM . 3-3
3.2.1 Modeling Conventions 3-5

3.3 How the CWM Metamodel is Described 3-9
3.3.1 Classes . 3-9
3.3.2 Associations . 3-13

4. ObjectModel . 4-1
4.1 Overview . 4-1

4.2 Organization of the ObjectModel Package 4-2

4.3 Core Metamodel. 4-3
4.3.1 Core Data Types . 4-4
4.3.2 Core Classes . 4-7
4.3.3 Core Associations. 4-25
4.3.4 OCL Representation of Core Constraints 4-32

4.4 Behavioral Metamodel . 4-35
4.4.1 Behavioral Data Types 4-35
4.4.2 Behavioral Classes . 4-36
4.4.3 Behavioral Associations 4-43
4.4.4 OCL Representation of Behavioral Constraints 4-46

4.5 Relationships Metamodel . 4-48
4.5.1 Relationships Data Types 4-49
4.5.2 Relationships Classes . 4-50
4.5.3 Relationships Associations 4-54
4.5.4 OCL Representation of Relationships

Constraints . 4-55

4.6 Instance Metamodel . 4-57
4.6.1 Instance Classes . 4-61
4.6.2 Instance Associations . 4-64
4.6.3 OCL Representation of Instance Constraints . . 4-67

5. Foundation . 5-1
5.1 Overview . 5-1

5.2 Organization of the Foundation . 5-2

5.3 Business Information Metamodel. 5-3
5.3.1 BusinessInformation Classes 5-6
5.3.2 BusinessInformation Associations 5-17
ii OMG-Common Warehouse Metamodel, v1.1 March 2003

Contents
5.3.3 OCL Representation of BusinessInformation
Constraints . 5-21

5.4 DataTypes Metamodel . 5-21
5.4.1 DataTypes Classes . 5-22
5.4.2 DataTypes Associations 5-27
5.4.3 OCL Representation of DataTypes Constraints 5-29

5.5 Expressions Metamodel . 5-29
5.5.1 Expressions Classes . 5-31
5.5.2 Expressions Associations 5-35
5.5.3 OCL Representation of Expressions Constraints 5-38

5.6 KeysIndexes Metamodel . 5-39
5.6.1 KeysIndexes Classes. 5-41
5.6.2 KeysIndexes Associations 5-46
5.6.3 OCL Representation of KeysIndexes Constraints 5-49

5.7 SoftwareDeployment Metamodel . 5-49
5.7.1 SoftwareDeployment Classes 5-54
5.7.2 SoftwareDeployment Associations 5-62
5.7.3 OCL Representation of SoftwareDeployment

Constraints . 5-67

5.8 TypeMapping Metamodel . 5-67
5.8.1 TypeMapping Classes . 5-69
5.8.2 TypeMapping Associations. 5-71
5.8.3 OCL Representation of TypeMapping

Constraints . 5-72

6. Relational . 6-1

6.1 Overview . 6-1

6.2 Organization of the Relational Package 6-2
6.2.1 Inheritance . 6-2
6.2.2 Containers. 6-3
6.2.3 Tables, Columns, and Data Types 6-4
6.2.4 Structured Types and Object Extensions 6-5
6.2.5 Keys . 6-9
6.2.6 Index. 6-10
6.2.7 Triggers . 6-10
6.2.8 Procedures . 6-11
6.2.9 Instances . 6-12

6.3 Relational Classes . 6-13
6.3.1 Catalog . 6-13
6.3.2 CheckConstraint . 6-14
March 2003 OMG-Common Warehouse Metamodel, v1.1 iii

Contents
6.3.3 Column . 6-14
6.3.4 ColumnSet . 6-16
6.3.5 ColumnValue . 6-17
6.3.6 ForeignKey . 6-17
6.3.7 NamedColumnSet. 6-18
6.3.8 PrimaryKey. 6-19
6.3.9 Procedure . 6-19
6.3.10 QueryColumnSet . 6-19
6.3.11 Row . 6-20
6.3.12 RowSet . 6-20
6.3.13 Schema . 6-20
6.3.14 SQLDataType . 6-20
6.3.15 SQLDistinctType . 6-21
6.3.16 SQLIndex . 6-22
6.3.17 SQLIndexColumn. 6-23
6.3.18 SQLParameter . 6-23
6.3.19 SQLSimpleType . 6-23
6.3.20 SQLStructuredType . 6-24
6.3.21 Table . 6-25
6.3.22 Trigger . 6-27
6.3.23 UniqueConstraint . 6-29
6.3.24 View . 6-29

6.4 Relational Associations . 6-30
6.4.1 ColumnOptionsColumnSet 6-30
6.4.2 ColumnRefStructuredType 6-31
6.4.3 ColumnSetOfStructuredType 6-31
6.4.4 DistinctTypeHasSimpleType 6-32
6.4.5 TableOwningTrigger . 6-32
6.4.6 TriggerUsingColumnSet 6-32

6.5 OCL Representation of Relational Constraints 6-33

7. Record . 7-1
7.1 Overview . 7-1

7.2 Organization of the Record Package 7-1
7.2.1 Instances . 7-5

7.3 Record Classes . 7-6
7.3.1 Field . 7-6
7.3.2 FieldValue. 7-7
7.3.3 FixedOffsetField . 7-7
7.3.4 Group . 7-8
iv OMG-Common Warehouse Metamodel, v1.1 March 2003

Contents
7.3.5 Record . 7-8
7.3.6 RecordDef . 7-9
7.3.7 RecordFile . 7-10
7.3.8 RecordSet . 7-11

7.4 Record Associations. 7-12
7.4.1 RecordToFile . 7-12

7.5 OCL Representation of Record Constraints 7-12

8. Multidimensional. 8-1
8.1 Overview . 8-1

8.2 Organization of the Multidimensional Package 8-2
8.2.1 Dependencies . 8-2
8.2.2 Major Classes and Associations 8-2
8.2.3 Inheritance from the ObjectModel 8-4

8.3 Multidimensional Classes . 8-4
8.3.1 Dimension . 8-4
8.3.2 DimensionedObject . 8-6
8.3.3 Member . 8-6
8.3.4 MemberSet . 8-6
8.3.5 MemberValue . 8-7
8.3.6 Schema . 8-7

8.4 Multidimensional Associations . 8-8
8.4.1 CompositesReferenceComponents 8-8
8.4.2 DimensionOwnsMemberSets 8-9
8.4.3 DimensionsReferenceDimensionedObjects . . . 8-9
8.4.4 MDSchemaOwnsDimensionedObjects 8-9
8.4.5 MDSchemaOwnsDimensions 8-10

8.5 OCL Representation of Multidimensional Constraints. . . . 8-10

9. XML . 9-1
9.1 Overview . 9-1

9.1.1 Semantics . 9-2

9.2 Organization of the XML Package 9-2

9.3 XML Classes . 9-4
9.3.1 Attribute . 9-5
9.3.2 Content . 9-6
9.3.3 Document . 9-7
9.3.4 Element . 9-7
9.3.5 ElementContent . 9-7
9.3.6 ElementType. 9-8
March 2003 OMG-Common Warehouse Metamodel, v1.1 v

Contents
9.3.7 ElementTypeReference 9-9
9.3.8 MixedContent . 9-10
9.3.9 Schema . 9-11
9.3.10 Text. 9-12

9.4 XML Associations . 9-12
9.4.1 ContentElementTypeReference 9-12
9.4.2 ElementTypeContent . 9-13
9.4.3 MixedContentText . 9-13
9.4.4 OwnedElementContent. 9-14

9.5 OCL Representation of XML Constraints 9-14

10. Transformation . 10-1
10.1 Overview . 10-1

10.1.1 Semantics . 10-2

10.2 Organization of the Transformation Package 10-4

10.3 Transformation Classes . 10-9
10.3.1 ClassifierFeatureMap . 10-10
10.3.2 ClassifierMap . 10-11
10.3.3 DataObjectSet. 10-13
10.3.4 FeatureMap. 10-14
10.3.5 PrecedenceConstraint . 10-15
10.3.6 StepPrecedence. 10-15
10.3.7 Transformation . 10-16
10.3.8 TransformationActivity 10-17
10.3.9 TransformationMap . 10-18
10.3.10 TransformationStep . 10-19
10.3.11 TransformationTask . 10-20
10.3.12 TransformationTree . 10-21
10.3.13 TransformationUse . 10-22

10.4 Transformation Associations . 10-23
10.4.1 CFMapClassifier. 10-23
10.4.2 CFMapFeature . 10-24
10.4.3 ClassifierMapSource . 10-24
10.4.4 ClassifierMapTarget . 10-25
10.4.5 ClassifierMapToCFMap 10-25
10.4.6 ClassifierMapToFeatureMap 10-26
10.4.7 DataObjectSetElement 10-26
10.4.8 FeatureMapSource . 10-27
10.4.9 FeatureMapTarget. 10-27
10.4.10 InverseTransformationTask. 10-28
vi OMG-Common Warehouse Metamodel, v1.1 March 2003

Contents
10.4.11 TransformationSource 10-28
10.4.12 TransformationStepTask 10-29
10.4.13 TransformationTarget . 10-29
10.4.14 TransformationTaskElement 10-30

10.5 OCL Representation of Transformation Constraints 10-30

11. OLAP . 11-1

11.1 Overview . 11-1

11.2 Objectives of the OLAP Package . 11-2

11.3 Organization of the OLAP Package 11-3
11.3.1 Dependencies . 11-3
11.3.2 Major Classes and Associations 11-3
11.3.3 Dimension and Hierarchy 11-5
11.3.4 Inheritance from the Object Model. 11-7
11.3.5 Deploying OLAP Models 11-8

11.4 OLAP Classes . 11-10
11.4.1 CodedLevel. 11-10
11.4.2 ContentMap . 11-11
11.4.3 Cube . 11-11
11.4.4 CubeDeployment . 11-13
11.4.5 CubeDimensionAssociation 11-14
11.4.6 CubeRegion . 11-15
11.4.7 DeploymentGroup . 11-17
11.4.8 Dimension . 11-18
11.4.9 DimensionDeployment 11-20
11.4.10 Hierarchy . 11-22
11.4.11 HierarchyLevelAssociation 11-23
11.4.12 Level . 11-24
11.4.13 LevelBasedHierarchy . 11-25
11.4.14 Measure . 11-26
11.4.15 MemberSelection . 11-26
11.4.16 MemberSelectionGroup 11-27
11.4.17 Schema . 11-27
11.4.18 StructureMap . 11-28
11.4.19 ValueBasedHierarchy . 11-29

11.5 OLAP Associations . 11-30
11.5.1 CubeDeploymentOwnsContentMaps 11-30
11.5.2 CubeDimensionAssociationsReferenceCalc

Hierarchy . 11-31
11.5.3 CubeDimensionAssociationsReference

Dimension . 11-31
March 2003 OMG-Common Warehouse Metamodel, v1.1 vii

Contents
11.5.4 CubeOwnsCubeDimensionAssociations. 11-32
11.5.5 CubeOwnsCubeRegions 11-32
11.5.6 CubeRegionOwnsCubeDeployments 11-33
11.5.7 CubeRegionOwnsMemberSelectionGroups . . . 11-33
11.5.8 DeploymentGroupReferencesCube

Deployments. 11-34
11.5.9 DeploymentGroupReferencesDimension

Deployments. 11-34
11.5.10 DimensionDeploymentHasImmediateParent . . 11-35
11.5.11 DimensionDeploymentHasListOfValues 11-35
11.5.12 DimensionDeploymentOwnsStructureMaps. . . 11-36
11.5.13 DimensionHasDefaultHierarchy. 11-36
11.5.14 DimensionOwnsHierarchies 11-37
11.5.15 DimensionOwnsMemberSelections 11-37
11.5.16 HierarchyLevelAssociationOwnsDimension

Deployments. 11-38
11.5.17 HierarchyLevelAssociationsReferenceLevel . . 11-38
11.5.18 LevelBasedHierarchyOwnsHierarchyLevel

Associations . 11-39
11.5.19 MemberSelectionGroupReferencesMember

Selections . 11-39
11.5.20 SchemaOwnsCubes . 11-40
11.5.21 SchemaOwnsDeploymentGroups 11-40
11.5.22 SchemaOwnsDimensions 11-41
11.5.23 ValueBasedHierarchyOwnsDimension

Deployments. 11-41

11.6 OCL Representation of OLAP Constraints 11-42

12. Data Mining . 12-1

12.1 Overview . 12-1

12.2 Organization of the Data Mining Metamodel 12-2
12.2.1 Dependencies . 12-2
12.2.2 Major Classes and Associations 12-2
12.2.3 Inheritance from the ObjectModel 12-5

12.3 Data Mining Classes . 12-6
12.3.1 ApplicationAttribute. 12-6
12.3.2 ApplicationInputSpecification 12-7
12.3.3 AssociationRulesSettings 12-8
12.3.4 AttributeUsageRelation 12-9
12.3.5 CategoricalAttribute . 12-10
12.3.6 Category . 12-11
viii OMG-Common Warehouse Metamodel, v1.1 March 2003

Contents
12.3.7 CategoryHierarchy . 12-12
12.3.8 ClassificationSettings . 12-12
12.3.9 ClusteringSettings . 12-13
12.3.10 CostMatrix . 12-13
12.3.11 MiningAttribute . 12-13
12.3.12 MiningDataSpecification 12-14
12.3.13 MiningModel . 12-14
12.3.14 MiningModelResult . 12-16
12.3.15 MiningSettings . 12-16
12.3.16 NumericAttribute . 12-18
12.3.17 OrdinalAttribute . 12-18
12.3.18 RegressionSettings . 12-19
12.3.19 StatisticsSettings. 12-19
12.3.20 SupervisedMiningModel 12-20
12.3.21 SupervisedMiningSettings 12-20

12.4 Data Mining Associations . 12-21
12.4.1 ContainsAttributeUsage 12-21
12.4.2 ContainsCategory . 12-21
12.4.3 DerivedFromSettings . 12-22
12.4.4 HasAttribute . 12-22
12.4.5 InputSpecOwnsAttributes 12-23
12.4.6 MiningModelOwnsInputSpecification 12-23
12.4.7 OrdersCategory. 12-24
12.4.8 PertainsToAttribute. 12-24
12.4.9 ProducedByModel . 12-25
12.4.10 SupervisedMiningModelReferences

TargetAttribute . 12-25
12.4.11 UsesAsInput . 12-26
12.4.12 UsesAsTarget . 12-26
12.4.13 UsesAsTaxonomy . 12-27
12.4.14 UsesCostMatrix . 12-27
12.4.15 UsesItemId . 12-28
12.4.16 UsesTransactionId . 12-28

12.5 OCL Representation of Data Mining Constraints. 12-29

13. Information Visualization . 13-1

13.1 Overview . 13-1

13.2 Organization of the Information Visualization Metamodel 13-2
13.2.1 Dependencies . 13-2
13.2.2 Major Classes and Associations 13-2

13.3 Inheritance from the Object Model 13-3
March 2003 OMG-Common Warehouse Metamodel, v1.1 ix

Contents
13.4 Information Visualization Classes 13-4
13.4.1 RenderedObject . 13-4
13.4.2 RenderedObjectSet . 13-7
13.4.3 Rendering . 13-8
13.4.4 XSLRendering . 13-10

13.5 Information Visualization Associations 13-10
13.5.1 CompositesReferenceComponents 13-10
13.5.2 NeighborsReferenceNeighbors 13-11
13.5.3 RenderedObjectSetOwnsRenderedObjects 13-11
13.5.4 RenderedObjectSetOwnsRenderings 13-12
13.5.5 RenderedObjectsReferenceDefaultRendering . 13-12
13.5.6 RenderedObjectsReferenceModelElement 13-13
13.5.7 RenderedObjectsReferenceRenderings. 13-13

13.6 OCL Representation of Information Visualization
Constraints . 13-14

14. Business Nomenclature . 14-1

14.1 Overview . 14-1
14.1.1 Semantics . 14-2

14.2 Organization of the Business Nomenclature Package 14-2

14.3 Business Nomenclature Classes . 14-4
14.3.1 BusinessDomain . 14-5
14.3.2 Concept . 14-5
14.3.3 Glossary . 14-6
14.3.4 Nomenclature . 14-7
14.3.5 Taxonomy . 14-8
14.3.6 Term . 14-9
14.3.7 VocabularyElement. 14-10

14.4 Business Nomenclature Associations 14-11
14.4.1 GlossaryToTaxonomy . 14-12
14.4.2 NomenclatureHierarchy 14-12
14.4.3 RelatedConcepts . 14-12
14.4.4 RelatedTerms . 14-13
14.4.5 RelatedVocabularyElements 14-14
14.4.6 SynonymToPreferredTerm 14-14
14.4.7 TermToConcept . 14-14
14.4.8 VocabularyElementToModelElement 14-15
14.4.9 WiderToNarrowerTerm. 14-15

14.5 OCL Representation of Business Nomenclature
Constraints . 14-16
x OMG-Common Warehouse Metamodel, v1.1 March 2003

Contents
15. Warehouse Process . 15-1
15.1 Overview . 15-1

15.2 Organization of the Warehouse Process Package 15-1

15.3 Warehouse Process Classes . 15-5
15.3.1 CalendarDate . 15-5
15.3.2 CascadeEvent . 15-6
15.3.3 CustomCalendar . 15-6
15.3.4 CustomCalendarEvent 15-7
15.3.5 ExternalEvent . 15-7
15.3.6 InternalEvent . 15-8
15.3.7 IntervalEvent . 15-9
15.3.8 PointInTimeEvent . 15-9
15.3.9 ProcessPackage. 15-9
15.3.10 RecurringPointInTimeEvent 15-10
15.3.11 RetryEvent . 15-12
15.3.12 ScheduleEvent . 15-12
15.3.13 WarehouseActivity . 15-13
15.3.14 WarehouseEvent . 15-13
15.3.15 WarehouseProcess . 15-14
15.3.16 WarehouseStep . 15-15

15.4 Warehouse Process Associations . 15-16
15.4.1 Event . 15-16
15.4.2 EventUsesCustomCalendar 15-17
15.4.3 TriggeringProcess . 15-17
15.4.4 WarehouseActivityRunsTransformation

Activity. 15-18
15.4.5 WarehouseActivityStep 15-18
15.4.6 WarehouseStepRunsTransformationStep 15-19

15.5 OCL Representation of Warehouse Process Constraints . . 15-20

16. Warehouse Operation . 16-1
16.1 Overview . 16-1

16.1.1 Transformation Executions 16-1
16.1.2 Measurements. 16-2
16.1.3 Change Requests . 16-2

16.2 Organization of the Warehouse Operation Package 16-2

16.3 Warehouse Operation Classes . 16-4
16.3.1 ActivityExecution . 16-4
16.3.2 ChangeRequest . 16-5
16.3.3 Measurement . 16-7
March 2003 OMG-Common Warehouse Metamodel, v1.1 xi

Contents
16.3.4 StepExecution. 16-9
16.3.5 TransformationExecution 16-9

16.4 Warehouse Operation Associations 16-11
16.4.1 ActivityStepExecutions 16-11
16.4.2 ModelElementChangeRequest 16-11
16.4.3 ModelElementMeasurement 16-12
16.4.4 StepExecutionCallAction 16-12
16.4.5 TransformationActivityExecutions 16-13
16.4.6 TransformationStepExecutions 16-13

16.5 OCL Representation of Warehouse Operation Constraints. 16-14

17. Compatibility with Other Standards 17-1
17.1 Introduction . 17-1

17.2 Background: Components of the OMG Metamodeling
 Architecture . 17-2

17.3 CWM and MDC Meta Data Interchange Specification . . . 17-2
17.3.1 Overview . 17-2
17.3.2 Comparison with CWM 17-3

17.4 CWM and MDC Open Information Model 17-4
17.4.1 Overview . 17-4
17.4.2 Comparison with CWM: Database Schema . . . 17-5
17.4.3 Comparison with CWM: Data Transformations 17-6
17.4.4 Comparison with CWM: OLAP Schema 17-7
17.4.5 Comparison with CWM: Record-Oriented

Database Schema . 17-8

17.5 CWM and OLAP Council/MDAPI. 17-9
17.5.1 Overview . 17-9
17.5.2 Comparison with CWM 17-9

18. Conformance Points . 18-1

18.1 Introduction . 18-1

18.2 Required Compliance. 18-1
18.2.1 CWM Metamodel Compliance 18-1
18.2.2 CWM XML Compliance 18-2
18.2.3 CWM IDL Compliance 18-2
18.2.4 CWM DTD Compliance 18-2

18.3 Optional Compliance Points. 18-2

19. CWM Data Types . 19-1
19.1 Overview . 19-1

19.2 Organization of the CWM Data Types 19-2
xii OMG-Common Warehouse Metamodel, v1.1 March 2003

Contents
19.3 CORBA IDL Data Types . 19-3
19.3.1 Overview . 19-3
19.3.2 Organization of the CORBA IDL Data Types. . 19-3
19.3.3 CORBA IDL Data Type Instances 19-4
19.3.4 CORBA IDL Data Types Classes 19-5
19.3.5 CORBAL IDL Data Types Associations. 19-9

19.4 Java Data Types . 19-10

19.5 SQL-99 Data Types . 19-11

19.6 Type Mapping Examples . 19-15

Appendix A - References. A-1

Glossary . 1
March 2003 OMG-Common Warehouse Metamodel, v1.1 xiii

Contents
xiv OMG-Common Warehouse Metamodel, v1.1 March 2003

Preface
About the Object Management Group (OMG)

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Associated OMG Documents

The CORBA documentation set includes the following:

• CORBA: Common Object Request Broker Architecture and Specification
contains the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the object services.

• CORBAfacilities: Common Facilities Architecture contains information about the
design of Common Facilities; it provides the framework for Common Facility
specifications.

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of
OMG, such as how standards are proposed, evaluated, and accepted.
March 2003 Common Warehouse Metamodel, v 1.1 xv

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote. To obtain
books in the documentation set, or other OMG publications, refer to the enclosed
subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

OMG’s adoption of the UML specification reduces the degree of confusion within the
industry surrounding modeling languages. It settles unproductive arguments about
method notations and model interchange mechanisms and allows the industry to focus
on higher leverage, more productive activities. Additionally, it enables semantic
interchange between visual modeling tools.

Introduction to CWM

The main purpose of CWM is to enable easy interchange of warehouse and business
intelligence metadata between warehouse tools, warehouse platforms and warehouse
metadata repositories in distributed heterogeneous environments. CWM is based on
three key industry standards:

• UML - Unified Modeling Language, an OMG modeling standard

• MOF - Meta Object Facility, an OMG metamodeling and metadata repository
standard

• XMI - XML Metadata Interchange, an OMG metadata interchange standard

These three standards form the core of the OMG metadata repository architecture as
illustrated in the figure below.
xvi Common Warehouse Metamodel, v 1.1 March 2003

The UML standard defines a rich, object oriented modeling language that is supported
by a range of graphical design tools. The MOF standard defines an extensible
framework for defining models for metadata, and providing tools with programmatic
interfaces to store and access metadata in a repository. The XMI standard allows
metadata to be interchanged as streams or files with a standard format based on XML.
The complete architecture offers a wide range of implementation choices to developers
of tools, repositories and object frameworks. XMI in particular lowers the barrier to
entry for the use of OMG metadata standards.

Key aspects of the architecture include:

• A four layered metamodeling architecture for general purpose manipulation of
metadata in distributed object repositories. See the MOF and UML specifications
for more details

• The use of UML notation for representing metamodels and models

• The use of standard information models (UML) to describe the semantics of object
analysis and design models

• The use of MOF to define and manipulate metamodels programmatically using fine
grained CORBA interfaces. This approach leverages the strength of CORBA
distributed object infrastructure.

• The use of XMI for stream based interchange of metadata

This specification mainly consists of definitions of metamodels in the following
domains:

• Object model (a subset of UML)

• CWM foundation

• Relational data resources

OMG Metadata Repository Architecture

OMG Metadata Repository Architecture

Object Request Broker (ORB)

Object Services

UML XMIMOF

Repository Common Facility

Tools and
Repositories
March 2003 Common Warehouse Metamodel, v 1.1 xvii

• Record data resources

• Multidimensional data resources

• XML data resources

• Data transformations

• OLAP (On-line Analytical Processing)

• Data mining

• Information visualization

• Business nomenclature

• Warehouse process

• Warehouse operation

This specification defines these metamodels and provides proof of concept that covers
key aspects of CWM. The specification represents the integration of work currently
underway by the submitters and supporters in the areas of warehouse metadata
management in distributed object environments. The submitters intend to
commercialize the CWM technology within the guidelines of the OMG.

The adoption of the UML and MOF specifications in 1997 was a key step forward for
the OMG and the industry in terms of achieving consensus on modeling technology
and repositories. The adoption of XMI in 1999 reduced the plethora of proprietary
metadata interchange formats into one. The adoption of CWM in 2000 has solidified
these core technologies by demonstrating their applicability in data warehousing and
business intelligence - a major industry domain, as well as solving the most critical
problem facing data warehousing and business intelligence today - metadata
interchange and management.

Other Parts of the Specification

Volume 2 Extensions

Contains the CWM Extensions (CWMX), which consist of: Entity Relationship,
COBOL Data Division, DMS II, IMS, Essbase, Express, InformationSet, and
Information Reporting. This volume is not a normative part of the CWM
specification.

CWM XML, IDL and DTD files

Contain the CWM XML, CWM IDL and CWM DTD.

In the generation of CWM XML and CWM DTD files:

a. The CWM metamodel identifies the XML namespaces using MOF Tags.

b. No data type model is used for the metadata beyond what is directly supported
by MOF.

c. Any special string encodings are described in the documentation of string valued
attributes where such encodings apply.
xviii Common Warehouse Metamodel, v 1.1 March 2003

CWMX XML, IDL and DTD files

Contain the CWMX XML, CWMX IDL and CWMX DTD. These files are not a
normative part of the CWM specification.

In the generation of CWMX XML and CWMX DTD files:

a. The CWMX metamodel identifies the XML namespaces using MOF Tags.

b. No data type model is used for the metadata beyond what is directly supported
by MOF.

c. Any special string encodings are described in the documentation of string valued
attributes where such encodings apply.

CWM/CWMX MDL files

Contain the CWM/CWMX MDL. These files are not a normative part of the CWM
specification.

Co-submitting Companies and Supporters

The following companies are co-submitters of the Common Warehouse Metamodel
specification (hereafter referred to as CWM):

• International Business Machines Corporation

• Unisys Corporation

• NCR Corporation

• Hyperion Solutions Corporation

• Oracle Corporation

• UBS AG

• Genesis Development Corporation

• Dimension EDI

The following companies are supporters of CWM:

• Deere & Company

• Sun Microsystems Inc.

• Hewlett-Packard Company

• Data Access Technologies

• InLine Software

• Aonix

• Hitachi, Ltd

• SAS Institute Inc.

• Meta Integration Technology, Inc.

• Adaptive Ltd
March 2003 Common Warehouse Metamodel, v 1.1 xix

• Cognos Inc.

Acknowledgements

The submitters and supporters of the CWM specification appreciate the contributions
of the following individuals during the CWM specification development process:

Ravi Dirckze, Susan Donahue, Giuseppe Facchetti, James Jonas, Robert Kemper,
Suresh Kumar, Joanne Lamb, Don Lind, Tony Maresco, Bruce McLean, Karel
Pagrach, William Perlman, Jeff Pinard, Curtis Sojka, Robin Noble-Thomas, Chris
de Vaney, Robert Vavra, Adriaan Veldhuisen.
xx Common Warehouse Metamodel, v 1.1 March 2003

Design Rationale 1
Contents

This chapter contains the following topics.

1.1 Design Overview

This specification proposes that XML Metadata Interchange (XMI) is used to
interchange data warehouse metadata based on the CWM metamodel. The CWM
metamodel is specified using the Meta Object Facility (MOF) Model, allowing XMI to
be used to

• transform the CWM metamodel into a CWM Document Type Definition (DTD),

• transfer instances of warehouse metadata that conform to the CWM metamodel as
XML documents, based on the CWM DTD, and

• transform the CWM metamodel itself into an XML document, based on the MOF
DTD, for interchange between MOF-compliant repositories.

Thus these specifications work together to allow warehouse metadata and the CWM
metamodel to be interchanged using W3C’s Extensible Markup Language (XML).

Topic Page

“Design Overview” 1-1

“CWM and the MOF” 1-2

“CWM and UML” 1-5

“CWM and XMI” 1-7

“Design Rationale” 1-8
March 2003 Common Warehouse Metamodel, v1.1 1-1

1

This specification additionally proposes that IDL is used for specifying programmatic
access to data warehouse metadata based on the CWM metamodel. Other programming
language APIs may be generated based on the CWM IDL and specific IDL-
programming language mappings (for example, IDL-Java, CORBA-COM).

This specification specifically defines the CWM metamodel. The CWM DTD, CWM
XML, and CWM IDL specifications are automatically generated from the CWM
metamodel, as defined by the MOF and XMI specifications.

Note – Equivalent models have the same data structures and relationships. Equivalent
XML documents are documents equivalent models when the Stream Consumption
rules are applied to the two documents.

1.2 CWM and the MOF

1.2.1 An Overview of the MOF

The Meta Object Facility (MOF) is the OMG’s adopted technology for defining
metadata and representing it as CORBA objects. Metadata is a general term for data
that in some sense describes information. The information so described may be
information represented in a computer system; for example, in the form of files,
databases, running program instances, and so on. Alternatively, the information may be
embodied in some system, with the metadata being a description of some aspect of the
system such as a part of its design.

The MOF supports any kind of metadata that can be described using Object Modeling
techniques. This metadata may describe any aspect of a system and the information it
contains, and may describe it to any level of detail and rigor depending on the metadata
requirements.

The term model is generally used to denote a description of something from the real
world. The concept of a model is highly fluid, and depends on one’s point of view. To
someone who is concerned with building or understanding an entire system, a model
would include all of the metadata for the system. On the other hand, most people are
only concerned with certain components (for example, programs A and B) or certain
kinds of detail (for example, record definitions) of the system.

In the MOF context, the term model has a broader meaning. Here, a model is any
collection of metadata that is related in the following ways:

• The metadata conforms to rules governing its structure and consistency; that is, it
has a common abstract syntax.

• The metadata has meaning in a common (often implied) semantic framework.

Metadata is itself a kind of information, and can accordingly be described by other
metadata. In MOF terminology, metadata that describes metadata is called meta-
metadata, and a model that consists of meta-metadata is called a metamodel.
1-2 Common Warehouse Metamodel, v1.1 March 2003

1

One kind of metamodel plays a central role in the MOF. An MOF metamodel defines
the abstract syntax of the metadata in the MOF representation of a model. Since there
are many kinds of metadata in a typical system, the MOF framework needs to support
many different MOF metamodels. The MOF integrates these metamodels by defining a
common abstract syntax for defining metamodels. This abstract syntax is called the
MOF Model and is a model for metamodels; that is, a meta-metamodel. The MOF
metadata framework is typically depicted as a four layer architecture as shown in
Table 1-1.

Some points on OMG and MOF metadata terminology:

• To make things easier to understand, we often describe things in terms of their level
in the meta-stack; for example, the MOF Model is an M3-level model in a 4 level
stack.

• The “meta-” prefix should be viewed in a relative rather than absolute sense.
Similarly, the numbering of meta-levels is not absolute.

• While there are typically four layers in an MOF-based metadata stack, the number
of layers can be more or less than this.

The MOF specification has three core parts; that is, the specification of the MOF
Model, the MOF IDL Mapping, and the MOF’s interfaces.

1.2.1.1 The MOF Model

The “MOF Model” is the MOF’s built-in meta-metamodel. One can think of it as the
“abstract language” for defining MOF metamodels. This is analogous to the way that
the UML metamodel is an abstract language for defining UML models. While the
MOF and UML are designed for two different kinds of modeling; that is, metadata
versus object modeling, the MOF Model and the core of the UML metamodel are
closely aligned in their modeling concepts. (The alignment of the two models is close
enough to allow UML notation to be used to express MOF-based metamodels!)

The three main metadata modeling constructs provided by the MOF are the Class,
Association, and Package. These are similar to their counterparts in UML, with some
simplifications:

Table 1-1 OMG Metadata Architecture

Meta-level MOF terms Examples

M3 meta-metamodel The “MOF Model”

M2 metamodel, meta-metadata UML Metamodel,
CWM Metamodel

M1 model, metadata UML models,
CWM metadata

M0 object, data Modeled systems,
Warehouse data
March 2003 OMG-CWM, v1.1: CWM and the MOF 1-3

1

• Classes can have Attributes and Operations at both “object” and “class” level.
Attributes have the obvious usage; that is, representation of metadata. Operations
are provided to support metamodel specific functions on the metadata. Both
Attributes and Operation Parameters may be defined as “ordered,” or as having
structural constraints on their cardinality and uniqueness. Classes may multiply
inherit from other Classes.

• Associations support binary links between Class “instances.” Each Association has
two AssociationEnds that may specify “ordering” or “aggregation” semantics, and
structural constraints on cardinality or uniqueness. When a Class is the type of an
AssociationEnd, the Class may contain a Reference that allows navigability of the
Association’s links from a Class “instance.”

• Packages are collections of related Classes and Associations. Packages can be
composed by importing other Packages or by inheriting from them. Packages can
also be nested, though this provides a form of information hiding rather than reuse.

The other significant MOF Model constructs are DataTypes and Constraints.
DataTypes allow the use of non-object types for Parameters or Attributes. In the OMG
MOF specification, these must be data types or interface types expressible in CORBA
IDL.

Constraints are used to associate semantic restrictions with other elements in an MOF
metamodel. This defines the well-formedness rules for the metadata described by a
metamodel. Any language may be used to express Constraints, though there are
obvious advantages in using a formal language like OCL.

1.2.1.2 The MOF IDL Mapping

The MOF’s “IDL Mapping” is a standard set of templates that map an MOF
metamodel onto a corresponding set of CORBA IDL interfaces. If the input to the
mapping is the metamodel for a given kind of metadata, then the resulting IDL
interfaces are for CORBA objects that can represent that metadata. The mapped IDL
are typically used in a repository for storing the metadata.

The IDL mapping is too large to describe here, and indeed it is largely irrelevant to the
problem of model interchange. Instead, we will simply note the main correspondences
between elements in a MOF metamodel (M2-level entities) and the CORBA objects
that represent metadata (M1-level entities):

• A Class in the metamodel maps onto an IDL interface for metadata objects and a
metadata class proxy. These interfaces support the Operations, Attributes, and
References defined in the metamodel, and in the case of class proxy, provide a
factory operation for metadata objects.

• An Association maps onto an interface for a metadata association proxy that
supports association queries and updates.

• A Package maps onto an interface for a metadata package proxy. A package proxy
acts as a holder for the proxies for the Classes and Associations contained by the
Package, and therefore serves to define a logical extent for metadata associations,
classifier level attributes and the like.
1-4 Common Warehouse Metamodel, v1.1 March 2003

1

The IDL that is produced by the mapping is defined in precise detail so that different
vendor implementations of the MOF can generate compatible repository interfaces
from a given MOF metamodel. Similarly, the semantic specification of the mapped
interfaces allows metadata objects to be interoperable.

In addition to the metamodel specific interfaces for the metadata (defined by the IDL
mapping), MOF metadata objects share a common set of Reflective base interfaces.
These interfaces allow a ‘generic’ client program to access and update metadata
without either being compiled against the metamodel’s generated IDL or having to use
the CORBA DII.

1.2.1.3 The MOF Interfaces

The final component of the MOF specification is the set of IDL interfaces for the
CORBA objects that represent an MOF metamodel. These are not of interest to the
meta-modeler who will typically use vendor supplied graphical editors, compilers and
generator tools to access an MOF Model repository. However, they are of interest to
MOF-based tool vendors, and to programmers who need to access metadata using the
Reflective interfaces.

In fact, there is not a lot to say about these interfaces, except to explain how they were
derived. In the MOF specification, the MOF Model is defined using the MOF Model as
its own modeling language; that is, it is the “fixed point” of the metadata stack.
Conceptually, the MOF Model is M3 level metadata conforming to an M4 level
metamodel that is isomorphic to the MOF Model. The IDL mapping is then applied to
this metamodel (or strictly speaking meta-metamodel) to produce the MOF Model’s
IDL interfaces. Likewise, the MOF Model IDL’s operational semantics are largely
defined by the mapping and the OCL constraints in the MOF Model specification.

1.2.2 The Relationship between CWM and MOF

The MOF has been adopted as OMG’s standard for representing metamodels. The
CWM metamodel has been designed to conform to this standard. This allows CWM to
use other OMG specifications that are dependent on the MOF. In particular, it allows
use of XMI to interchange warehouse metadata that is represented using the CWM
metamodel, and it allows use of IDL (and other programming languages) for
programmatic access to warehouse metadata based on the CWM metamodel.

1.3 CWM and UML

1.3.1 An Overview of UML

The Unified Modeling Language (UML) is a graphical language for modeling discrete
systems. Although the UML is not necessarily tied to any particular application area or
modeling process, its greatest applicability is in the area of object-oriented software
design.
March 2003 OMG-CWM, v1.1: CWM and UML 1-5

1

UML is the synthesis, or unification, of three preceding modeling languages that had
previously dominated the field of object-oriented software development: The Booch
(Grady Booch), OMT (James Rumbaugh), and OOSE (Ivar Jacobson) notational
systems were combined together by their authors into the Unified Modeling Language,
at Rational Software Corporation, in the 1994-1995 time frame.

The UML definition was subsequently submitted by Rational and a number of other
OMG member companies, as a proposal to the Object Management Group in
September, 1997, in response to an OMG RFP (OA&DTF RFP-1), requesting a
standard approach to object-oriented modeling. The UML submission was created by
a team consisting of both its original authors and representatives from the various
OMG submitters. The UML submission was subsequently ratified by the OMG in
November 1997. Today, UML, along with the Meta Object Facility and XML Meta
Data Interchange specifications, serves as one of the cornerstones of the OMG
metadata architecture (of which CWM is a domain-specific extension).

The various modeling elements of UML support the specification of both static and
behavioral aspects of discrete, object-oriented systems. UML static models include the
definition of classes, their attributes, operations, and interfaces. Standard relationships
between classes, such as inheritance/generalization, association, dependency and
containment can be specified under UML and are used in the construction of class
diagrams. The behavioral semantics of the system being modeled can be specified
using UML conventions for expressing time-ordered inter-object message sequencing
(sequence diagrams) and spatially-oriented collaborations between instances
(collaboration diagrams). Support for the specification of state-machines is also
provide for detailed modeling of object internals. UML also supports object-oriented
analysis and the modeling of external system behavior through use case diagrams.
Finally, UML provides notations for specifying the packaging of a logical design into
components and the deployment and allocation of those components to nodes in a
distributed computing architecture.

The UML language is formally defined by a metamodel (or semantic model) that is
itself defined recursively, using UML. This meta-circular definition enables the entire
UML to be based on a small number of elementary terms.

1.3.2 The Relationship between CWM and UML

A primary objective of the CWM is to define a metamodel (or, equivalently, a
“metadata model”) of a generic data warehouse architecture. Thus, the CWM
metamodel defines formal rules for modeling instances of data warehouses. However,
there is also a requirement for the CWM metamodel to be expressed in MOF (and thus
enabled for interchange via either CORBA interfaces or XMI).

The CWM metamodel includes an Object Model package, which is based on the UML
metamodel. It consists of a version of the UML metamodel in which those aspects that
are not relevant in a data warehouse scenario have been removed. This Object Model
serves two purposes:

• as the base on which the CWM metamodel is built, and

• as the metamodel for object-oriented data resources.
1-6 Common Warehouse Metamodel, v1.1 March 2003

1

The CWM metamodel is effectively an extension of the UML-based Object Model.
Any metaclass within CWM ultimately (if not directly) inherits from some metaclass
of the Object Model. For example, consider the CWM Relational Package. The
Relational metamodel defines a metaclass called “Table” that represents any relational
database table. This metaclass derives from the Object Model metaclass “Class.”
Similarly, the Relational metaclass “Column” derives from the Object Model metaclass
“Attribute.” This formally establishes the semantic relationship between the relational
concepts of Table and Column that it is well understood intuitively; that is, that a Table
is “something” that has properties (or attributes) and serves as a template for a
collection of “things;” that is, rows that all share that same set of properties but supply
their own “values” of those properties. The semantic equivalent in UML is the notion
of a Class and its Attributes, and this equivalence is established by defining Table as a
specialization of the notion of Class, and Column as a specialization of Attribute.

The UML specification is also used in the following ways:

• The UML notation is used in the diagrammatic representations of the CWM
metamodel.

• Additional constraints on the CWM metamodel are represented in Object Constraint
Language (OCL), as defined in the UML specification.

1.4 CWM and XMI

1.4.1 An Overview of XMI

The purpose of XMI is to allow the interchange of models in a serialized form. Since
the MOF is the OMG’s adopted technology for representing metadata, it is natural that
XMI focuses on the interchange of MOF metadata; that is, metadata conforming to a
MOF metamodel. In fact, XMI is really a pair of parallel mappings: one between MOF
metamodels and XML DTDs, and another between MOF metadata and XML
documents.

XMI can be viewed as a common metadata interchange format that is independent of
middleware technology. Any metadata repository or tool that can encode and decode
XMI streams can exchange metadata with other repositories or tools with the same
capability. There is no need for products to implement the MOF-defined CORBA
interfaces, or even to “speak” CORBA at all.

XMI provides a possible route for interchange of metadata with repositories whose
metamodels are not MOF based. This interchange can be realized by ad hoc mappings
between an XMI document and the repository’s native metamodel.

XMI is based on the W3C’s Extensible Markup Language (XML), and has two major
components:

• The XML DTD Production Rules for producing XML Document Type Definitions
(DTDs) for XMI encoded metadata. XMI DTDs serve as syntax specifications for
XMI documents, and allow generic XML tools to be used to compose and validate
XMI documents.
March 2003 OMG-CWM, v1.1: CWM and XMI 1-7

1

• The XML Document Production Rules for encoding metadata into an XML
compatible format. The production rules can be applied in reverse to decode XMI
documents and reconstruct the metadata.

XMI supports the interchange of any kind of metadata that can be expressed using the
MOF specification. It supports the encoding of metadata consisting of both complete
models and model fragments, as well as tool-specific extension metadata. XMI has
optional support for interchange of metadata in differential form, and for metadata
interchange with tools that have incomplete understanding of the metadata.

1.4.2 The Relationship between CWM and XMI

CWM uses XMI as its interchange mechanism. This means that the full power and
flexibility of XMI is available for interchanging both warehouse metadata and the
CWM metamodel itself. CWM does not require any extensions to XMI.

A standard DTD for the CWM metamodel is generated using XMI’s DTD Production
Rules. Warehouse metadata can then be encoded as an XML document using XMI’s
Document Production Rules.

A standard XML document for the CWM metamodel is also generated using XMI’s
Document Production Rules, based on the MOF DTD.

1.5 Design Rationale

1.5.1 Reuse of UML Concepts

The CWM metamodel has as its base an Object Model based on a version of the UML
metamodel in which those aspects that are not relevant in a data warehouse scenario
have been removed. The CWM metamodel is built on top of and extends this Object
Model.

Many of the core UML object types and associations are reflected by the CWM Object
Model. Wherever appropriate, Object Model types are subtyped to provide more
specific object types in the CWM metamodel, normally with additional attributes or
associations. All CWM object types are direct or indirect subtypes of appropriate
Object Model types, and so inherit their attributes and associations.

This approach has many advantages. It allows the CWM specification to capitalize on
the substantial investment in developing and refining the UML metamodel. The general
awareness of UML concepts should aid understanding of the CWM specification and
its base Object Model. It also enables easy inclusion of UML models as part of the
data warehouse metadata.

1.5.2 Modularity

The CWM metamodel is split up into a set of packages. This aids comprehension of
the metamodel by splitting it up into smaller units, and allows users and implementors
to ignore packages that are not relevant to their needs.
1-8 Common Warehouse Metamodel, v1.1 March 2003

1

The CWM metamodel has a layered structure:

• The foundation consists of the UML-based Object Model and the CWM
Foundation, which supports additional concepts and structures that are shared by
other packages. Additionally, the Software Deployment package supports the
deployment information for the data sources and targets in the next layer.

• The Relational, Record, Multidimensional, and XML packages support the
definition of various types of data sources and data targets.

• The Transformation, OLAP, Data Mining, Information Visualization, and Business
Nomenclature packages define the transformations and analytical processing that
takes place on these data sources.

• Finally, the Warehouse Process package supports scheduling information, and the
Warehouse Operation package is used to record operational details such as the
results of transformation runs.

1.5.3 Generic Model

Much attention has been taken to ensure that the CWM metamodel has been made as
generic as possible, and that only information that is shareable between different
implementations has been included in the metamodel. Shareability of information has
been checked and refined by examining the metadata needs of several different, but
representative, implementations as well as a broad range of representative warehouse
configurations.
March 2003 OMG-CWM, v1.1: Design Rationale 1-9

1

1-10 Common Warehouse Metamodel, v1.1 March 2003

Usage Scenarios 2
Contents

This chapter contains the following topics.

2.1 Overview

This chapter describes some of the problems that data warehousing users,
administrators, developers, and vendors face today and illustrates how CWM helps to
address these problems.

As stated in Section 1.5.3, “Generic Model,” on page 1-9, a design goal of CWM is to
be independent of any specific data warehouse implementation and to contain features
that are effective and easy to use in a broad range of representative warehouse
configurations based on specific tools. The usage scenarios contained in this chapter
are provided to demonstrate that this design goal is met.

In addition these usage scenarios illustrate problem domains in which CWM is
applicable.

Topic Page

“Overview” 2-1

“Users of CWM” 2-2

“Usage Scenarios” 2-4
March 2003 Common Warehouse Metamodel, v1.1 2-1

2

2.2 Users of CWM

CWM is targeted at six categories of users:

1. Warehouse platform and tool vendors

2. Professional service providers

3. Warehouse developers

4. Warehouse administrators

5. End users

6. Information technology managers

These users participate in one or more of the following four stages in the development
and usage of CWM-based data warehouses:

1. Establishment - Implementing and deploying CWM, including a Repository
Common Facility (as shown in the Preface’s OMG Metadata Repository
Architecture figure).

2. Build - Exercising CWM to define a baseline data warehouse configuration
(establishing the exchange paths between known data sources and targets).

3. Operation - Operating the CWM-based data warehouse.

4. Maintenance - Exercising CWM to define changes in data warehouse
configuration (to cover changes as small as the addition of more elements of a
type already in the configuration and as large as merger with or replacement by
another configuration).

This chapter presents usage scenarios that illustrate activities in the Build and
Maintenance steps.
2-2 Common Warehouse Metamodel, v1.1 March 2003

2

Table 2-1 shows how CWM benefits users in data warehouse development and usage.

Table 2-1 Value of CWM to Users

User Category Stage Problem or Need Tools and Repositories How CWM promotes better
Data Warehouse utilization

Warehouse
platform and tool
vendors

Build Must subscribe to
standards for inter-
vendor interconnect.

• CWM
• OMG Repository Common

Facility
• Tools for modeling,

development, deployment,
and system management

CWM provides a common
backplane for pluggable
subsystems. It is a globally usable
notation for metadata exchange
protocols, which enables flexible
distribution of enterprise services
over a heterogeneous collection of
systems.

Professional
service providers

Build Must accumulate and
reuse objects from
service engagement.

Third party and in-house tools
that apply CWM metadata to
concrete database catalogs
and vice versa.

Reusable, editable, and extensible
CWM metadata provides an asset
base that builds value. This base of
reusable objects starts a self-
reinforcing feedback loop with
continually increasing returns
(improved engagement
productivity).

Professional
service providers

Maintenance Must modify
configuration:
knowing what and
where to modify;
knowing dependency
closure.

Third party or in-house tools
to manage reconfiguration
editing of a warehouse model.

CWM exposes the information
required to modify a model.
Context definition and self-
describing features of CWM are
used to isolate dependency
relationships.

Professional
service providers,
warehouse
administrators

Maintenance Must integrate
existing tools and data
which adhere to
standards other than
CWM into a data
warehouse
configuration.

Tools based on CWM's ability
to incorporate metamodels of
legacy, web, proprietary, and
alternate metadata definition
practices and standards.

CWM provides submodels
supporting details of information
held in a variety of different
formats, including XML, Relational
SQL, and conventional file formats.

Warehouse
administrators

Build Must establish and
manage expressions,
relationships, and
lineage over multiple
database schemata.

Tools that use built-in
facilities of CWM to define
schema content, relationships,
and lineage.

CWM design is based on need to
manage such information at
multiple levels. The Transformation
and Warehouse Operation packages
are designed to allow navigation of
metadata correlated to schemata.

Warehouse
administrators

Maintenance Must add, subtract, re-
partition, reallocate,
or merge resources in
deployment
configuration.

System management tools. CWM consists of models of
metadata that assist in making such
changes and allow impact of these
changes to be assessed.
March 2003 OMG-CWM, v1.1: Users of CWM 2-3

2

2.3 Usage Scenarios

This section identifies four application scenarios and six tool scenarios outlining likely
usages of CWM. The application scenarios cover key data warehousing activities.
These are summarized in sections 2.3.1 through 2.3.4 and illustrated in Table 2-2 on
page 2-6. The tool scenarios in section 2.3.5 and Table 2-3 on page 2-7 cover some
significant data warehousing tools from the submitters used in present day practice.

The purpose of these scenarios is purely to illustrate potential usage of CWM.

In warehouse operations, two common categories of data movement are (a) loading
data into a data store, and (b) accessing data for analysis and presentation from the
data store. The ETL Scenario addresses the first category. The OLAP Scenario
addresses the second category.

2.3.1 ETL Scenario

Extract-Transform-Load (ETL) is a common term for the warehouse load process
comprising a set of data movement operations, each from a data source to a data target
with some transforming or restructuring logic applied.

The ETL Scenario starts by defining a CWM Transformation model for movement
from a data source to a data target. Parameters of the source data, target data, and
transformation logic are assigned values in the model. Source data parameters depend
on the type of the data source (object-oriented, relational, record-oriented,
multidimensional, or XML). Target data parameters are similarly chosen.
Transformation logic parameters include identification of a transformation component

Warehouse
developers

All Must view source,
target, application
descriptions
(including interfaces).

Tools to facilitate
development with ability to
refer to information in
metadata repository.

CWM includes containers for
description at fine and coarse grain
levels.

End users All Must know
• refresh state of

inputs and outputs
of queries,

• mapping between
models for transfer
of data sets
between tools, and

• transformation
rules.

Query and presentation tools CWM presents models of metadata
to be exploited by query and
presentation tools.

Information
technology
managers

All Must have visibility
into warehouse
deployment state.

System management and
report tools

CWM presents models of metadata
to be exploited by system
management and report tools.

Table 2-1 Value of CWM to Users

User Category Stage Problem or Need Tools and Repositories How CWM promotes better
Data Warehouse utilization
2-4 Common Warehouse Metamodel, v1.1 March 2003

2

and of data sources and data targets. The transformation component is a method
composed of a possibly large hierarchy of components (commercial tools, commercial
libraries, custom scripts) whose detailed structure is defined elsewhere.

An ETL process is realized by a number of components across several CWM packages.
A CWM warehouse process may launch an ETL process as a scheduled operation
consisting of a number of transformation steps executed in sequence.

For example, the first transformation consists of the extraction and filtering of data
from any of a number of possible data sources. A second transformation cleanses,
combines, or otherwise reduces the data and then stores it in a normalized format in
some primary relational database of the warehouse. A third transformation selects
certain rows from the primary relational database and loads their values into the input
cells of a multidimensional database. Finally, the CWM warehouse process might
instruct the multidimensional database to re-calculate its aggregated cells based on the
new input data.

2.3.2 OLAP Scenario

An end user of a data warehouse engages in an analytic session with a
multidimensional or relational database through the OLAP layer. The user navigates
cubes and dimensions and selectively launches OLAP queries. At some point, the user
decides to drill-down from a consolidated value to lower levels of detail in an OLAP
hierarchy, possibly down to the lowest level input value(s) in the hierarchy.

Leveraging CWM’s inherent ability to preserve data lineage, the user may view the
operational detail, which formed the input value(s). The original data sources can be
identified from the CWM Warehouse Operation that recorded the production of the
input value(s).

2.3.3 Questionnaire Scenario

An important aspect of data warehousing is the collection of raw data from external
resources using for example application-generated reports, questionnaires, or surveys.
To allow for inter-operability of tools supporting raw data collection, the metadata
identifying the data to be collected must be defined, together with metadata that can be
used to ensure accuracy and validity of data.

Questionnaires are commonly used as a means of collecting data about real-world
activities, processes, and opinions. Most of us experience questionnaires as paper
documents. However, technological advances are making possible on-line acquisition
of questionnaire data and generation of questionnaires from automated sources, such as
application systems.

Once assimilated, questionnaire data can be stored in data warehouses for further
statistical processing and analysis. The inherent multi-category, hierarchical nature of
questionnaire responses makes them ideal candidates for multidimensional analysis.
Once questionnaire data has been transformed by an ETL process into a
multidimensional data store, it becomes available for analysis with OLAP tools.
March 2003 OMG-CWM, v1.1: Usage Scenarios 2-5

2

2.3.4 Warehouse Administration Scenario

A warehouse administrator needs access to all the necessary information to control and
monitor the state of the data warehouse. To accomplish this, ETL processes need to be
scheduled to update information in the data warehouse. Monitoring ETL operations
and journalizing changes to data warehouses must be performed for a variety of data
integrity, organizational, and regulatory reasons. In the event of problems arising, the
administrator needs to be able to take appropriate action (such as initiating a rerun of a
set of warehouse processes).

For information held in the data warehouse, the administrator may need to determine
its source, derivation, and update history. This involves identifying transformations that
created the information and determining when they last ran. Because the source of a
transformation may itself be another transformation, it may be necessary for the
administrator to track backward through several transformations to identify the original
source(s) of the information.

2.3.5 Tool Scenarios

The following tool scenarios cover some significant data warehousing tools from the
submitters used in present day practice:

Table 2-2 Application Scenarios

CWM Package ETL (Extract,
Transform, Load)

OLAP Questionnaire Warehouse
Administration

Software Deployment X X X

Object-Oriented (UML) X

Relational X X X

Record X X

Multi-dimensional X X

XML X X

Transforma-tion X X X X

OLAP X X

Data Mining X

Information
Visualization

X X X

Business
Nomenclature

X X X X

Warehouse Process X X X

Warehouse Operation X X X
2-6 Common Warehouse Metamodel, v1.1 March 2003

2

• Dimension EDI -- Polyval XML Mediator, Polyval XML Questionnaire

• Hyperion -- Hyperion Essbase OLAP Server, Hyperion Integration Server, Hyperion
Application Link, Hyperion Analytical Reporting

• IBM -- Visual Warehouse, DB2 Family, DB2 OLAP Server, IMS, Team Connection

• NCR -- Teradata Warehouse Suite

• Oracle -- Oracle Express, Oracle 8i, Oracle Discoverer, Oracle Warehouse Builder,
Oracle Repository

• Unisys -- Unisys Universal Repository (UREP)

Table 2-3 Tool Scenarios

CWM Package
Dimension
EDI Hyperion IBM NCR Oracle Unisys

CWM and Metadata Repository
Facility

X X X X

Software Deployment X X X

Relational X X X X X X

Record X X X

Multi-dimensional X X

XML X X X X

Transformation X X X X X

OLAP X X X X

Data Mining X X X X

Information Visualization X X X X

Business Nomenclature X X X X

Warehouse Process X X X

Warehouse Operation X X X
March 2003 OMG-CWM, v1.1: Usage Scenarios 2-7

2

2-8 Common Warehouse Metamodel, v1.1 March 2003

CWM 3
Contents

This chapter contains the following topics.

3.1 Overview

The amount of data in a given organization doubles every five years. Most
organizations suffer from an overabundance of redundant and inconsistent data that is
difficult to manage effectively, to access, and to use for decision making purposes.
Data warehousing provides an excellent approach for transforming data into useful and
reliable information to support the business decision making process and to achieve
business intelligence. One of the most important aspects of data warehousing is
metadata. Metadata is used for building, maintaining, managing, and using the data
warehouse. Unfortunately, the proliferation of data management and analysis tools has
resulted in almost as many different representations and treatments of metadata as
there are tools.

Since every data management and analysis tool requires different metadata and a
different metadata model (known as a metamodel) to solve the data warehouse
metadata problem, it is simply not possible to have a single metadata repository that
implements a single metamodel for all the metadata in an organization. Instead, what is
needed is a standard for interchange of warehouse metadata.

Topic Page

“Overview” 3-1

“Organization of the CWM” 3-3

“How the CWM Metamodel is Described” 3-9
March 2003 Common Warehouse Metamodel, v1.1 3-1

3

The CWM is a response to these needs. It provides a framework for representing
metadata about data sources, data targets, transformations, and analysis, and the
processes and operations that create and manage warehouse data and provide lineage
information about its use.

The CWM Metamodel consists of a number of sub-metamodels that represent common
warehouse metadata in the following major areas of interest to data warehousing and
business intelligence (see Figure 3-1):

• Data Resources -- These include metamodels that represent object-oriented,
relational, record, multidimensional, and XML data resources. In the case of object-
oriented data resource, CWM reuses the base object model.

• Data Analysis -- These include metamodels that represent data transformations,
OLAP (On-line Analytical Processing), data mining, information visualization, and
business nomenclature.

• Warehouse Management -- These include metamodels that represent warehouse
processes and results of warehouse operations.

Figure 3-1 CWM Metamodel

The CWM Metamodel is designed to maximize the reuse of Object Model (a subset of
UML) and the sharing of common modeling constructs where possible. The most
prominent example is that CWM reuses/depends on Object Model for representing
object-oriented data resources. In addition, where applicable, key elements of the

 The CWM Metamodel

Object Model

Software
Deployment

Type
Mapping

Keys
and

Indexes
Expression Data Types

Business
Information

Foundation

XML Multidimensional Record Relational Object Model Resource

Business
Nomenclature

Information
Visualization

Data
Mining

OLAP Transformation Analysis

Warehouse Operation Warehouse Process Management
3-2 Common Warehouse Metamodel, v1.1 March 2003

3

metamodels for other types of data resources all subclass from the same model
elements in Object Model, as shown in Table 3-1. (The entries listed under Software
System and Deployed Software System are examples.)

3.1.1 The Roles of UML in CWM

UML is used in CWM in three different critical roles:

1. UML is used as the MOF-equivalent meta-metamodel. UML, or the part that
corresponds to the MOF Model, UML Notation, and OCL (Object Constraint
Language) are used as the modeling language, graphical notation, and constraint
language, respectively, for defining and representing CWM.

2. UML is used as the foundation metamodel. UML, specifically a subset as
represented by the Object Model packages, is used as the foundation of CWM from
which other metamodels inherit classes and associations.

3. UML is used as the object-oriented metamodel. UML, specifically the Object
Model package, is relied on for representing object-oriented data resources.

3.2 Organization of the CWM

The CWM Metamodel uses packages and a hierarchical package structure to control
complexity, promote understanding, and support reuse. The model elements are
contained in the following packages:

ObjectModel package
• Core package - Contains classes and associations that form the core of the CWM

object model, which are used by all other CWM packages including other
ObjectModel packages.

• Behavioral package - Contains classes and associations that describe the behavior
of CWM objects and provide a foundation for describing the invocations of
defined behaviors.

• Relationships package - Contains classes and associations that describe the
relationships between CWM objects.

• Instance package - Contains classes and associations that represents instances of
CWM classifiers.

Table 3-1 CWM Data Resources

Software System Deployed Software
System

Package Class Attribute

Object Model Java Java installation Package Class Attribute

Relational DB2 UDB, Oracle 8i,
Teradata

DB2 UDB, Oracle 8i, Teradata
installations

Catalog/
Schema

Table Column
March 2003 OMG-CWM, v1.1: Organization of the CWM 3-3

3

Foundation package
• Business Information package - Contains classes and associations that represent

business information about model elements.

• Data Types package - Contains classes and associations that represent constructs
that modelers can use to create the specific data types they need.

• Expressions package - Contains classes and associations that represent expression
trees.

• Keys and Indexes package - Contains classes and associations that represent keys
and indexes.

• Software Deployment package - Contains classes and associations that represent
how software is deployed in a data warehouse.

• Type Mapping package - Contains classes and associations that represent
mapping of data types between different systems.

Resource package
• Relational package - Contains classes and associations that represent metadata of

relational data resources.

• Record package - Contains classes and associations that represent metadata of
record data resources.

• Multidimensional package - Contains classes and associations that represent
metadata of multidimensional data resources.

• XML package - Contains classes and associations that represent metadata of
XML data resources.

Analysis package
• Transformation package - Contains classes and associations that represent

metadata of data transformation tools.

• OLAP package - Contains classes and associations that represent metadata of on-
line analytical processing tools.

• Data Mining package - Contains classes and associations that represent metadata
of data mining tools.

• Information Visualization package - Contains classes and associations that
representing metadata of information visualization tools.

• Business Nomenclature package - Contains classes and associations that represent
metadata on business taxonomy and glossary.

Management package
• Warehouse Process package - Contains classes and associations that represent

metadata of warehouse processes.

• Warehouse Operation package - Contains classes and associations that represent
metadata of results of warehouse operations.
3-4 Common Warehouse Metamodel, v1.1 March 2003

3

3.2.1 Modeling Conventions

To promote clearer understanding of the contents of the CWM metamodels, this
specification contains a number of UML representations of portions of the CWM
model packages. The CWM design team has used several conventions in the
construction of CWM metamodel packages and accompanying diagrams. These
conventions are outlined here and apply to the remainder of the specification.

3.2.1.1 Names

The names of UML packages, classifiers, and associations are shown with the initial
letter of their names in upper case; these names must be unique within a package.
Features (attributes and operations), references, and association ends are shown with
the initial letter of their names in lower case; these names must be unique within their
containing classifier or association. Internal upper case letters are used in both types of
names to separate words; intervening spaces, hyphens, or underscores have been
avoided. Double colon delimiters (“::”) are used to connect individual names into
qualified names.

3.2.1.2 Classes

Conforming to standard UML notation, classes are represented in diagrams as
rectangular boxes with three horizontal sections containing the class name, attributes,
and operations, respectively, from the top. CWM itself defines no operations, but
extension packages are permitted to do so.

Classes defined in the current CWM package are shown with all their attributes and
operations visible. Classes imported from UML or other CWM packages show only the
class name and a notation in parentheses identifying the source package. Attributes and
operations of imported classes are not displayed; refer to the package where they are
defined to see their complete definition.

In diagrams, classes defined in any CWM package are shown with lightly shaded
background fill, whether imported or local. Classes imported from a UML package are
shown with no background fill.

3.2.1.3 Attributes

Unless specified otherwise in the specification, attributes have a multiplicity of exactly
one; attribute multiplicity is not shown in diagrams. Attributes are shown
diagrammatically following standard UML notation:

 <<stereotype>> name : type = initvalue.

Attribute stereotypes and initial values are suppressed in diagrams if they are not
defined.
March 2003 OMG-CWM, v1.1: Organization of the CWM 3-5

3

3.2.1.4 Data Types

Metamodel (M2) data types are placed in the most specific package possible and have
a stereotype of <<primitive>>, <<datatype>> or <<enumeration>>.

Enumerations are used infrequently within the CWM. In diagrams, the names of
enumerations appear only as the types of attributes; their individual values are not
displayed. The defined values for an enumeration begin with a lower case letter and
can be found in the text where the enumeration is used as the type of an attribute. For
example, the values of the WeekDay enumeration used as the type of an attribute
named dayOfWeek would appear in the text as follows:

dayOfWeek

Data types required by CWM extension packages, such as the types of a programming
language, are generally represented as instances of the UML DataType class or as
instances of other classes that are subclasses of UML’s Classifier class. Refer to the
Foundation and Data Types chapters for additional details.

3.2.1.5 Associations

All CWM associations are named. However, to improve readability, their names
usually do not appear in diagrams.

Associations declared in UML and other CWM packages can be reused in two ways:
inheritance or derivation. Inherited associations are reuses, without modification, of
associations declared elsewhere in the metamodel. In contrast, derived associations are
“filtered” by OCL statements so that only a subset of the source association’s instances
are available in the derived association.

Inherited associations are never renamed and are added to the diagrams only when they
clarify the relationships between types appearing in the diagram. They can be
identified in diagrams by leading forward slash characters (“/”) on the names of their
association ends. For example, the association between a relational table and its
columns can be drawn between the Table and Column classes with end names of
“/owner” and “/feature,” indicating that the association is an application of the UML
association between the Classifier and Feature classes.

Derived associations are separately named and have a real presence in the metamodel.
They do not have slashes on the names of association ends. One “filtering” OCL
statement on at least one association end is required. (Note, however, that OCL
statements that simply restrict the multiplicity of inherited association ends are not
sufficient to turn them into derived associations.)

The day of the week on which something interesting happened.

type: WeekDay (sunday | monday | tuesday | wednesday |
thursday | friday | saturday)

multiplicity: exactly one
3-6 Common Warehouse Metamodel, v1.1 March 2003

3

Shared (open diamond) aggregation associations have been avoided unless there was
no other way of representing the required semantics. UML association classes have
been avoided because MOF 1.3 does not support them.

3.2.1.6 Association Ends

All association ends are named in CWM. By default, the names of association ends are
the same as the names of the classes to which they connect. Association end names are
defined only within the scope of the association whose ends they name. The names of
association ends appear in the diagrams only when they have some name other than the
default or when their presence is required to clarify the meaning or identity of the
association (as with inherited associations appearing on diagrams).

Generally, all CWM association ends are navigable. In the diagrams, navigable
association ends are marked with an arrowhead when the opposite end is non-navigable
for some specific semantic reason. Such situations are considered rare, occur only
when associations cross package boundaries, and are dependent on the specific
semantics of each situation.

3.2.1.7 References

Because it is based on the MOF, CWM distinguishes references and association ends.
References appear as attributes of classes and indicate related instances of the class
that is the attribute’s stated type. The names of references are preceded by forward
slashes (“/”) in diagrams. Association ends, in contrast, appear as labels on the ends of
lines representing associations.

It is appropriate to think of a reference as being “implemented” by a corresponding
association end of an association between the reference’s class and the class
represented by the reference’s type. Reference names are generally identical to their
corresponding association end’s name. However, reference names may differ from end
names when doing so improves the clarity of the model.

References may be omitted if traversal to the associated class is either not possible, as
is often the case when crossing package boundaries, or not desirable for some other
semantic reason. For example, references should be omitted when the association end
they correspond to resides in another package or when they would interfere with
federation across network metadata repositories (refer to the MOF specification for
details).

Examples of these relationships are illustrated in Figure 3-2.
March 2003 OMG-CWM, v1.1: Organization of the CWM 3-7

3

Figure 3-2 References and Association Ends

In the figure, X.a and Y.b are attributes of type String in classes X and Y, respectively.
X.y is a reference from class X to class Y, and Y.x is a reference from Y to X. Although
CWM does not specify implementation details, this pair of references can be thought
of as being implemented by the XY association, with the XY.x association end
implementing the reference Y.x and XY.y implementing X.y. Consequently, X.y and Y.x
are mutually inverse references. Similarly, X.q is implemented by XtoY.q but has no
inverse reference. Because the inverse reference is not defined, instances of X cannot
be directly accessed from Y. However, related instances of X still can be found by
examining the XtoY association itself. This technique is commonly used when an
association crosses a package boundary, and a reference cannot be added to the class in
the other package (Y, in this case).

If traversal from Y to X were not semantically valid, the XtoY association could be so-
marked with an open arrowhead at the q association end, pointing to Y (but not shown
in the figure).

3.2.1.8 Constraints

Constraints are statements of “facts” assumed to be true always and are core parts of
any expressive metamodel.

CWM constraints are expressed in two ways. Some constraints are represented in the
structure of the model itself. These constraints take the form of multiplicity statements
for attributes and association ends, positioning of containment and inheritance
relationships, and the abstractness of some metaclasses. Other constraints are,
following OMG requirements, expressed as OCL statements. Within the body of a
chapter, these constraints are described in text, and corresponding OCL statements are
referenced by number and enclosed in square brackets. For example, a reference to the
third OCL statement in a chapter would appear as “[C-3].” OCL statements within a
chapter are numbered sequentially from C-1 and collected together in a section at the
end of chapter. Because the Foundation chapter contains an additional layer of
subsections, constraint numbers in it include the subsection number; for example, “[C-
2-1]” is the first constraint in the second subsection of the chapter.

A complete description of CWM includes both structural constraints and their
accompanying OCL statements. Structural constraints are used to capture general
features of CWM and are generally preferred over OCL statements. OCL statements
are used when capturing a constraint structurally would overly complicate or otherwise
obscure the basic intent and understanding of the metamodel. OCL statements are

X

a : S t rin g
/ q : Y
/ y : Y

Y

b : S t rin g
/ x : XX Y

yx

X toY
qp
3-8 Common Warehouse Metamodel, v1.1 March 2003

3

written to capture specific situational constraints (such as uniqueness, filters for
derived associations, and dependencies between attribute values) or to express
relationships between instances that cannot be inferred from the metamodel itself (such
as “or-ed” or “xor-ed” associations and attributes, references to superclasses, or other
related instances, subsets, and implied transitivity).

Following the ground rules of OCL, CWM does not specify the nature of actions taken
when constraints fail. Rather, specification of failure actions and recognition of failure
modes are left to individual implementations of CWM.

Unless otherwise stated for a particular OCL constraint, the evaluation policy for all
CWM constraints is “deferred” meaning that constraint checking should occur at the
end of bulk operations, such as a load, or as part of a model validation operation.

3.2.1.9 Instance Diagrams

The specification contains examples of metamodel usage in a graphical presentation
similar in appearance to UML collaboration diagrams. These instance diagrams should
not, however, be confused with UML collaboration diagrams. Individual instances are
represented as rectangular boxes containing the instance’s name (if any) followed by
the instance’s type. Lines represent links between instance rectangles and are labeled
only when required for clarity. Refer to the specification text for precise definition of
the identity and semantics of individual lines. Attribute values are shown, when
necessary, in separate boxes linked to their owning instance with text in the form
<attribute name> = <value>.

3.2.1.10 Modularity

As much as possible, different modeling areas have been placed in different packages,
and dependencies between packages have been kept to a minimum. This has been done
so that CWM packages can be deployed in various combinations rather than as one
enormous model.

3.3 How the CWM Metamodel is Described

The following topics briefly describe the conventions this specification uses to define
the metamodel elements and their characteristics. This section is extracted from the
MOF specification.

3.3.1 Classes

Classes are the fundamental building blocks of CWM metamodels. A Class can have
three kinds of features: Attributes, References and Operations. They may inherit from
other Classes, and may be related to other Classes by Associations.

The CWM uses the term Class with a meaning that is identical to that of Class in
UML. A Class is an abstract specification of meta-objects that includes their state, their
interfaces, and (at least informally) behavior. A Class specification is sufficient to
March 2003 OMG-CWM, v1.1: How the CWM Metamodel is Described 3-9

3

allow the generation of concrete interfaces with well defined semantics for managing
meta-object state. However, a Class specification does not include any methods to
implement meta-object behavior.

Each Class is defined in terms of its name(s), super-Classes, the Classes whose
instances it can contain, its attributes, its references, its operations, its constraints, and
whether it is abstract or concrete. This specification uses a hybrid textual and tabular
notation to define the important characteristics of each Class. The notation defines
defaults for most characteristics, so that the Class definitions need only explicitly
specify characteristics that are different from the default.

The following text explains the notation used for defining Classes and their
characteristics.

3.3.1.1 Class Heading

Each Class is introduced by a section heading. The heading defines the standard
ModelElement name for the Class. The Class’s name on the heading line can be
followed by the word “abstract” or by a “substitute_name” for some mapping.

3.3.1.2 Superclasses

This heading lists the Classes that generalize the Class being described. Generalization
is another term for inheritance. Multiple inheritance is permitted in CWM.

3.3.1.3 Contained Elements

If presented, the heading lists the Classes whose instances may be contained by an
instance of this container Class. Instances of Classes may act as containers of other
elements by means of composite aggregation associations. Only Classes that are in the
current metamodel package or in other packages upon which it is dependent are listed
in this section. Omission of a Class from this list does not necessarily preclude
instances of that Class from being contained by this container Class.

3.3.1.4 Attributes

This heading lists the Attributes for a Class. Attributes that are inherited from the
super-Classes are not listed. If the “Attributes” heading is absent, the Class has no
Attributes.
3-10 Common Warehouse Metamodel, v1.1 March 2003

3

The following text explains the notation used for defining variable characteristics of
Attributes.

3.3.1.5 References

This heading lists the References for a Class. References that are inherited from the
super-Classes are not listed. If the “References” heading is absent, the Class has no
References.

A Reference connects its containing Class to an AssociationEnd belonging to an
Association that involves the Class. This allows a client to navigate directly from an
instance of the Class to other instance or instances that are related by links in the
Association.

The following text explains the notation used for defining variable characteristics of
References.

type: This entry defines the base type for the Attribute.

multiplicity: This entry defines the “multiplicity” for the Attribute, consisting of its
“lower” and “upper” bounds, and “isOrdered” flag, and an “isUnique”
flag.

The multiplicity for an Attribute is expressed as follows:
(1) The “lower” and “upper” bounds are expressed as “exactly one,”
“zero or one,” “zero or more,” and “one or more.”
(2) If the word “ordered” appears, “isOrdered” should be true. If it is
absent, “isOrdered” should be false.
(3) If the word “unique” appears, “isUnique” should be true. If it is
absent, “isUnique” should be false.

changeable: This optional entry defines the “isChangeable” flag for the Attribute. If
omitted, “isChangeable” is true.

derived from: This optional entry describes the derivation of a derived Attribute. If the
entry is present, the Attribute’s “isDerived” flag will be true. If it is
absent, the flag will be false.

scope: This optional entry defines the “scope” of an Attribute as either
“instance_level” or “class_level.” If the entry is absent, the Attribute’s
“scope” is “instance_level.”

class: This entry defines the base type of the Reference. Note the “type”
of a Reference must be the same as the “type” of the referenced
AssociationEnd.

defined by: This entry defines the Association and AssociationEnd that the
Reference is linked to.
March 2003 OMG-CWM, v1.1: How the CWM Metamodel is Described 3-11

3

3.3.1.6 Operations

This heading lists the Operations for a Class. Operations that are inherited from the
super-Classes are not listed. If the “Operations” heading is absent, the Class has no
Operations.

The following text explains the notation used for defining variable characteristics of
Operations.

3.3.1.7 Constraints

This heading lists the Constraints that are attached to this Class. If the “Constraints”
heading is absent, the Class has no Constraints.

3.3.2 Associations

Associations describe relationships between instances of Classes. The properties of an
Association rests mostly in its two AssociationEnds.

The following text explains the notation used for defining Associations and their
characteristics.

multiplicity: This entry defines the “multiplicity” for the Reference. These are
defined in the same way as Attribute “multiplicity”
characteristics, except that “unique” is omitted. Note the
“multiplicity” settings for an AssociationEnd and its
corresponding Reference(s) must be the same.

changeable: This optional entry defines the “isChangeable” flag for the
Reference. If omitted, “isChangeable” is true.

inverse: This optional entry defines the “inverse” Reference for this
Reference. If this entry is absent, the Reference does not have an
inverse Reference.

return type: This optional entry defines the “type” and “multiplicity” of the
Operations’s return Parameter. If this entry is absent, the Operation
does not have a return Parameter.

isQuery: This optional entry defines the Operation’s “isQuery” flag. If it is
absent, “isQuery” has the value false.

scope: This optional entry defines the Operation’s “scope.” If it is absent,
the Operation has a “scope” of “instance_level.”

parameters: This entry defines the Operation’s non-return Parameter list in the
order that they appear in the Operation’s signature. The “name,”
“direction,” “type,” and “multiplicity” are defined for each
Parameter. If the entry simply says “none,” the Operation has no non-
return Parameters.

exceptions: This optional entry defines the list of Exceptions that this Operation
may raise in the order that they appear in the Operation’s signature.
If it is absent, the Operation raises no Exception.
3-12 Common Warehouse Metamodel, v1.1 March 2003

3

3.3.2.1 Association Heading

Each Association is introduced by a section heading. The heading defines the standard
ModelElement name for the Association. The Association’s name on the heading line
can be followed by the word “derived,” and “protected” or “private.”

3.3.2.2 Ends

This heading defines the two AssociationEnds for an Association. They are defined by
giving their names and defining the remaining characteristics in tabular form.

The following text explains the notation used for defining variable characteristics of
AssociationEnds.

3.3.2.3 Derivation

This heading defines how a derived Association should be computed. If the
“Derivation” heading is absent, the Association is not derived.

class: This entry specifies the Class whose instances are linked at this end
of the Association.

multiplicity: This entry defines the “multiplicity” for the AssociationEnd. These
are defined in the same way as Attribute “multiplicity”
characteristics, except that “unique” is omitted. Note the
“multiplicity” settings for an AssociationEnd and its corresponding
Reference(s) must be the same.

aggregation: This optional entry defines the AssociationEnd’s “aggregation”
attribute as one of “composite,” “shared,” or “none.” If the entry is
absent, the AssociationEnd’s “aggregation” attribute takes the value
“none.”
March 2003 OMG-CWM, v1.1: How the CWM Metamodel is Described 3-13

3

3-14 Common Warehouse Metamodel, v1.1 March 2003

ObjectModel 4
Contents

This chapter contains the following topics.

4.1 Overview

The CWM ObjectModel provides basic constructs for creating and describing
metamodel classes in all other CWM packages. The ObjectModel is a subset of UML
that includes only those features that are needed for creating and describing the CWM.
Defining a subset of UML containing only those things needed by CWM allows the
CWM to leverage UML’s concepts and modeling power without burdening
implementations with the full breadth of UML’s capabilities.

The specification defined in this chapter, where applicable, is based on and taken from
the UML specification.

Topic Page

“Overview” 4-1

“Organization of the ObjectModel Package” 4-2

“Core Metamodel” 4-3

“Behavioral Metamodel” 4-34

“Relationships Metamodel” 4-47

“Instance Metamodel” 4-56
March 2003 Common Warehouse Metamodel, v1.1 4-1

4

4.2 Organization of the ObjectModel Package

The CWM uses packages to control complexity and create groupings of logically
interrelated classes. The ObjectModel is a collection of packages that are described
together because they all provide basic metamodel constructs to other CWM packages.
A subsection of this chapter is devoted to each of the ObjectModel packages. Because
it relies on no other package, the Core package is described first, followed by the
Behavioral, Instance, and Relationships packages. Each of the subsequent packages
depends only on the Core package; there are no other dependencies between the
ObjectModel packages. The relationship between the ObjectModel and each of its
constituent packages is shown diagrammatically in Figure 4-1.

Organizing the ObjectModel in this fashion allows the individual metamodel packages
to be understood and used independently of each other without sacrificing their
common purpose. For example, the CWM Record metamodel depends only on the
ObjectModel’s Core and Instance packages for its definition; other ObjectModel
packages are not needed for defining records.

Figure 4-1 ObjectModel metamodel packages

O bjec tM odel
(from C W M)

B ehavio ra l
< < m e ta m o d e l> >

Ins tance
< < m e t am o d e l> >

Re lat ions hips
< < m e ta m o d e l> >

C ore
< < m e ta m o d e l> >
4-2 Common Warehouse Metamodel, v1.1 March 2003

4

4.3 Core Metamodel

The Core metamodel depends on no other packages.

The ObjectModel Core metamodel contains basic metamodel classes and associations
used by all other CWM metamodel packages, including other ObjectModel packages.
The classes and associations that make up the Core metamodel are shown in Figure
4-2. Figure 4-3 on page 4-4 contains supporting classes within the Core metamodel
that are generally used as the types of attributes.

Figure 4-2 Core metamodel

Element

Class DataType

Feature
ownerScope : ScopeKind
/ owner : Classif ier

Classifier
isAbstract : Boolean
/ f eature : Feature

*

0..1

*

{ordered}

owner

0..1
StructuralFeature

changeability : ChangeableKind
multiplicit y : Mu ltipli cit y
ordering : OrderingKind
targetSc ope : ScopeKind
/ type : Classif ier

1*

type

1*

ModelSubsy stem

Namespace

/ ownedElement : ModelElement

Package

/ importedElement : ModelElement

Dependency

kind : String
/ client : ModelElement
/ supplier : ModelElement

Attribute

initialValue : Expression

Constraint

body : BooleanExpression
/ constrainedElement : ModelElement

Stereotype

baseClass : Name
/ extendedElement : ModelElement
/ requiredTag : TaggedValue
/ stereoty peConstraint : Constraint

0..1

*

constrainedStereoty pe 0..1

stereoty peConstraint *

ModelElement
name : Name
v isibility : Visibility Kind
/ clientDependency : Dependency
/ constraint : Constraint
/ importer : Package
/ namespace : Namespace
/ taggedValue : TaggedValue

0..1

*

0..1

ownedElement

*

*

*

importer *

importedElement

*

*

*

*

constrain edEl ement

*{ordered}

*

1..*

clientDependency

*

client 1..*

*

1..*

supplierDependency

*

supplier 1..*

0..1

*

0..1

extendedElement *

TaggedValue

tag : Name
v alue : String
/ modelElement : ModelElement
/ stereoty pe : Stereoty pe

0..1

*

0..1

requiredTag

*
*

0..1

*

0..1
March 2003 OMG-CWM, v1.1: Core Metamodel 4-3

4

Figure 4-3 Core metamodel supporting classes

4.3.1 Core Data Types

The ObjectModel metamodel contains the data types, listed below in alphabetical
order. Each of these data types is an instance of the DataType class.

Some of these data types have default values. These default values only apply for
mandatory attributes or parameters of the relevant data type where an explicit value is
not supplied.

Any

The Any data type is used to indicate that an attribute or parameter may take values
from any of the available data types. In CWM, the set of data types an Any attribute or
parameter may assume includes the data types and enumerations described in this
chapter plus any available instances of the Classifier class.

There is no default value for data type Any.

Boolean

Boolean defines an enumeration that denotes a logical condition. Its enumeration
literals are:

• true - The Boolean condition is satisfied.

• false - The Boolean condition is not satisfied.

The default for data type Boolean is false.

Float

The Float data type is used to indicate that an attribute or parameter may take on
floating point numeric values. The number of significant digits and other
representational details are implementation defined.

The default for the Float data type is the value 0.0.

Element

Expression
body : String
language : Name

BooleanExpression ProcedureExpression

MultiplicityRange
lower : Integer
upper : UnlimitedInteger
/ multiplicity : Multiplicity

Multiplicity
/ range : MultiplicityRange

1..*1

range

1..*1
4-4 Common Warehouse Metamodel, v1.1 March 2003

4

Integer

Integer represents the predefined type of integers. An instance of Integer is an element
in the (infinite) set of integers (…-2, -1, 0, 1, 2…).

The default for Integer is 0.

Name

Name defines a token that is used for naming ModelElements and similar usages. Each
Name has a corresponding String representation. For purposes of exchange a name
should be represented as a String.

The default for the Name data type is an empty string.

String

String defines a piece of text. Strings do not normally have a defined length; rather,
they are considered to be arbitrarily long (practical limits on the length of Strings exist,
but are implementation dependent). When String is used as the type of an Attribute,
string length sometimes can be specified (see the Relational and Record packages for
examples).

The default for the String data type is an empty string.

Time

Time defines a statement that will define the time of occurrence of an event. The
specific format of time expressions is not specified here and is subject to
implementation considerations.

There is no default for the Time data type.

UnlimitedInteger

UnlimitedInteger defines a data type whose range is the nonnegative integers
augmented by the special value “unlimited.” It is used for the upper bound of
multiplicities.

The default for an UnlimitedInteger is the special value “unlimited.”

The ObjectModel metamodel contains the enumerated data types shown below in
alphabetical order. Enumeration literals defined for each enumerated type are described
as well.

ChangeableKind

In the metamodel ChangeableKind defines an enumeration that denotes how an
attribute link may be modified. Its values are:

• ck_changeable - No restrictions on modification.

• ck_frozen - The value may not be changed from the source end after the creation
and initialization of the source object. Operations on the other end may change a
value.
March 2003 OMG-CWM, v1.1: Core Metamodel 4-5

4

• ck_addOnly - If the multiplicity is not fixed, values may be added at any time
from the source object, but once created a value may not be removed from the
source end. Operations on the other end may change a value.

The default value is ck_changeable.

OrderingKind

In the metamodel OrderingKind defines an enumeration that specifies how the
elements of a set are arranged. Used in conjunction with elements that have a
multiplicity in cases when the multiplicity value is greater than one. The ordering must
be determined and maintained by operations that modify the set. Its values are:

• ok_unordered - The elements of the set have no inherent ordering.

• ok_ordered - The elements of the set have a sequential ordering.

The default value is ok_unordered.

ScopeKind

In the metamodel ScopeKind defines an enumeration that denotes whether a feature
belongs to individual instances or an entire classifier. Its values are:

• sk_instance - The feature pertains to instances of a Classifier. For example, it is a
distinct attribute in each instance or an operation that works on an instance.

• sk_classifier - The feature pertains to an entire Classifier. For example, it is an
attribute shared by the entire Classifier or an operation that works on the
Classifier, such as a creation operation.

The default value is sk_instance.

VisibilityKind

In the metamodel VisibilityKind defines an enumeration that denotes how the element
to which it refers is seen outside the enclosing name space. Its values are:

• vk_public - Other elements may see and use the target element.

• vk_protected - Descendants of the source element may see and use the target
element.

• vk_private - Only the source element may see and use the target element.

• vk_package - Elements declared in the same package as the target element may
see and use the target element.

• vk_notapplicable - May be used where namespaces do not support the concept of
visibility.

The default value is vk_public.

4.3.2 Core Classes

4.3.2.1 Attribute

An Attribute describes a named slot within a Classifier that may hold a value.
4-6 Common Warehouse Metamodel, v1.1 March 2003

4

Superclasses

StructuralFeature

Attributes

initialValue

4.3.2.2 BooleanExpression

In the metamodel BooleanExpression defines a statement that will evaluate to an
instance of Boolean when it is evaluated.

Superclasses

Expression

4.3.2.3 Class

A class is a description of a set of objects that share the same attributes, operations,
methods, relationships, and semantics. A class may use a set of interfaces to specify
collections of operations it provides to its environment. In the metamodel, a Class
describes a set of objects sharing a collection of Features that are common to the set of
objects.

The purpose of a Class is to declare a collection of Features that fully describe the
structure and behavior of objects. Some Classes may not be directly instantiated. These
Classes are said to be abstract and exist only for other Classes to inherit and reuse the
Features declared by them. No object may be a direct instance of an abstract Class,
although an object may be an indirect instance of one through a subclass that is non-
abstract.

A Class acts as the namespace for various kinds of contained elements defined within
its scope, including classes, interfaces, and associations (note that this is purely a
scoping construction and does not imply anything about aggregation). The contained
classes can be used as ordinary classes in the container class. If a class inherits another
class, the contents of the ancestor are available to its descendents if the visibility of an
element is public or protected. If the visibility is private, then the element is not visible
and therefore not available in the descendant.

An Expression specifying the value of the attribute upon initialization. It is meant to be
evaluated at the time the object is initialized. (Note that an explicit constructor may supersede
an initial value.)

type: Expression

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Core Metamodel 4-7

4

Superclasses

Classifier

4.3.2.4 Classifier Abstract

A classifier is an element that describes structural and behavioral features; it comes in
several specific forms, including class, data type, interface, component, and others that
are defined in other metamodel packages. Classifier is often used as a type.

In the metamodel a Classifier may declare a collection of Features, such as Attributes,
Operations, and Methods. It has a name, which is unique in the Namespace enclosing
the Classifier. Classifier is an abstract metaclass.

Classifier is a child of Namespace. As a Namespace, a Classifier may declare other
Classifiers nested in its scope. Nested Classifiers may be accessed by other Classifiers
only if the nested Classifiers have adequate visibility. There are no data value or state
consequences of nested Classifiers; that is, it is not an aggregation or composition.

Superclasses

Namespace

Contained Elements

Feature

isAbstract

References

feature

An abstract Classifier is not instantiable.

type: Boolean

multiplicity: exactly one

An ordered list of Features owned by the Classifier.

class: Feature

defined by: ClassifierFeature::feature

multiplicity: zero or more; ordered

inverse: Feature::owner
4-8 Common Warehouse Metamodel, v1.1 March 2003

4

4.3.2.5 Constraint

A constraint is a semantic condition or restriction expressed in text.

In the metamodel a Constraint is a BooleanExpression on an associated
ModelElement(s) that must be true for the model to be well formed. This restriction
can be stated in natural language, or in different kinds of languages with well defined
semantics. Certain Constraints are predefined, others may be user defined. Note that a
Constraint is an assertion, not an executable mechanism.

The specification is written as an expression in a designated constraint language. The
language can be specially designed for writing constraints (such as OCL), a
programming language, mathematical notation, or natural language. If constraints are
to be enforced by a model editor tool, then the tool must understand the syntax and
semantics of the constraint language. Because the choice of language is arbitrary,
constraints can be used as an extension mechanism.

The constraint concept allows new semantics to be specified linguistically for a model
element. In the metamodel a Constraint directly attached to a ModelElement describes
semantic restrictions that this ModelElement must obey.

Superclasses

ModelElement

Attributes

body

References

constrainedElement

A BooleanExpression that must be true when evaluated for an instance of a system to be well
formed. A boolean expression defining the constraint. Expressions are written as strings in a
designated language. For the model to be well formed, the expression must always yield a true
value when evaluated for instances of the constrained elements at any time when the system is
stable; that is, not during the execution of an atomic operation.

type: BooleanExpression

multiplicity: exactly one

A ModelElement or list of ModelElements affected by the Constraint.

class: ModelElement

defined by: ElementConstraint::constrainedElement

multiplicity: zero or more

inverse: ModelElement::constraint
March 2003 OMG-CWM, v1.1: Core Metamodel 4-9

4

Constraints

A Constraint cannot be applied to itself. [C-3-1]

4.3.2.6 DataType

A data type is a type whose values have no identity; that is, they are pure values. Data
types include primitive built-in types (such as integer and string) as well as definable
enumeration types.

In the metamodel a DataType defines a special kind of Classifier in which operations
are all pure functions; that is, they can return data values but they cannot change data
values, because they have no identity. For example, an “add” operation on a number
with another number as an argument yields a third number as a result; the target and
argument are unchanged.

A DataType is a special kind of Classifier whose instances are primitive values, not
objects. For example, integers and strings are usually treated as primitive values. A
primitive value does not have an identity, so two occurrences of the same value cannot
be differentiated. Usually, DataTypes are used for specification of the type of an
attribute or parameter.

Superclasses

Classifier

Constraints

A DataType cannot contain any other ModelElements. [C-3-2]

4.3.2.7 Dependency

A dependency states that the implementation or functioning of one or more elements
requires the presence of one or more other elements.

In the metamodel a Dependency is a directed relationship from a client (or clients) to a
supplier (or suppliers) stating that the client is dependent on the supplier; that is, the
client element requires the presence and knowledge of the supplier element.

A dependency specifies that the semantics of a set of model elements requires the
presence of another set of model elements. This implies that if the source is somehow
modified, the dependents probably must be modified. The reason for the dependency
can be specified in several different ways (for example, using natural language or an
algorithm) but is often implicit.

Whenever the supplier element of a dependency changes, the client element is
potentially invalidated. After such invalidation, a check should be performed followed
by possible changes to the derived client element. Such a check should be performed
after which action can be taken to change the derived element to validate it again.
4-10 Common Warehouse Metamodel, v1.1 March 2003

4

Superclasses

ModelElement

Attributes

kind

References

client

supplier

4.3.2.8 Element Abstract

An element is an atomic constituent of a model. In the metamodel, an Element is the
top metaclass in the metaclass hierarchy. Element is an abstract metaclass.

Contains a description of the nature of the dependency relationship between the client and
supplier. The list of possible values is open-ended. However, CWM predefines the values
“Abstraction” and “Usage.”

type: String

multiplicity: zero or one

The element that is affected by the supplier element. In some cases the direction is
unimportant and serves only to distinguish the two elements.

class: ModelElement

defined by: DependencyClient::client

multiplicity: one or more

inverse: ModelElement::clientDependency

Inverse of client. Designates the element that is unaffected by a change. In a two-way
relationship this would be the more general element. In an undirected situation the choice of
client and supplier may be irrelevant.

class: ModelElement

defined by: DependencySupplier::supplier

multiplicity: one or more

inverse: ModelElement::supplierDependency
March 2003 OMG-CWM, v1.1: Core Metamodel 4-11

4

4.3.2.9 Expression

In the metamodel an Expression defines a statement that will evaluate to a (possibly
empty) set of instances when executed in a context. An Expression does not modify the
environment in which it is evaluated. An expression contains an expression string and
the name of an interpretation language with which to evaluate the string.

Superclasses

Element

Attributes

body

language

4.3.2.10 Feature Abstract

A feature is a property, like attribute or operation that is encapsulated within a
Classifier.

In the metamodel a Feature declares a structural or behavioral characteristic of an
instance of a Classifier or of the Classifier itself. Feature is an abstract metaclass.

Superclasses

ModelElement

The text of the expression expressed in the given language.

type: String

multiplicity: exactly one

Names the language in which the expression body is represented. The interpretation of the
expression depends on the language. If the language name is omitted, no interpretation for the
expression can be assumed. In general, a language name should be spelled and capitalized
exactly as it appears in the document defining the language. For example, use COBOL, not
Cobol; use Ada, not ADA; use PostScript, not Postscript.

type: Name

multiplicity: zero or one
4-12 Common Warehouse Metamodel, v1.1 March 2003

4

Attributes

ownerScope

References

owner

4.3.2.11 Model

A model captures a view of a physical system. It is an abstraction of the physical
system, with a certain purpose. The model completely describes those aspects of the
physical system that are relevant to the purpose of the model, at the appropriate level
of detail.

In the metamodel Model is a subclass of Package. It contains a containment hierarchy
of ModelElements that together describe the physical system. A Model also contains a
set of ModelElements that represents the environment of the system.

Different Models can be defined for the same physical system, where each model
represents a view of the physical system defined by its purpose and abstraction level;
for example, an analysis model, a design model, an implementation model. Typically
different models are complementary and defined from the perspectives (viewpoints) of
different system stakeholders.

Superclasses

Package

4.3.2.12 ModelElement Abstract

A model element is an element that is an abstraction drawn from the system being
modeled.

Specifies whether the Feature appears in every instance of the Classifier or whether it appears
only once for the entire Classifier.

type: ScopeKind

multiplicity: zero or one

The Classifier declaring the Feature.

class: Classifier

defined by: ClassifierFeature::owner

multiplicity: zero or more

inverse: Classifier::feature
March 2003 OMG-CWM, v1.1: Core Metamodel 4-13

4

In the metamodel a ModelElement is a named entity in a Model. It is the base for all
modeling metaclasses in the CWM. All other modeling metaclasses are either direct or
indirect subclasses of ModelElement.

Superclasses

Element

Contained Elements

TaggedValue

Attributes

name

visibility

References

clientDependency

constraint

An identifier for the ModelElement within its containing Namespace.

type: Name

multiplicity: exactly one

Specifies extent of the visibility of the ModelElement within its owning Namespace.

type: VisibilityKind

multiplicity: exactly one

Inverse of client. Designates a set of Dependency in which the ModelElement is a client.

class: Dependency

defined by: DependencyClient::clientDependency

multiplicity: zero or more

inverse: Dependency::client

A set of Constraints affecting the element. A constraint that must be satisfied by the model
element. A model element may have a set of constraints. The constraint is to be evaluated
when the system is stable; that is, not in the middle of an atomic operation.

class: Constraint
4-14 Common Warehouse Metamodel, v1.1 March 2003

4

importer

namespace

taggedValue

Constraints

Tags associated with a model element (directly via a property list or indirectly via a
stereotype) must not clash with any meta attributes associated with the model element.
[C-3-3]

A model element must have at most one tagged value with a given tag name. [C-3-4]

A stereotype cannot extend itself. [C-3-5]

defined by: ElementConstraint

multiplicity: zero or more

inverse: Constraint::constrainedElement

References the set of Package instances that import the ModelElement.

class: Package

defined by: ImportedElements::importer

multiplicity: zero or more

inverse: Package::importedElement

Designates the Namespace that contains the ModelElement. Every ModelElement except a
root element must belong to exactly one Namespace or else be a composite part of another
ModelElement (which is a kind of virtual namespace). The pathname of Namespace or
ModelElement names starting from the root package provides a unique designation for every
ModelElement. The association attribute visibility specifies the visibility of the element
outside its namespace (see ElementOwnership).

class: Namespace

defined by: ElementOwnership::namespace

multiplicity: zero or one

inverse: Namespace::ownedElement

References the set of TaggedValue instances that extend the ModelElement.

class: TaggedValue

defined by: TaggedElement::taggedValue

multiplicity: zero or more

inverse: TaggedValue::modelElement
March 2003 OMG-CWM, v1.1: Core Metamodel 4-15

4

4.3.2.13 Multiplicity

In the metamodel a Multiplicity defines a non-empty set of non-negative integers. A set
that only contains zero ({0}) is not considered a valid Multiplicity. Every Multiplicity
has at least one corresponding String representation.

Superclasses

Element

Contained Elements

MultiplicityRange

References

range

4.3.2.14 MultiplicityRange

In the metamodel a MultiplicityRange defines a range of integers. The upper bound of
the range cannot be below the lower bound. The lower bound must be a nonnegative
integer. The upper bound must be a nonnegative integer or the special value unlimited,
which indicates there is no upper bound on the range.

Superclasses

Element

Attributes

lower

References the set of MultiplicityRange instances that describe the cardinality of the
Multiplicity instance.

class: MultiplicityRange

defined by: RangeMultiplicity

multiplicity: one or more

inverse: MultiplicityRange::multiplicity

Specifies the positive integer lower bound of the range.

type: Integer

multiplicity: exactly one
4-16 Common Warehouse Metamodel, v1.1 March 2003

4

upper

References

multiplicity

4.3.2.15 Namespace Abstract

A namespace is a part of a model that contains a set of ModelElements each of whose
names designates a unique element within the namespace.

In the metamodel, a Namespace is a ModelElement that can own other
ModelElements, such as Classifiers. The name of each owned ModelElement must be
unique within the Namespace. Moreover, each contained ModelElement is owned by at
most one Namespace. The concrete subclasses of Namespace may have additional
constraints on which kind of elements may be contained.

Namespace is an abstract metaclass.

Note that explicit parts of a model element, such as the features of a Classifier, are not
modeled as owned elements in a namespace. A namespace is used for unstructured
contents such as the contents of a package, or a class declared inside the scope of
another class.

Superclasses

ModelElement

Contained Elements

ModelElement

Specifies the upper bound of the range, which is a positive integer or the special value
’unlimited’ indicating no upper bound is defined.

type: UnlimitedInteger

multiplicity: exactly one

References the Multiplicity instance that owns the MultiplicityRange.

class: Multiplicity

defined by: RangeMultiplicity::multiplicity

multiplicity: exactly one

inverse: Multiplicity::range
March 2003 OMG-CWM, v1.1: Core Metamodel 4-17

4

References

ownedElement

4.3.2.16 Package

A package is a grouping of model elements.

In the metamodel Package is a subclass of Namespace. A Package contains
ModelElements such as Packages and Classifiers. A Package may also contain
Constraints and Dependencies between ModelElements of the Package.

The purpose of the package construct is to provide a general grouping mechanism. In
fact, its only semantics is to define a namespace for its contents. The package construct
can be used for organizing elements for any purpose; the criteria to use for grouping
elements together into one package are not defined.

A package owns a set of model elements, with the implication that if the package is
removed from the model, so are the elements owned by the package. Elements with
names, such as classifiers, that are owned by the same package must have unique
names within the package, although elements in different packages may have the same
name.

There may be relationships between elements contained in the same package, and
between an element in one package and an element in a surrounding package at any
level. In other words, elements “see” all the way out through nested levels of packages.
Elements in peer packages, however, are encapsulated and are not a priori visible to
each other. The same goes for elements in contained packages; that is, packages do not
see “inwards.”

Elements owned by a Package can be made available to other Packages by importing
them. Although any ModelElement may be imported by a Package, imported
ModelElements are typically other Packages. When an element is imported by a
package it extends the namespace of that package. Thus the elements available in a
Package consists of its owned and imported ModelElements.

 Superclasses

Namespace

A set of ModelElements owned by the Namespace. The ModelElement’s visibility attribute
states whether the element is visible outside the namespace.

class: ModelElement

defined by: ElementOwnership::ownedElement

multiplicity: zero or more

inverse: ModelElement::namespace
4-18 Common Warehouse Metamodel, v1.1 March 2003

4

References

importedElement

4.3.2.17 ProcedureExpression

In the metamodel ProcedureExpression defines a statement that will result in a change
to the values of its environment when it is evaluated.

Superclasses

Expression

4.3.2.18 Stereotype

The stereotype concept provides a way of branding (classifying) model elements so
that they behave as if they were instances of new virtual metamodel constructs. These
model elements have the same structure (attributes, associations, operations) as similar
non-stereotyped model elements of the same kind. The stereotype may specify
additional constraints and required tagged values that apply to model elements. In
addition, a stereotype may be used to indicate a difference in meaning or usage
between two model elements with identical structure.

In the metamodel the Stereotype metaclass is a subclass of ModelElement. Tagged
Values and Constraints attached to a Stereotype apply to all ModelElements branded
by that Stereotype.

A stereotype keeps track of the base class to which it may be applied. The base class
is a class in the metamodel (not a user-level modeling element) such as Class,
Association, etc. If a model element is branded by an attached stereotype, then the
CWM base class of the model element must be the base class specified by the
stereotype or one of the subclasses of that base class.

Superclasses

ModelElement

The namespace defined by the package is extended by model elements imported from other
packages.

class: ModelElement

defined by: ImportedElements::importedElement

multiplicity: zero or more

inverse: ModelElement::importer
March 2003 OMG-CWM, v1.1: Core Metamodel 4-19

4

Contained Elements

Constraint

TaggedValue

Attributes

baseClass

References

extendedElement

requiredTag

stereotypeConstraint

Specifies the name of a modeling element to which the stereotype applies, such as Class,
Association, Constraint, etc. This is the name of a metaclass; that is, a class from the
metamodel itself rather than a user model class.

type: Name

multiplicity: exactly one

Designates the model elements affected by the stereotype. Each one must be a model element
of the kind specified by the baseClass attribute.

class: ModelElement

defined by: StereotypedElement::extendedElement

multiplicity: zero or more

inverse: ModelElement::stereotype

Specifies a set of TaggedValues, each of which specifies a tag that an element classified by the
Stereotype is required to have. The value part indicates the default value for the tagged value,
that is, the tagged value that an element will be presumed to have if it is not overridden by an
explicit tagged value on the element bearing the stereotype. If the value is unspecified, then
the element must explicitly specify a tagged value with the given tag.

class: TaggedValue

defined by: StereotypeTaggedValues::requiredTag

multiplicity: zero or more

inverse: TaggedValue::stereotype

Designates constraints that apply to all model elements branded by this stereotype. These
constraints are defined in the scope of the full metamodel.

class: Constraint
4-20 Common Warehouse Metamodel, v1.1 March 2003

4

Constraints

The base class name must be provided. [C-3-6]

4.3.2.19 StructuralFeature Abstract

A structural feature refers to a static feature of a model element.

In the metamodel, a StructuralFeature declares a structural aspect of a Classifier that is
typed, such as an attribute. For example, it specifies the multiplicity and changeability
of the StructuralFeature. StructuralFeature is an abstract metaclass.

Superclasses

Feature

Attributes

changeability

multiplicity

ordering

defined by: StereotypeConstraints::stereotypeConstraint

multiplicity: zero or more

inverse: Constraint::constrainedStereotype

Specifies whether the value may be modified after the object is created.

type: ChangeabilityKind

multiplicity: exactly one

The possible number of data values for the feature that may be held by an instance. The
cardinality of the set of values is an implicit part of the feature. In the common case in which
the multiplicity is 1..1, then the feature is a scalar; that is, it holds exactly one value.

type: Multiplicity

multiplicity: zero or one

Specifies whether the set of instances is ordered. The ordering must be determined and
maintained by Operations that add values to the feature. This property is only relevant if the
multiplicity is greater than one.

type: OrderingKind

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Core Metamodel 4-21

4

targetScope

References

type

4.3.2.20 Subsystem

A subsystem is a grouping of model elements that represents a behavioral unit in a
physical system. A subsystem offers interfaces and has operations.

In the metamodel, Subsystem is a subclass of both Package and Classifier. As such it
may have a set of Features.

The purpose of the subsystem construct is to provide a grouping mechanism for
specifying a behavioral unit of a physical system. Apart from defining a namespace for
its contents, a subsystem serves as a specification unit for the behavior of its contained
model elements.

The contents of a subsystem is defined in the same way as for a package, thus it
consists of owned elements and imported elements, with unique names within the
subsystem.

Superclasses

Classifier

Package

4.3.2.21 TaggedValue

A tagged value allows information to be attached to any model element in the form of
a “tagged value” pair; that is, name = value. The interpretation of tagged value
semantics is intentionally beyond the scope of CWM. It must be determined by user or
tool conventions. It is expected that tools will define tags to supply information needed
for their operations beyond the basic semantics of CWM. Such information could

Specifies whether the targets are ordinary Instances or are Classifiers.

type: ScopeKind

multiplicity: zero or one

Designates the Classifier whose instances are values of the feature. It must be a Class,
DataType, or Interface.

class: Classifier

defined by: StructuralFeatureType::type

multiplicity: exactly one
4-22 Common Warehouse Metamodel, v1.1 March 2003

4

include code generation options, model management information, or user-specified
semantics.

Even though TaggedValues are a simple and straightforward extension technique, their
use restricts semantic interchange of metadata to only those tools that share a common
understanding of the specific tagged value names.

Superclasses

Element

Attributes

tag

value

References

modelElement

stereotype

Contains the name of the TaggedValue. This name determines the semantics that are
applicable to the contents of the value attribute.

type: Name

multiplicity: exactly one

Contains the current value of the TaggedValue.

type: String

multiplicity: exactly one

References the ModelElement to which the TaggedValue pertains.

class: ModelElement

defined by: TaggedElement::modelElement

multiplicity: zero or one

inverse: ModelElement::taggedValue

References a Stereotype that uses the TaggedValue.

class: Stereotype

defined by: StereotypeTaggedValues

multiplicity: zero or one

inverse: Stereotype::requiredTag
March 2003 OMG-CWM, v1.1: Core Metamodel 4-23

4

4.3.3 Core Associations

4.3.3.1 ClassifierFeature Protected

The ClassifierFeature association provides a composite aggregation containment
relationship between Classifiers and the Features they own. The feature end of the
association is ordered allowing preservation of the ordering of Features within their
owning Classifier. A Feature can be owned by at most one Classifier. The optional
character of ownership is intended as a convenience to tools, allowing them to create
Features prior to linking them to their owning Classifier.

Ends

owner

feature

4.3.3.2 DependencyClient Protected

The DependencyClient association links Dependency instances with ModelElements
that act as clients in the represented dependency relationship.

Ends

client

Identifies the Classifier instance that owns the Feature.

class: Classifier

multiplicity: zero or one

aggregation: composite

Identifies the Features owned by a Classifier instance and provides their ordering.

class: Feature

multiplicity: zero or more; ordered

Identifies the ModelElements that are clients of the Dependency instance.

class: ModelElement

multiplicity: one or more
4-24 Common Warehouse Metamodel, v1.1 March 2003

4

clientDependency

4.3.3.3 DependencySupplier

The DependencySupplier association links Dependency instances with ModelElements
that act as suppliers in the represented dependency relationship.

Ends

supplier

supplierDependency

4.3.3.4 ElementConstraint Protected

The ElementConstraint association provides linkages between ModelElements and the
Constraint instances that constrain their state. Note that a Constraint instance may not
simultaneously participate in both the ElementConstraint and the StereotypeConstraint
associations.

Ends

constrainedElement

Identifies Dependency instances in which the ModelElement acts as a client.

class: Dependency

multiplicity: zero or more

Identifies the ModelElements that are suppliers of the Dependency instance.

class: ModelElement

multiplicity: one or more

The DependencySupplier association links Dependency instances with ModelElements that
act as suppliers in the represented dependency relationship.

class: Dependency

multiplicity: zero or more

Identifies the ModelElements whose state is constrained by the Constraint instance.

class: ModelElement

multiplicity: zero or more; ordered
March 2003 OMG-CWM, v1.1: Core Metamodel 4-25

4

constraint

4.3.3.5 ElementOwnership Protected

The ElementOwnership association identifies ModelElements owned by Namespaces.
ModelElements may be owned by at most one Namespace. Refer to the above
discussion of the Namespace class for more information on the nature of the ownership
relationship between Namespaces and ModelElements.

Ends

ownedElement

namespace

4.3.3.6 ImportedElements Protected

The ImportedElements association identifies ModelElements that a Package instance
imports from other Namespaces. Although any ModelElement may be imported by a
Package, imported ModelElements are typically other Packages or aggregate
Classifiers, such as Class instances.

Ends

importedElement

Identifies the Constraint instances that restrict the possible states that a ModelElement may
take.

class: Constraint

multiplicity: zero or more

Identifies the ModelElements owned by a Namespace.

class: ModelElement

multiplicity: zero or more

Identifies the Namespace, if any, that owns the ModelElement.

class: Namespace

multiplicity: zero or one

aggregation: composite

Identifies ModelElements imported by a Package.

class: ModelElement

multiplicity: zero or more
4-26 Common Warehouse Metamodel, v1.1 March 2003

4

importer

4.3.3.7 RangeMultiplicity Protected

The RangeMultiplicity association identifies the set of MultiplicityRange instances that
specify the lower and upper bounds of individual cardinality ranges defined by a
Multiplicity instance. A MultiplicityRange instance must be owned by a single
Multiplicity instance.

Ends

multiplicity

range

4.3.3.8 StereotypeConstraints

The StereotypeConstraints association links Stereotypes with Constraints that further
restrict the states that a stereotyped ModelElement may assume. A Constraint instance
may not simultaneously participate in both the StereotypeContraints association and
the ElementConstraint association.

Ends

stereotypeConstraint

Identifies the Packages that import a ModelElement.

class: Package

multiplicity: zero or more

Identifies the Multiplicity instance that owns the MultiplicityRange.

class: Multiplicity

multiplicity: exactly one

aggregation: composite

Identifies the set of MultiplicityRange instances owned by a Multiplicity.

class: MultiplicityRange

multiplicity: one or more

Identifies the set of Constraint instances defined for the Stereotype instance.

class: Constraint

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Core Metamodel 4-27

4

constrainedStereotype

4.3.3.9 StereotypedElement

The StereotypedElement association links Stereotypes with the ModelElements to
which they apply.

Ends

extendedElement

stereotype

4.3.3.10 StereotypeTaggedValues Protected

The StereotypeTaggedValues association links Stereotypes with the set of
TaggedValues they require.

TaggedValues cannot simultaneously participate in both the TaggedElement and
StereotypeTaggedValues associations.

Ends

requiredTag

Identifies the Stereotype owning a Constraint instance.

class: Stereotype

multiplicity: zero or one

aggregation: composite

Identifies the set of ModelElements to which the Stereotype instance applies.

class: ModelElement

multiplicity: zero or more

Identifies the Stereotype instance that further defines the semantics of the ModelElement.

class: Stereotype

multiplicity: zero or one

Specifies a set of TaggedValues, each of which specifies a tag that an element classified by the
Stereotype is required to have.

class: TaggedValue

multiplicity: zero or more
4-28 Common Warehouse Metamodel, v1.1 March 2003

4

stereotype

4.3.3.11 StructuralFeatureType

The StructuralFeatureType association identifies the Classifier instance that defines the
type of particular StructuralFeatures. A StructuralFeature instance must have a
Classifier instance that defines its type.

Ends

structuralFeature

type

4.3.3.12 TaggedElement

The TaggedElement association links TaggedValues with the ModelElements that own
them.

TaggedValues cannot simultaneously participate in both the TaggedElement and
StereotypeTaggedValues associations.

Ends

modelElement

Identifies a Stereotype instance that owns the TaggedValue instance.

class: Stereotype

multiplicity: zero or one

aggregation: composite

Identifies the set of StructuralFeatures for which the Classifier defines the type.

class: StructuralFeature

multiplicity: zero or more

Identifies the Classifier defining the type of a StructuralFeature.

class: Classifier

multiplicity: exactly one

Identifies the ModelElement instance that owns the TaggedValue instance.

class: ModelElement

multiplicity: zero or one

aggregation: composite
March 2003 OMG-CWM, v1.1: Core Metamodel 4-29

4

taggedValue

4.3.4 OCL Representation of Core Constraints

4.3.4.1 Operations

Identifies the set of TaggedValue instances that extend a ModelElement.

class: TaggedValue

multiplicity: zero or more

The operation allFeatures results in a Set containing all Features of the Classifier
itself and all its inherited Features.

allFeatures : Set(Feature);
allFeatures = self.feature->union(self.parent.oclAsType(Classifier).allFeatures)

The operation allAttributes results in a Set containing all Attributes of the Classifier
itself and all its inherited Attributes.

allAttributes : set(Attribute);
allAttributes = self.allFeatures->select(f | f.oclIsKindOf(Attribute))

The operation specification yields the set of Classifiers that the current Classifier
realizes.

specification: Set(Classifier)
specification = self.clientDependency->
select(d | d.stereotype.name = "realization"
 and d.supplier.oclIsKindOf(Classifier)).supplier.oclAsType(Classifier)

The operation parent returns a Set containing all direct parents of a Classifier.

parent : Set(Classifier);
parent = self.generalization.parent

The operation allParents returns a Set containing all the Classifiers inherited by this
Classifier (the transitive closure), excluding the Classifier itself.

allParents : Set(Classifier);
allParents = self.parent->union(self.parent.allParents)
4-30 Common Warehouse Metamodel, v1.1 March 2003

4

The operation allContents returns a Set containing all ModelElements contained in
the Classifier together with the contents inherited from its parents.

allContents : Set(ModelElement);
allContents = self.contents->union(self.parent.allContents->
 select(e | e.elementOwnership.visibility = #public or
 e.elementOwnership.visibility = #protected))

The operation supplier results in a Set containing all direct suppliers of the
ModelElement.

supplier : Set(ModelElement);
supplier = self.clientDependency.supplier

The operation allSuppliers results in a Set containing all the ModelElements that
are suppliers of this ModelElement, including the suppliers of these Model
Elements. This is the transitive closure.

allSuppliers : Set(ModelElement);
allSuppliers = self.supplier->union(self.supplier.allSuppliers)

The operation contents results in a Set containing all ModelElements contained by
the Namespace.

contents : Set(ModelElement)
contents = self.ownedElement -> union(self.namespace.contents)

The operation allContents results in a Set containing all ModelElements contained
by the Namespace.

allContents : Set(ModelElement);
allContents = self.contents

The operation allVisibleElements results in a Set containing all ModelElements
visible outside of the Namespace.

allVisibleElements : Set(ModelElement)
allVisibleElements = self.allContents -> select(e |
 e.elementOwnership.visibility = #public)

The operation allSurroundingNamespaces results in a Set containing all
surrounding Namespaces.

allSurroundingNamespaces : Set(Namespace)
allSurroundingNamespaces =
self.namespace->union(self.namespace.allSurroundingNamespaces)
March 2003 OMG-CWM, v1.1: Core Metamodel 4-31

4

4.3.4.2 Constraints

The operation contents results in a Set containing the ModelElements owned by or
imported by the Package.

contents : Set(ModelElement)
contents = self.ownedElement->union(self.importedElement)

The operation allImportedElements results in a Set containing the ModelElements
imported by the Package.

allImportedElements : Set(ModelElement)
allImportedElements = self.importedElement

The operation allContents results in a Set containing the ModelElements owned by
or imported by the Package.

allContents : Set(ModelElement)
allContents = self.contents

[C-3-1] A Constraint cannot be applied to itself.

context Constraint inv:

not self.constrainedElement->includes (self)

[C-3-2] A DataType cannot contain any other ModelElements.

context DataType inv:

self.ownedElement->isEmpty

[C-3-3] Tags associated with a model element (directly via a property list or
indirectly via a stereotype) must not clash with any meta attributes associated with
the model element.

context ModelElement inv:

 -- cannot be specified with OCL

[C-3-4] A model element must have at most one tagged value with a given tag name.

context ModelElement inv:

self.taggedValue->forAll(t1, t2 : TaggedValue |
t1.tag = t2.tag implies t1 = t2)
4-32 Common Warehouse Metamodel, v1.1 March 2003

4

4.4 Behavioral Metamodel

The Behavioral metamodel depends on the following package:

org.omg::CWM::ObjectModel::Core

The Behavioral metamodel collects together classes and associations that describe the
behavior of CWM types and provides a foundation for recording the invocations of
defined behaviors. The elements of the Behavioral metamodel are shown in Figure
4-5.

Figure 4-5 Behavioral metamodel

4.4.1 Behavioral Data Types

The Behavioral package provides the following enumerated type.

[C-3-5] A stereotype cannot extend itself.

context ModelElement inv:

self.stereotype->excludes(self)

[C-3-6] The base class name must be provided.

context Stereotype inv:

Set {self.baseClass}->notEmpty

ModelElement
(from Core)

Interface

Argument

value : Expression
/ callAction : CallAction

Method

body : ProcedureExpression
/ specification : Operation

CallAction

/ operation : Operation
/ actualArgument : Argument

*

0..1

actualArgument *
{ordered}

0..1

Operation

isAbstract : Boolean
/ method : Method* 1*

specification

1
*1 *1

Feature
(from Core)

Event

/ parameter : Parameter

BehavioralFeature

isQuery : Boolean
/ parameter : Parameter Classifier

(from Core)

Parameter

defaultValue : Expression
kind : ParameterDirectionKind
/ behavioralFeature : BehavioralFeature
/ event : Event
/ type : Classifier

*0..1 *

{ordered}

0..1

*

0..1

*

{ordered}

0..1 1
*

type 1
*

March 2003 OMG-CWM, v1.1: Behavioral Metamodel 4-33

4

4.4.1.1 ParameterDirectionKind

In the metamodel ParameterDirectionKind defines an enumeration that denotes if a
Parameter is used for supplying an argument and/or for returning a value. The
enumeration values are:

pdk_in: An input Parameter (may not be modified).

pdk_out: An output Parameter (may be modified to communicate information to the
caller).

pdk_inout: An input Parameter that may be modified.

pdk_return: A return value of a call.

The default value is pdk_in.

4.4.2 Behavioral Classes

4.4.2.1 Argument

Argument is an expression describing how to determine an actual value passed in a
CallAction.

In the metamodel an Argument is a composite part of a CallAction and contains a
meta-attribute, value, of type Expression. It states how the actual argument is
determined when the owning CallAction is executed.

Superclasses

ModelElement

Attributes

value

References

callAction

An expression determining the actual Argument instance when executed.

type: Expression

multiplicity: exactly one

Identifies the CallAction that uses the Argument.

class: CallAction
4-34 Common Warehouse Metamodel, v1.1 March 2003

4

4.4.2.2 BehavioralFeature Abstract

A behavioral feature refers to a dynamic feature of a model element, such as an
operation or method. In the metamodel BehavioralFeature specifies a behavioral aspect
of a Classifier. All different kinds of behavioral aspects of a Classifier, such as
Operation and Method, are subclasses of BehavioralFeature.

BehavioralFeature is an abstract metaclass.

Superclasses

Feature

Contained Elements

Parameter

Attributes

isQuery

References

parameter

defined by: CallArguments::action

multiplicity: zero or one

inverse: CallAction::actualArgument

Specifies whether an execution of the BehavioralFeature leaves the state of the system
unchanged. True indicates that the state is unchanged; false indicates that side-effects may
occur.

type: Boolean

multiplicity: exactly one

An ordered list of Parameters for the BehavioralFeature. To call the BehavioralFeature, the
caller must supply a list of values compatible with the types of the Parameters.

class: Parameter

defined by: BehavioralFeatureParameter::parameter

multiplicity: zero or more; ordered

inverse: Parameter::behavioralFeature
March 2003 OMG-CWM, v1.1: Behavioral Metamodel 4-35

4

Constraints

All Parameters should have a unique name. [C-4-1]

The type of the Parameters should be included in the Namespace of the Classifier.
[C-4-2]

4.4.2.3 CallAction

A call action is an action resulting in an invocation of an operation.

The purpose of a CallAction is to identify the actual Arguments used in a specific
invocation of an Operation.

Superclasses

ModelElement

References

operation

actualArgument

Constraints

The number of arguments must be the same as the number of the Operation. [C-4-3]

4.4.2.4 Event

Event is a specification of an observable occurrence. The occurrence that generates an
event instance is assumed to take place at an instant in time.

The Operation that will be invoked when the CallAction is executed.

class: Operation

defined by: CalledOperation::operation

multiplicity: exactly one

The Argument(s) supplied to the CallAction.

class: Argument

defined by: CallArguments::actualArgument

multiplicity: zero or more; ordered

inverse: Argument::callAction
4-36 Common Warehouse Metamodel, v1.1 March 2003

4

Superclasses

ModelElement

Contained Elements

Parameter

References

parameter

4.4.2.5 Interface

Interface is a named set of operations that specify the behavior of an element.

In the metamodel, an Interface contains a set of Operations that together define a
service offered by a Classifier realizing the Interface. A Classifier may offer several
services, which means that it may realize several Interfaces, and several Classifiers
may realize the same Interface.

Superclasses

Classifier

Constraints

An Interface can only contain Operations. [C-4-4]

An Interface cannot contain any ModelElements. [C-4-5]

All Features defined in an Interface are public. [C-4-6]

4.4.2.6 Method

Method is the implementation of an Operation. It specifies the algorithm or procedure
that effects the results of an Operation.

References the set of ordered Parameter instances that comprise the signature of the Event.

class: Parameter

defined by: EventParameter::parameter

multiplicity: zero or more; ordered

inverse: Parameter::event
March 2003 OMG-CWM, v1.1: Behavioral Metamodel 4-37

4

Superclasses

BehavioralFeature

Attributes

body

References

specification

Constraints

If the realized Operation is a query, then so is the Method. [C-4-7]

The signature of the Method should be the same as the signature of the realized
Operation. [C-4-8]

The visibility of the Method should be the same as for the realized Operation. [C-4-9]

The realized Operation must be a feature (possibly inherited) of the same Classifier as
the Method. [C-4-10]

If the realized Operation has been overridden one or more times in the ancestors of the
owner of the Method, then the Method must realize the latest overriding (that is, all
other Operations with the same signature must be owned by ancestors of the owner of
the realized Operation). [C-4-11]

There may be at most one Method for a given Classifier (as owner of the Method) and
Operation (as specification of the Method) pair. [C-4-12]

A specification of the Method in some appropriate form (such as a programming language).
The exact form of a Method’s specification and knowledge of the language in which it is
described is outside the scope of the CWM.

type: ProcedureExpression

multiplicity: exactly one

References the Operation that the Method implements.

class: Operation

defined by: OperationMethod::specification

multiplicity: exactly one

inverse: Operation::method
4-38 Common Warehouse Metamodel, v1.1 March 2003

4

4.4.2.7 Operation

Operation is a service that can be requested from an object to effect behavior. An
Operation has a signature, which describes the parameters that are possible (including
possible return values).

In the metamodel, an Operation is a BehavioralFeature that can be applied to instances
of the Classifier that contains the Operation.

Operation is the specification, while Method is the implementation.

 Superclasses

BehavioralFeature

Attributes

isAbstract

References

method

4.4.2.8 Parameter

Parameters are used in the specification of operations, methods, and events. A
Parameter may include a name, type, and direction of communication.

Superclasses

ModelElement

If true, then the Operation does not have an implementation, and one must be supplied by a
descendant. If false, the Operation must have an implementation in the class or inherited from
an ancestor.

type: Boolean

multiplicity: exactly one

References the set of Method instances defined for the Operation.

class: Method

defined by: OperationMethod::method

multiplicity: zero or more

inverse: Method::specification
March 2003 OMG-CWM, v1.1: Behavioral Metamodel 4-39

4

Attributes

defaultValue

kind

References

behavioralFeature

event

type

An Expression whose evaluation yields a value to be used when no argument is supplied for
the Parameter.

type: Expression

multiplicity: zero or one

Specifies what kind of a Parameter is required.

type: ParameterDirectionKind

multiplicity: exactly one

References the BehavioralFeature instance for which the Parameter instance describes a
parameter.

class: BehavioralFeature

defined by: BehavioralFeatureParameter::behavioralFeature

multiplicity: zero or one

inverse: BehavioralFeature::parameter

References the Event instance for which the Parameter instance describes a parameter.

class: Event

defined by: EventParameter::event

multiplicity: zero or one

inverse: Event::parameter

Designates a Classifier to which an argument value must conform.

class: Classifier

defined by: ParameterType::type

multiplicity: exactly one
4-40 Common Warehouse Metamodel, v1.1 March 2003

4

4.4.3 Behavioral Associations

4.4.3.1 BehavioralFeature::parameter Protected

The BehavioralFeature::parameter association identifies and orders Parameter instances
describing the parameters of a BehavioralFeature. Parameters may be owned by at
most one BehavioralFeature instance. The set of parameters of a BehavioralFeature,
together with its name and return value, are said to constitute the BehavioralFeature’s
“signature.”

Ends

behavioralFeature

parameter

4.4.3.2 CallArguments Protected

Identifies the Argument instances representing the actual argument values passed to an
Operation during the particular invocation indicated by the CallAction instance. The
ordering of actual argument values is assumed to correspond to the ordering of the
Operation’s parameters as represented by the ordering of the
BehavioralFeature::parameter association.

Ends

actualArgument

Identifies the BehavioralFeature instance owner of a Parameter instance.

class: BehavioralFeature

multiplicity: zero or one

aggregation: composite

Identifies the Parameter instances that describe the parameters of the BehavioralFeature.

class: Parameter

multiplicity: zero or more; ordered

Identifies the Argument instances representing the actual arguments passed during Operation
invocation.

class: Argument

multiplicity: zero or more; ordered
March 2003 OMG-CWM, v1.1: Behavioral Metamodel 4-41

4

callAction

4.4.3.3 CalledOperation

The CalledOperation association identifies the CallAction instance representing a
particular invocation of an Operation.

Ends

callAction

operation

4.4.3.4 EventParameter Protected

The EventParameter association identifies the set of Parameter instances owned by an
Event instance.

Ends

event

Identifies the CallAction instance representing a particular invocation of an Operation.

class: CallAction

multiplicity: zero or one

aggregation: composite

Identifies the CallAction instance representing a particular invocation of an Operation.

class: CallAction

multiplicity: zero or more

Identifies the Operation instance for which the CallAction instance records an invocation.

class: Operation

multiplicity: exactly one

Identifies the Event owning a set of Parameter instances.

class: Event

multiplicity: zero or one

aggregation: composite
4-42 Common Warehouse Metamodel, v1.1 March 2003

4

parameter

4.4.3.5 OperationMethod Protected

The OperationMethod association links an Operation with the Method instance(s) that
realize it. The various Method instances represent alternative implementations (usually
in different programming languages or environments) of the Operation.

Ends

specification

method

4.4.3.6 ParameterType

The ParameterType association links a Parameter instance with the Classifier that
defines the parameter’s type.

Ends

parameter

Identifies the ordered set of Parameter instances owned by an Event that describe the Event’s
parameters.

class: Parameter

multiplicity: zero or more; ordered

Identifies the Operation that a Method implements.

class: Operation

multiplicity: exactly one

Identifies the set of Methods defined for an Operation.

class: Method

multiplicity: zero or more

Identifies the set of Parameter instances for which a particular Classifier acts as a type
definition.

class: Parameter

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Behavioral Metamodel 4-43

4

type

4.4.4 OCL Representation of Behavioral Constraints

4.4.4.1 Operations

Identifies the Classifier instance that defines the type of a Parameter.

class: Classifier

multiplicity: exactly one

The operation hasSameSignature checks if the argument has the same signature as
the instance itself.

hasSameSignature (b : BehavioralFeature) : Boolean;
hasSameSignature (b) =
 (self.name = b.name) and
 (self.parameter->size = b.parameter->size) and
 Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |
 b.parameter->at(index).type =
 self.parameter->at(index).type and
 b.parameter->at(index).kind =
 self.parameter->at(index).kind
)

The operation allOperations results in a Set containing all Operations of the
Classifier itself and all its inherited Operations.

allOperations : Set(Operation);
allOperations = self.allFeatures->select(f | f.ockIsKindOf(Operations))

The operation allMethods results in a Set containing all Methods of the Classifier
itself and all its inherited Methods.

allOperations : Set(Method);
allMethods = self.allFeatures->select(f | f.ockIsKindOf(Method))
4-44 Common Warehouse Metamodel, v1.1 March 2003

4

4.4.4.2 Constraints

[C-4-1] All Parameters should have a unique name.

context BehavioralFeature inv:

self.parameter->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

[C-4-2] The type of the Parameters should be included in the Namespace of the
Classifier.

context BehavioralFeature inv:

self.parameter->forAll(p | self.owner.namespace.allContents->includes (p.type))

[C-4-3] The number of arguments must be the same as the number of parameters of
the Operation.

context CallAction inv:

self.actualArgument->size = self.operation.parameter->size

[C-4-4] An Interface can only contain Operations.

context Interface inv:

self.allFeatures->forAll(f | f.oclIsKindOf(Operation))

[C-4-5] An Interface cannot contain any ModelElements.

context Interface inv:

self.allContents->isEmpty

[C-4-6] All Features defined in an Interface are public.

context Interface inv:

self.allFeatures->forAll(f | f.visibility = #public)

[C-4-7] If the realized Operation is a query, then so is the Method.

context Method inv:

self.specification->isQuery implies self.isQuery

[C-4-8] The signature of the Method should be the same as the signature of the
realized Operation.

context Method inv:

self.hasSameSignature(self.specification)
March 2003 OMG-CWM, v1.1: Behavioral Metamodel 4-45

4

4.5 Relationships Metamodel

The Relationships metamodel depends on the following package:

org.omg::CWM::ObjectModel::Core

The Relationships metamodel collects together classes and associations that describe
the relationships between object within a CWM information store. The Relationships
metamodel describes to types of relationships: association and generalization.

Association relationships record linkages between model elements. These linkages may
represent simple linkages between model elements or aggregation (“is part of”)
relationships between model elements; aggregation relationships come in two forms --
shared and composite. Associations have two or more named ends that link them to
instances of the classes connected by the association.

Generalization relationships record arrangements of model elements into type
hierarchies in a parent/child (or “is type of”) fashion. Child types are said to
“specialize,” “subclass,” or “subtype” their parental types, represent a subset of
parental instances that fulfill the definition of the child type, and inherit the structural

[C-4-9] The visibility of the Method should be the same as for the realized
Operation.

context Method inv:

self.visibility = self.specification.visibility

[C-4-10] The realized Operation must be a feature (possibly inherited) of the same
Classifier as the Method.

context Method inv:

self.owner.allOperations->includes(self.specification)

[C-4-11] If the realized Operation has been overridden one or more times in the
ancestors of the owner of the Method, then the Method must realize the latest
overriding (that is, all other operations with the same signature must be owned by
ancestors of the owner of the realized Operation).

context Method inv:

self.specification.owner.allOperations->includesAll(

(self.owner.allOperations->select(op |
self.hasSameSignature(op)))

[C-4-12] There may be at most one method for a given classifier (as owner of the
method) and operation (as specification of the method) pair.

context Method inv:

self.owner.allMethods->select(operation = self.operation)->size = 1
4-46 Common Warehouse Metamodel, v1.1 March 2003

4

features (Attributes, AssociationEnd) and behavioral features (Operations, Methods)
of their parents. Parental types are said to “generalize” their child types or to be
“superclasses” or “supertypes” of their children.

CWM generalization hierarchies support multiple inheritance; that is, child types may
have more than one parental type and inherit the union of the features of all their
parental types. Although called “hierarchies,” multiple inheritance actually represents a
directed acyclic graph of parental and child types.

The classes and associations of the Relationships metamodel are shown in Figure 4-6.

Figure 4-6 Relationship metamodel

4.5.1 Relationships Data Types

The Relationships metamodel contains the following enumerated type:

• AggregationKind

An enumeration that denotes what kind of aggregation an Association defines.
When placed on a target end, specifies the relationship of the target end to the
source end. AggregationKind defines an enumeration whose values are:

• ak_none - The end is not an aggregate.

ModelElement
(from Core)

AssociationEnd
aggregation : AggregationKind
isNavigable : Boolean

Associat ion

* 0..1

/feature

*
{ordered}

/owner

0..1

Class
(f rom C ore)

Generalization

/ child : Classifier
/ parent : Classifier

Classifier
(from Core)

1* child 1generalization*

1

* parent
1

specialization*

StructuralFeature
(from Core)

1

*

type
1

structuralFeature*
March 2003 OMG-CWM, v1.1: Relationships Metamodel 4-47

4

• ak_aggregate - The end is an aggregate; therefore, the other end is a part and must
have the aggregation value of none. The part may be contained in other
aggregates.

• ak_composite - The end is a composite; therefore, the other end is a part and must
have the aggregation value of none. The part is strongly owned by the composite
and may not be part of any other composite.

The default value is ak_none.

4.5.2 Relationships Classes

4.5.2.1 Association

An association defines a semantic relationship between classifiers. Associations have
two or more named ends. Associations with two or more ends are called “n-ary”
whereas associations with exactly two ends are called “binary.” Each end, depending
upon its multiplicity, connects to zero or more instances of some classifier.

In the metamodel, an Association is a declaration of a semantic relationship between
Classifiers, such as Classes. Associations must have two, and may have more,
association ends. Each end is connected to a Classifier; the same Classifier may be
connected to more than one association end in the same association. (Refer to the
ObjectModel’s Instance package, below, for a description of how Associations are
instantiated.)

Because Associations are classifiers, they own and order their association ends (which
are Attributes) via the ClassifierFeature association. In addition, because Associations
are Classes, they can also own more traditional StructuralFeatures such as Attributes.
Consequently, they may act in a manner similar to “association classes” described by
some other object models.

An association may represent an aggregation; that is, a whole/part relationship. In this
case, the association end attached to the whole element is designated, and the other
association end represents the parts of the aggregation.

Associations can be of three different kinds: (1) ordinary association, (2) composite
aggregate, and (3) shareable aggregate. Since the aggregate construct can have several
different meanings depending on the application area, CWM gives a more precise
meaning to two of these constructs; that is, association and composite aggregate and
leaves the shareable aggregate more loosely defined in between. Only binary
Associations can have composite or sharable aggregation semantics.

Composite aggregation is a strong form of aggregation, which requires that a part
instance be included in at most one composite at a time and that the composite object
has sole responsibility for the disposition of its parts. This means that the composite
object is responsible for the creation and destruction of the parts. In implementation
terms, it is responsible for their memory allocation. If a composite object is destroyed,
it must destroy all of its parts. It may remove a part and give it to another composite
object, which then assumes responsibility for it. If the multiplicity from a part to
4-48 Common Warehouse Metamodel, v1.1 March 2003

4

composite is zero-to-one, the composite may remove the part and the part may assume
responsibility for itself, otherwise it may not live apart from a composite.

A consequence of these rules is that a composite aggregation implies propagation
semantics; that is, some of the dynamic semantics of the whole is propagated to its
parts. For example, if the whole is copied or destroyed, then so are the parts as well
(because a part may belong to at most one composite).

A classifier on the composite end of an association may have parts that are classifiers
and associations. At the instance level, an instance of a part element is considered “part
of” the instance of a composite element. If an association is part of a composite and it
connects two classes that are also part of the same composite, then an instance of the
association will connect objects that are part of the same composite object of which the
instance is part.

A shareable aggregation denotes weak ownership; that is, the part may be included in
several aggregates and its owner may also change over time. However, the semantics of
a shareable aggregation does not imply deletion of the parts when an aggregate
referencing it is deleted. Both kinds of aggregations define a transitive, antisymmetric
relationship; that is, the instances form a directed, non-cyclic graph. Composition
instances form a strict tree (or rather a forest).

Superclasses

Class

Constraints

An Association must have at least two AssociationEnds. [C-5-1]

The AssociationEnds must have a unique name within the association. [C-5-2]

At most one AssociationEnd may be an aggregation or composition. [C-5-3]

If an Association has three or more AssociationEnds, then no AssociationEnd may be
an aggregation or composition. [C-5-4]

The connected Classifiers of the AssociationEnds should be included in the Namespace
of the Association, or be Classifiers with public visibility in other Namespaces to
which the Association has access. [C-5-5]

4.5.2.2 AssociationEnd

An association end is an endpoint of an association that connects the association to a
classifier. Each association end is part of one association. The association ends of each
association are ordered.

In the metamodel an AssociationEnd is part of an Association and specifies the
connection of an Association to some other Classifier. Because AssociationEnds are a
kind of StructuralFeature, they are owned and ordered by Association instances via the
ClassifierFeature association. The StructuralFeatureType association is used to
March 2003 OMG-CWM, v1.1: Relationships Metamodel 4-49

4

identify the Classifier to which the AssociationEnd is attached. Each AssociationEnd
has a name and defines a set of properties of the connection.

The multiplicity property of an association end specifies how many instances of the
classifier at a given end (the one bearing the multiplicity value) may be associated with
a single instance of the classifier at the other end. The association end also states
whether or not the connection may be traversed towards the instance playing that role
in the connection (the isNavigable attribute); that is, if the instance is directly
reachable via the association.

Superclasses

StructuralFeature

Attributes

aggregation

isNavigable

Constraints

An AssociationEnd must have an owning Association. [C-5-6]

The Classifier of an AssociationEnd cannot be an Interface or a DataType if the
association is navigable away from that end. [C-5-7]

An Instance may not belong by composition to more than one composite Instance.
[C-5-8]

An AssociationEnd with composite or shared aggregation semantics must be owned by
an Association. [C-5-9]

When placed on one end (the “target” end), specifies whether the class on the target end is an
aggregation with respect to the class on the other end (the “source” end). Only one end of an
association can be an aggregation.

type: AggregationKind

multiplicity: exactly one

When placed on a target end, specifies whether traversal from a source instance to its
associated target instances is possible. A value of true means that the association can be
navigated by the source class and the target rolename can be used in navigation expressions.
Specification of navigability for each direction is defined independently.

type: Boolean

multiplicity: exactly one
4-50 Common Warehouse Metamodel, v1.1 March 2003

4

4.5.2.3 Generalization

A generalization is a taxonomic relationship between a more general element and a
more specific element. The more specific element is fully consistent with the more
general element (it has all of its properties, members, and relationships) and may
contain additional information.

In the metamodel a Generalization is a directed inheritance relationship, uniting a
Classifier with a more general Classifier in a hierarchy. Generalization is a subtyping
relationship; that is, an instance of the more general (“parent”) Classifier may be
substituted by an instance of the more specific (“child”) Classifier.

To understand inheritance fully, it is necessary to understand the concept of a full
descriptor and a segment descriptor. A full descriptor is the full description needed to
describe an instance of a metamodel object. It contains a description of all of the
attributes, associations, and operations that the object contains.

In a pre-object-oriented language, the full descriptor of a data structure was declared
directly in its entirety. In an object-oriented language, the description of an object is
built out of incremental segments that are combined using inheritance to produce a full
descriptor for an object. The segments are the modeling elements that are actually
declared in a model. Each classifier contains a list of features and other relationships
that it adds to what it inherits from its ancestors. The mechanism of inheritance defines
how full descriptors are produced from a set of segments connected by generalization.
The full descriptors are implicit, but they define the structure of actual instances.
Features of a classifier that have private visibility are not visible to descendants of the
classifier.

If a classifier has no parent, then its full descriptor is the same as its segment
descriptor. If a classifier has one or more parents, then its full descriptor contains the
union of the features from its own segment descriptor and the segment descriptors of
all of its ancestors. No attribute, operation, or association end with the same signature
may be declared in more than one of the segments (in other words, they may not be
redefined). A method may be declared in more than one segment. A method declared
in any segment supersedes and replaces a method with the same signature declared in
any ancestor. If two or more methods nevertheless remain, then they conflict and the
model is ill formed. The constraints on the full descriptor are the union of the
constraints on the segment itself and all of its ancestors. If any of them are
inconsistent, then the model is ill formed.

In any full descriptor for a classifier, each method must have a corresponding
operation. In a concrete classifier, each operation in its full descriptor must have a
corresponding method in the full descriptor.

Superclasses

ModelElement
March 2003 OMG-CWM, v1.1: Relationships Metamodel 4-51

4

References

child

parent

4.5.3 Relationships Associations

4.5.3.1 ChildElement

The ChildElement association links Classifiers with the Generalization instances that
describe where they participate as children in the inheritance hierarchy.

Ends

child

generalization

Designates a Classifier that occupies the child or specialization position of the Generalization
relationship.

class: Classifier

defined by: ChildElement::child

multiplicity: exactly one

Designates a Classifier that occupies the parent or generalization position of the
Generalization relationship.

class: Classifier

defined by: ParentElement::parent

multiplicity: exactly one

Identifies the Classifier instance that acts as a child in the Generalization relationship.

class: Classifier

multiplicity: exactly one

Identifies the set of Generalization instances in which the Classifier acts as a child in the
inheritance hierarchy.

class: Generalization

multiplicity: zero or more
4-52 Common Warehouse Metamodel, v1.1 March 2003

4

4.5.3.2 ParentElement

The ParentElement association links Classifiers with the Generalization instances that
describe where the Classifiers participate as parents in the inheritance hierarchy.

Ends

parent

specialization

4.5.4 OCL Representation of Relationships Constraints

4.5.4.1 Association

Operations

Constraints

Identifies the Classifier instance that acts as a parent in an inheritance hierarchy.

class: Classifier

multiplicity: exactly one

Identifies the set of Generalization instances in which the Classifier acts a parent in the
inheritance hierarchy.

class: Generalization

multiplicity: zero or more

The operation allConnections results in the set of all AssociationEnds of the
Association.

allConnections : Set(AssociationEnd);
allConnections = self.feature.oclIsKindOf(AssociationEnd)

[C-5-1] An Association must have at least 2 AssociationEnds.

context Association inv:

self.allConnections->size > 1

[C-5-2] The AssociationEnds must have a unique name within the association.

context Association inv:

self.allConnections->forAll(r1, r2 | r1.name = r2.name implies r1 = r2)
March 2003 OMG-CWM, v1.1: Relationships Metamodel 4-53

4

4.5.4.2 AssociationEnd

Constraints

[C-5-3] At most one AssociationEnd may be an aggregation or composition.

context Association inv:

self.allConnections->select(aggregation <> #ak_none)->size <= 1

[C-5-4] If an Association has three or more AssociationEnds, then no
AssociationEnd may be an aggregation or composition.

context Association inv:

self.allConnections->size >=3 implies
self.allConnections->forall(aggregation = #ak_none)

[C-5-5] The connected Classifiers of the AssociationEnds should be included in the
Namespace of the Association, or be Classifiers with public visibility in other
Namespaces to which the Association has access.

context Association inv:

self.allConnections->forAll(r | self.namespace.allContents->includes (r.type)) or
self.allConnections->forAll(r | self.namespace.allContents->excludes (r.type))
 implies
self.namespace.clientDependency->exists (d |
 d.supplier.oclAsType(Namespace).ownedElement->select (e |
 e.elementOwnership.visibility = #ak_public)->includes (r.type) or
 d.supplier.oclAsType(Classifier).allParents.
 oclAsType(Namespace).ownedElement->select (e |
 e.elementOwnership.visibility = #ak_public)->includes (r.type) or
 d.supplier.oclAsType(Package).allImportedElements->select (e |
 e.elementImport.visibility = #ak_public) ->includes (r.type)))

[C-5-6] An AssociationEnd must have an owning Association.

context AssociationEnd inv:

self.owner.oclIsKindOf(Association)

[C-5-7] The Classifier of an AssociationEnd cannot be an Interface or a DataType if
the association is navigable away from that end.

context AssociationEnd inv:

(self.type.oclIsKindOf (Interface) or
self.type.oclIsKindOf (DataType)) implies
self.owner->select (ae | ae <self)->forAll(ae | ae.isNavigable = #false)
4-54 Common Warehouse Metamodel, v1.1 March 2003

4

4.6 Instance Metamodel

The Instance metamodel depends on the following package:

org.omg::CWM::ObjectModel::Core

In addition to the metadata normally interchanged with CWM, it is sometimes useful to
interchange specific data instances as well. The ObjectModel’s Instance metamodel
allows the inclusion of data instances with the metadata.

The Instance metamodel is shown in Figure 4-7.

Data values may be stored in one of two alternative ways. The Slot class is a generic
container that can hold either DataValue or Object instances. One way of storing a data
value is to create a Slot instance and place a DataValue instance “in” the Slot via the
SlotValue association. The alternate way is to create an instance of DataSlot, storing
the value into its dataValue attribute. The former method is more general while the
latter creates fewer total objects. Both techniques are illustrated in the example in
Figure 4-7.

[C-5-8] An instance may not belong by composition to more than one composite
Instance.

context AssociationEnd inv:

self.aggregation = #ak_composite implies self.multiplicity.max <= 1

[C-5-9] An AssociationEnd with composite or shared aggregation semantics must
be owned by an Association.

context AssociationEnd inv:

self.aggregation = #ak_composite or self.aggregation = #ak_shared implies
self.owner.oclIsKindOf(Association)
March 2003 OMG-CWM, v1.1: Instance Metamodel 4-55

4

Figure 4-7 Instance metamodel

To aid understanding of the appropriate use of Instance metamodel classes and
associations, a full example is presented in Figure 4-7, showing how Instance
metamodel objects are used to represent the model, shown in Figure 4-8, and its
instances.

Figure 4-8 Instance metamodel example model

The example model describes people and their marital relationships to other people.
Marital relationships are represented by the reflective Marriage association between
two separate people. The Marriage association has two association ends named
“person” and “spouse.” Notice that each instance of the Marriage association has a
string-valued attribute describing the current status of the marital relationship it

DataValue
value : String

ModelE lement
(from Core)

Package
(f rom Core)

Classifier
(from Core) St ruc turalFeature

(from Core)

Instance
/ class ifier : Class ifier

1 *1 *

Slot

/ object : Object
/ value : Instance
/ feature : StructuralFeature

1*
feature

1*
0..1 *

value

0..1

valueSlot

*

Object

/ slot : Slot

0..1

*

0..1

*

Extent

*

0..1

/ownedElement*

/namespace

0..1

DataSlot

dataValue : String
/ dataType : DataType

DataType
(from Core)0..1* 0..1*

Person

Name : String

*

*

Marriage (MaritalStatus : String)

spouse

*

*

4-56 Common Warehouse Metamodel, v1.1 March 2003

4

represents. Valid values for the MaritalStatus attribute are “Married,” “Divorced,” and
“Widowed.” People who have never been married have no instances of the Marriage
association.

Figure 4-9 on page 4-59 shows how the example model is represented as instances of
the CWM ObjectModel metaclasses Class, Attribute, DataType, Association, and
AssociationEnd. In addition, Instance metamodel classes are used to capture two kinds
of data values that might be exchange using the CWM DTDs: valid values of the
MaritalStatus attribute, and the marital relationship between the people George and
Martha Custis Washington. In the figure, instances of the Instance metamodel are
shown with a shaded background and labeled with an uppercase letter near their upper
right corner to facilitate discussion. Lines in the figure represent ObjectModel
associations that capture relationships between instances and are labeled with the
associations name.

George is represented by Object A, and Martha, by Object B. These person objects
own DataSlots C and D, respectively, that contain the names of the individuals.

The valid values of the MaritalStatus attribute are recorded by DataValue instances I, J,
and K.

The marital relationship between George and Martha is represented, from George’s
perspective, by Object F, which is an instance of the Marriage association. Object F
owns Slots E, F, and G. Slot E holds the person association end and references Object
A (George), whereas Slot G holds the spouse association end, referencing Object B
(Martha). Slot H holds a DataValue instance describing the current value (“Married”)
of the MaritalStatus attribute for Object F.
March 2003 OMG-CWM, v1.1: Instance Metamodel 4-57

4

Figure 4-9 Instance metamodel example instances

String :
DataType

Person :
Class

Name :
Attribute

 : Object

 : DataSlot

 : Object

 : DataSlot

dataValue = "George
Washington" : String

dataValue = "Martha
Custis W ashington" :

Marriage :
Association

person :
AssociationEnd

spouse :
AssociationEnd

MaritalStatus
: Attribute

 : DataValue value = "Married" :
String

value = "Divorced" :
String

value = "Widowed" :
Str in g

 : DataValue

 : DataValue

 : Object

 : Slot

 : Slot : Slot

A B

C D

E F G

H

I

J

K

String :
DataType

Classi fierFeature

Objec tSlot ObjectSlot

Class ifierFeature

StructuralFeatureType

InstanceClassifier

ObjectSlot

FeatureSlot

DataS lotType

Instanc eClass ifier

ObjectSlot

FeatureSlot

DataSlotType

Instanc eClass ifier

StructuralFeatureType

ClassifierFeature

StructuralFeatureType

StructuralFeatureType

Ins tanceClass ifier

ObjectSlot

FeatureSlot

SlotValue

FeatureSlot

SlotValue

FeatureSlot

SlotValue
4-58 Common Warehouse Metamodel, v1.1 March 2003

4

4.6.1 Instance Classes

4.6.1.1 DataSlot

A Slot that is used to hold a data value where there is no need to manage the value as
an element in its own right (in which case a DataValue would be used) - for example it
is a one-off string value or a number. The dataValue (and dataType where set) must be
consistent with the type of the DataSlot’s feature (Attribute) and must obey any
constraints on the full descriptor of the Attribute’s DataType (including both explicit
constraints and built-in constraints such as multiplicity).

Superclasses

Slot

Attributes

dataValue

References

dataType

Constraints

A DataType instance associated with a DataSlot instance must be compatible with the
type of the DataSlot indicated by the feature::type inherited from Slot. [C-6-6]

The StructuralFeature instance obtained via the feature reference inherited from Slot
must be an Attribute. [C-6-7]

The value reference inherited from Slot must be empty. [C-6-8]

The value for the slot expressed as a string.

type: String

multiplicity: exactly one

The type of the dataValue. If not set, the type is taken as the type of the Attribute
(StructuralFeature) that is the feature for the DataSlot.

class: DataType

defined by: DataSlotType::dataType

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Instance Metamodel 4-59

4

4.6.1.2 DataValue

A data value is an instance with no identity. In the metamodel, DataValue is a child of
Instance that cannot change its state; that is, all operations that are applicable to it are
pure functions or queries that do not cause any side effects. DataValues are typically
used as attribute values.

Since it is not possible to differentiate between two data values that appear to be the
same, it becomes more of a philosophical issue whether there are several data values
representing the same value or just one for each value. In addition, a data value cannot
change its data type and it does not have contained instances.

Superclasses

Instance

Attributes

value

Constraints

A DataValue originates from a Classifier that is a DataType. [C-6-1]

A DataValue has no Slots. [C-6-2]

4.6.1.3 Extent

Each instance of Extent owns a collection of instances and is used to link such
collections to their structural and behavioral definitions in CWM Resource packages.
Because Extent is a subclass of package, it owns member instances via the
ElementOwnership association.

Superclasses

Package

Contained Elements

Object

A string representation of the value.

type: String

multiplicity: exactly one
4-60 Common Warehouse Metamodel, v1.1 March 2003

4

4.6.1.4 Instance Abstract

The instance construct defines an entity to which a set of operations can be applied and
which has a state that stores the effects of the operations. In the metamodel Instance is
connected to a Classifier that declares its structure and behavior. It has a set of attribute
values matching the definition of its Classifier. The set of attribute values implements
the current state of the Instance.

Because Instance is an abstract class, all Instances are either Object or DataValue
instances.

The data content of an Instance comprises one value for each attribute in its full
descriptor (and nothing more). The value must be consistent with the type of the
attribute. An instance must obey any constraints on the full descriptor of the Classifier
of which it is an instance (including both explicit constraints and built-in constraints
such as multiplicity).

Superclasses

ModelElement

References

classifier

4.6.1.5 Object

An object is an instance that originates from a class.

In the metamodel Object is a subclass of Instance originating from a Class. The Class
may be modified dynamically, which means that the set of features of the Object may
change during its lifetime.

An object is an instance that originates from a class; it is structured and behaves
according to its class. All objects originating from the same class are structured in the
same way, although each of them has its own set of attribute slots. Each attribute slot
references an instance, usually a data value or possibly another object. The number of
attribute slots with the same name fulfills the multiplicity of the corresponding
attribute in the class. The set may be modified according to the specification in the
corresponding attribute. For example, each referenced instance must originate from (a
specialization of) the type of the attribute, and attribute slots may be added or removed
according to the changeable property of the attribute.

The Classifier that declares the structure of the Instance.

class: Classifier

defined by: InstanceClassifier::classifier

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Instance Metamodel 4-61

4

An Object instance’s slots may contain either DataValue instances or other Object
instances. Owned Object instances occur as side-effects of either of two metamodel
situations: First, the Classifier of the owning instance contains features (via the
ClassifierFeature association) whose types are non-DataType Classifiers. Second, the
StructuralFeature describing the attribute slot is an AssociationEnd.

An Object instance may own other Object instances. This occurs when the Classifier
describing the owning Object contains the Classifier(s) describing the owned object
through namespace containment via the ElementOwnership association. Namespace
rules imply that an Object instance contained in another Object instance has access to
all names that are accessible to its container instance.

Superclasses

Instance

Contained Elements

Slot

References

slot

Constraints

An Object may only own Objects and DataValues. [C-6-3]

If an Object represents an association, at least two of its ends must not be empty.
[C-6-4]

4.6.1.6 Slot

A slot is a named location in an Object instance that holds the current value of the
StructuralFeature associated with the Slot instance. Normally, the StructuralFeature
associated with the slot will be either an Attribute instance or an AssociationEnd
instance. Slots are owned by Objects; DataValues do not have slots.

Superclasses

ModelElement

The set of Slot instances owned by the Object.

class: Slot

defined by: ObjectSlot::slot

multiplicity: zero or more

inverse: Slot::object
4-62 Common Warehouse Metamodel, v1.1 March 2003

4

References

feature

object

value

Constraints

If the StructuralFeature describing a Slot is an AssociationEnd, the Classifier
associated with the Object owning the Slot must be an Association. [C-6-5]

If the Slot instance is not also a DataSlot, the value reference must be present. [C-6-9]

4.6.2 Instance Associations

4.6.2.1 DataSlotType

The DataSlotType association connects DataSlot instances with the DataType instance
that identifies the type of information stored in the DataSlot::dataValue attribute.

References the StructuralFeature instance that describes the value held by the Slot instance.

class: StructuralFeature

defined by: FeatureSlot::feature

multiplicity: exactly one

References the Object instance that owns the Slot.

class: Object

defined by: ObjectSlot::object

multiplicity: zero or one

inverse: Object::slot

References the DataValue or Object instance that contains the current value held by the Slot.

class: Instance

defined by: SlotValue::value

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Instance Metamodel 4-63

4

Ends

dataSlot

dataType

4.6.2.2 FeatureSlot

The FeatureSlot association connects Slot instances with the StructuralFeature instance
(usually either an Attribute or AssociationEnd instance) describing the structure of the
value held by the Slot.

Ends

feature

slot

4.6.2.3 InstanceClassifier

The InstanceClassifier association links Instances with Classifiers that describe them.

Identifies the DataSlot instances for which the DataType instance is the type of information
stored in the DataSlot::dataValue attribute.

class: DataSlot

multiplicity: zero or more

Identifies the DataType instance representing the type of the information stored in the
dataValue attribute.

class: DataType

multiplicity: zero or one

Identifies the StructuralFeature instance for which the Slot instance contains the current value.

class: StructuralFeature

multiplicity: exactly one

Identifies the set of Slot instances containing values of the StructuralFeature instance.

class: Slot

multiplicity: zero or more
4-64 Common Warehouse Metamodel, v1.1 March 2003

4

Ends

instance

classifier

4.6.2.4 ObjectSlot Protected

The ObjectSlot association connects Slot instances with their owning Object instances.

Ends

object

slot

4.6.2.5 SlotValue

The SlotValue association connects slot instances with the DataValue or Object
instance that contains the current value held by the slot.

Identifies the set of Instances described by the Classifier.

class: Instance

multiplicity: zero or more

Identifies the Classifier that describes the structure of the Instance.

class: Classifier

multiplicity: exactly one

Identifies the Object instance that owns the Slot instance.

class: Object

multiplicity: exactly one

aggregation: composition

Identifies the set of Slot instances owned by the Object instance.

class: Slot

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Instance Metamodel 4-65

4

Ends

value

valueSlot

4.6.3 OCL Representation of Instance Constraints

Constraints

[C-6-1] A DataValue originates from a Classifier that is a DataType.

context DataValue inv:

self.classifier.oclIsKindOf(DataType)

[C-6-2] A DataValue has no Slots.

context DataValue inv:

self.valueSlot->isEmpty

[C-6-3] An Object may only own Objects and DataValues.

context Object inv:

self.contents->forAll(c | c.oclIsKindOf(Object) or c.oclIsKindOf(DataValue))

[C-6-4] If an Object represents an association, at least two of its ends must not be
empty.

context Object inv:

self.classifier.oclIsKindOf(Association) implies

Identifies the Instance subtype (either a DataValue or an Object) that holds the current value
represented by the Slot instance.

class: Instance

multiplicity: zero or one

aggregation: composite

Identifies the set of Slot instances for which the DataValue or Object instance contains the
current value.

class: Slot

multiplicity: zero or more
4-66 Common Warehouse Metamodel, v1.1 March 2003

4

self.slot.feature->iterate(ae ; cnt : Integer = 0 |
 if ae.oclIsKindOf(AssociationEnd) and ae.value.notEmpty then

 cnt + 1

 else

 cnt

 end if) > 1

[C-6-5] If the StructuralFeature describing a Slot is an AssociationEnd, the Classifier
associated with the Object owning the Slot must be an Association.

context Slot inv:

self.feature.oclIsKindOf(AssociationEnd) implies
self.value.classifier.oclIsKindOf(Association)

[C-6-6] A DataType instance associated with a DataSlot instance must be compatible
with the type of the DataSlot indicated by the feature::type inherited from Slot.

context DataSlot inv:

self.dataType->notEmpty implies self.dataType.oclIsKindOf(self.feature.type)

[C-6-7] The StructuralFeature instance obtained via the feature reference inherited
from Slot must be an Attribute.

context DataSlot inv:

self.feature.oclIsTypeOf(Attribute)

[C-6-8] The value reference inherited from Slot must be empty.

context DataSlot inv:

self.value->isEmpty()

[C-6-9] If the Slot instance is not also a DataSlot, the value reference must be present.

context Slot inv:

self.oclIsTypeOf(Slot) implies self.value->notEmpty()
March 2003 OMG-CWM, v1.1: Instance Metamodel 4-67

4

4-68 Common Warehouse Metamodel, v1.1 March 2003

Foundation 5
Contents

This chapter contains the following topics.

5.1 Overview

The Foundation is a collection of metamodel packages that contain model elements
representing concepts and structures that are shared by other CWM packages.
Consequently, Foundation model elements often have a more general-purpose nature
than model elements found in packages at higher CWM organizational levels.

Foundation model elements in a particular metamodel package are not necessarily
intended to describe fully all aspects of concepts and structures they represent. Rather,
they are meant to provide a common foundation which other packages can extend as
necessary to meet their specific needs.

Topic Page

“Overview” 5-1

“Organization of the Foundation” 5-2

“Business Information Metamodel” 5-2

“DataTypes Metamodel” 5-20

“Expressions Metamodel” 5-28

“KeysIndexes Metamodel” 5-37

“SoftwareDeployment Metamodel” 5-47

“TypeMapping Metamodel” 5-66
March 2003 Common Warehouse Metamodel, v1.1 5-1

5

Foundation model elements differ from ObjectModel elements because they are
specific to the goals and purposes of CWM. ObjectModel elements, in contrast, are of
a general purpose nature and applicable in diverse areas.

5.2 Organization of the Foundation

The CWM uses packages to control complexity and create groupings of logically
interrelated classes. The Foundation is a collection of packages that are described
together because they all provide metamodel services to other CWM packages. A
subsection of this chapter is devoted to each of the Foundation packages, presented in
alphabetical order. The relationship between the Foundation and each of its constituent
packages is shown in Figure 5-1.

Organizing the Foundation in this fashion allows the individual metamodel packages to
be understood and used independently of each other without sacrificing their common
purpose. For example, a CWM extension package supporting a programming language
might need the DataTypes, Expressions, TypeMapping, and SoftwareDeployment
packages but not need the KeysIndexes or BusinessInformation packages.

Figure 5-1 Foundation Top Level Packages

5.3 Business Information Metamodel

The Business Information package depends on the following package:

org.omg::CWM::ObjectModel::Core

Foundation

(from CWM)

DataTypes
<<metamodel>>

TypeMapping
<<metamodel>>

KeysIndexes
<<metamodel>>

Expressions
<<metamodel>>

Business
Information

<<metamodel>>

Software
Deployment

<<metamodel>>
5-2 Common Warehouse Metamodel, v1.1 March 2003

5

The Business Information Metamodel provides general purpose services available to all
CWM packages for defining business-oriented information about model elements. The
business-oriented services described here are designed to support the needs of data
warehousing and business intelligence systems; they are not intended as a complete
representation of general purpose business intelligence metamodel.

Business Information Metamodel services support the notions of responsible parties
and information about how to contact them, identification of off-line documentation
and support for general-purpose descriptive information. Three CWM classes “anchor”
these services: ResponsibleParty, Document, and Description, respectively.

The metamodel is shown in Figure 5-2.

Figure 5-2 BusinessInformation metamodel

To aid in representing the diversity of organizational structures and documentation
relationships that may be encountered in a business intelligence system, the metamodel
provides robust relationships between the anchor classes and every model element in
the CWM metamodel. The necessary robustness is achieved in several ways.

First, every CWM model element may have zero or more instances of each anchor
class associated with it. This means, for example, that a single Description instance can
be used to describe many different model elements. Conversely, a single model element
may be described by many different Description instances. Likewise, Document and

Namespace
(from Core)

Email
emailAddress : String
emailType : String
/ contact : Contact

Location
locationType : String
address : String
city : String
postCode : String
area : String
country : String
/ contact : Contact

ResourceLocator

url : String
/ contact : Contact

Telephone
phoneNumber : String
phoneType : String
/ contact : Contact

Contact

/ email : Email
/ location : Location
/ responsibleParty : ResponsibleParty
/ telephone : Telephone
/ url : ResourceLocator

*

*

* {ordered}

*

*

*

*
{ordered}

*

** url *

{ordered}

*

*
*

*
{ordered}*

Document
reference : String
type : String
/ modelElement : ModelElement

ResponsibleParty
responsibility : String
/ contact : Contact
/ modelElement : ModelElement

*

*

*{ordered}

*

ModelElement
(from Core)

*

*

*

*

*

*

*

*

Description

body : String
language : Name
type : String
/ modelElement : ModelElement

*

*

*

*

March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-3

5

ResponsibleParty instances can be associated in completely ad hoc ways with any
model element. Extending this idea means, for example, that Description instances
could be used to further describe ResponsibleParty and Document instance, if needed.

Second, because they are Namespaces, the anchor classes can be organized into
hierarchies using the ElementOwnership association. For instance, an organizational
structure can be represented by a hierarchy of ResponsibleParty instances. Also, the
internal structure of a document; that is, its chapters, sections, subsections, etc. might
be represented by a hierarchy of Document instances.

Finally, instances of the three anchor classes can be associated with any model element
(via their individual associations to ModelElement) and referenced by multiple
instances of any of the three anchor classes. Because of the strong containment of the
ElementOwnership association in the ObjectModel, anchor class instances can only
participate in one hierarchy, but there are no restrictions preventing anchor class
instances embedded in a hierarchy from referencing, or being referenced by, other
model elements (even other members of the same hierarchy).

To illustrate some of the ways that the metamodel can be used, Figure 5-3 shows a
simple document hierarchy with responsibility assignments and descriptive comments
(boxes represent instances of metamodel classes and labelled lines represent
metamodel associations connecting instances). In the example, the product plan
document for the Widget product is composed of three subplans: a marketing plan, an
engineering plan, and a resource plan. The relationships between the subplans
documents is shown as a hierarchy with the product plan owning the three subordinate
plans via the ElementOwnership association. Each part of the plan is assigned to a
responsible party using the ModelElementResponsibility association. Finally,
Description instances are used to record roles for the responsible parties.
5-4 Common Warehouse Metamodel, v1.1 March 2003

5

Figure 5-3 Document hierarchy with assigned ResponsibleParties

Similar robustness is provided for structuring relationships between ResponsibleParty
instances and the means of contacting them. Each ResponsibleParty can have multiple,
ordered sets of contact information (the Contact class) and a single set of contact
information can service multiple ResponsibleParties. Also, because they are not owned
by any particular Contact instance, Telephone, Email, Location, and ResourceLocator
instances can be reused elsewhere in the CWM metamodel. An example of the use of
Business Information classes to find the ChiefEngineer at three times (Weekday,
Weekend, Emergency) is shown in Figure 5-4.

Product Plan :
Document

Marketing Plan :
Document

Engineering Plan :
Document

Resources Plan :
Document

Product Manager :
ResponsibleParty

VP Marketing :
ResponsibleParty

Architect :
ResponsibleParty

CFO :
ResponsibleParty

 :
Description

 :
Description

 :
Description

 :
Description

Product :
Class

"Widget" :
Name

body = "Ensures subplans are
written" : String

body = "Approves
marketing plan" : String

body = "Builds financial
model" : String

body = "Develops
engineering plan" : String

ModelElementDescription

DocumentDescribes

ElementOwnership

ModelElementResponsibility

ModelElementResponsibility ModelElementResponsibility ModelElementResponsibility

ModelElementDescription ModelElementDescription ModelElementDescription
March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-5

5

Figure 5-4 Using Contact information to find the ChiefEngineer

5.3.1 BusinessInformation Classes

5.3.1.1 Contact

Each Contact instance collects together the various types of related contact
information. Each Contact instance can be associated with multiple Email, Location,
and Telephone instances. Conversely, each Email, Location, ResourceLocator, and
Telephone instance can be associated with many Contact instances. The ordering
constraints on the associations between these classes and the Contact class can be used
to represent a prioritized sequence in which the various types of contact information
should be used.

A particular ResponsibleParty instance may have multiple instances of Contact
associated with it via the ResponsiblePartyContact association. This association is
ordered to support representation of the sequence in which Contact instances should be
used. For example, a ResponsibleParty instance representing an employee might be
associated with Contact instances representing their office, home, and mobile contact
information with an indication that the employee should be contacted first at the office,
then at home, and finally via their mobile phone.

To maximize flexibility of the metamodel, Contact instances may provide contact
information for multiple ResponsibleParty instances.

Chief Engineer :
ResponsibleParty

Office Phone :
Telephone

Weekday :
Contact

Beeper :
Telephone

HomePhone :
Telephone

MobilePhone :
Telephone

Emergency :
Contact

Office :
Location

Weekend :
Contact

Home :
Location

HomeEmail :
Emai l

OfficeEmail
: Email

ResponsiblePartyContact

ContactTelephone

ContactTelephone

ContactTelephone

ContactLocation

ContactLocation ContactEmail

ContactEmail
5-6 Common Warehouse Metamodel, v1.1 March 2003

5

Superclasses

ModelElement

References

email

location

responsibleParty

telephone

Identifies the Email instances associated with this Contact instance. The ordered constraint
may be used to identify the order in which Email instances should be contacted.

class: Email

defined by: ContactEmail::email

multiplicity: zero or more; ordered

inverse: Email::contact

Identifies the Location instances associated with this Contact instance. The ordered constraint
may be used to identify the order in which Location instances should be contacted.

class: Location

defined by: ContactLocation::location

multiplicity: zero or more; ordered

inverse: Location::contact

Identifies the ResponsibleParty instances associated with this Contact instance.

class: ResponsibleParty

defined by: ResponsiblePartyContact::responsibleParty

multiplicity: zero or more

inverse: ResponsibleParty::contact

Identifies the Telephone instance associated with this Contact instance. The ordered constraint
may be used to identify the order in which Telephone instances should be contacted.

class: Telephone

defined by: ContactTelephone::telephone

multiplicity: zero or more; ordered

inverse: Telephone::contact
March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-7

5

url

5.3.1.2 Description

Instances of the Description class contain arbitrary textual information relevant to a
particular ModelElement. While Description instances may contain any desired textual
information, they will typically contain documentation or references to external
reference information about the owning ModelElement.

Any ModelElement may have multiple Description instances associated with it.
Indeed, a ModelElement instance that is a Description instance may itself have
multiple Description instances linked to it. Also, a hierarchies of Description instances
can be constructed.

Description instances are meant to hold descriptive textual information that will be
stored in the metamodel itself. In contrast, Document instances are meant to describe
the location documentary information stored outside the metamodel.

Superclasses

Namespace

Attributes

body

language

Identifies the ResourceLocator instances associated with this Contact instance. The ordered
constraint on the ResourceLocator association may be used to identify the order in which
ResourceLocator instances should be contacted.

class: ResourceLocator

defined by: ContactResourceLocator::url

multiplicity: zero or more; ordered

inverse: ResourceLocator::contact

Contains a textual description of information pertaining to the owning ModelElement.

type: String

multiplicity: exactly one

Contains an identification of the language in which the content of the body attribute is
specified. If desired, the language specification may be applied to the name attribute derived
from ModelElement as well.

type: Name

multiplicity: exactly one
5-8 Common Warehouse Metamodel, v1.1 March 2003

5

type

References

modelElement

Constraints

A Description instance may not describe itself [C-3-1].

5.3.1.3 Document

The Document class represents externally stored descriptive information about some
aspect of the modeled system. An instance of Document might be associated with one
or more ModelElements. The name of a Document instance is derived from its
superclasses.

Although the purposes of the Description and Document types may overlap somewhat,
their chief distinction is that Description instances are stored with the CWM metadata
whereas Documentation instances are stored externally to the CWM metadata.
Although there is an implication here that Documentation instances might represent
more voluminous information than Description instances, there is no particular
requirement that this be so.

Because Documentation instances are themselves Namespace instances, hierarchical
relationships between various externally stored documents can be represented.

Superclasses

Namespace

Contains a textual description of the type of information the Description represents. Specific
contents are usage defined.

type: String

multiplicity: exactly one

Identifies the ModelElement for which this Description instance is relevant.

class: ModelElement

defined by: ModelElementDescription::modelElement

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-9

5

Attributes

reference

type

References

modelElement

Constraints

A Document instance may not describe itself [C-3-2].

5.3.1.4 Email

An Email instance identifies a single email address. Via a Contact instance, an email
address can be associated with one or more ResponsibleParty instances. Email
instances might, for example, be used by an automated tool to send an automatically
generated email message to a ResponsibleParty instance responsible about some
change of state for a particular ModelElement. Multiple Email instances may be
associated with a single Contact instance and the ordering of the association between
them may be used to represent the sequence in which the Email instances should be
contacted.

Because email addresses are first class objects within the CWM, they can be used for
purposes beyond those associated with the CWMFoundation’s Business Information
concepts.

Contains a textual representation of the identification, and perhaps the physical location, of
externally maintained documentary information about some aspect of the ModelElement(s)
with which the Document instance is associated.

type: String

multiplicity: exactly one

Contains a textual description of the type of information the Document represents. Specific
contents are usage defined.

type: String

multiplicity: exactly one

Identifies the ModelElement(s) for which this Document instance is relevant.

class: ModelElement

defined by: DocumentDescribes::modelElement

multiplicity: zero or more
5-10 Common Warehouse Metamodel, v1.1 March 2003

5

Superclasses

ModelElement

Attributes

eMailAddress

eMailType

References

contact

5.3.1.5 Location

Instances of the Location class represent physical locations. Note that the name of a
Location is derived from its superclass, ModelElement.

Because Locations are first class objects within the CWM, they can be used for
purposes beyond those associated with the CWM Foundation’s Business Information
concepts. If additional attributes about Location instances are required, they should be
added by creating subtypes of the Location class and placing the additional attributes
therein.

Superclasses

ModelElement

A textual representation of an email address.

type: String

multiplicity: exactly one

Contains a textual representation of the type of the email address. Interesting values might
include location information such as “home” or “work,” or perhaps an indication of the type
of email system for which the eMailAddress is formatted, such as “SMTP” or “X.400.”

type: String

multiplicity: exactly one

Identifies the Contact instance(s) for which this Email instance is relevant.

class: Contact

defined by: ContactEmail::contact

multiplicity: zero or more

inverse: Contact::email
March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-11

5

Attributes

locationType

address

city

postCode

area

country

Descriptive information about the character or identity of the Location instance.

type: String

multiplicity: exactly one

The address of the Location instance. The precise content of this string is usage-defined.

type: String

multiplicity: exactly one

The name of the city in which the Location instance is found. The precise content of this
string is usage-defined.

type: String

multiplicity: exactly one.

The postal code of the Location instance. The precise content of this string is usage-defined.

type: String

multiplicity: exactly one

The area in which the Location instance is found. The precise content of this string is usage-
defined, but a common usage would be to refer to a geographical subdivision such as a state
or province.

type: String

multiplicity: exactly one

The name of the country in which the Location instance is found. The precise content of this
string is usage-defined.

type: String

multiplicity: exactly one
5-12 Common Warehouse Metamodel, v1.1 March 2003

5

References

contact

5.3.1.6 ResourceLocator

Instances of the ResourceLocator class provide a general means for describing the
resources whose location is not defined by a traditional mailing address. For example,
a ResourceLocator instance could refer to anything from a location within a building
(“Room 317, third file cabinet, 2nd drawer”) to a web location (“www.omg.org”).

Because they are first class objects in the CWM, ResourceLocator instances may also
be used for purposes beyond those associated with the CWM Foundation’s Business
Information concepts.

Superclasses

ModelElement

Attributes

url

References

contact

Identifies the Contact instance(s) with which this Location instance is associated.

class: Contact

defined by: ContactLocation::contact

multiplicity: zero or more

inverse: Contact::location

Contains the text of the resource location. For Internet locations, this will be a web URL
(Uniform Resource Locator) but there is no requirement that this be so. In fact, the string can
contain any text meaningful to its intended use in a particular environment.

type: String

multiplicity: exactly one

Identifies the Contact instance(s) for which the ResourceLocator instance is relevant.

class: Contact

defined by: ContactResourceLocator::contact

multiplicity: zero or more

inverse: Contact::url
March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-13

5

5.3.1.7 ResponsibleParty

The ResponsibleParty class allows representation of entities within an information
system that are in some way interested in receiving information about, or are otherwise
responsible for, particular ModelElements. Each ResponsibleParty may own multiple
sets of contact information, and a single ResponsibleParty may be associated with
many ModelElements.

ResponsibleParty instances may represent any entity appropriate to the system being
modeled and need not be limited to people. For example, a ResponsibleParty instance
might represent an individual such as “George Washington,” a role (the “President”),
or an organization (“Congress”), depending upon the needs of the system being
modeled. Similarly, the precise semantics of the responsibility attribute are open to
interpretation and may be adapted on a system-by-system basis.

Because ResponsibleParty instances are Namespaces, they can be organized into
hierarchies of ResponsibleParty instances, capturing organizational structures or
similar relationships.

Superclasses

Namespace

Attributes

responsibility

References

contact

Textual identification or description of the ResponsibleParty in a usage-dependent format.

type: String

multiplicity: exactly one

Identifies the Contact instance(s) associated with a ResponsibleParty instance. The ordered
constraint on this reference allows retention of the sequence in which multiple Contact should
be employed.

class: Contact

defined by: ResponsiblePartyContact::contact

multiplicity: zero or more; ordered

inverse: Contact::responsibleParty
5-14 Common Warehouse Metamodel, v1.1 March 2003

5

modelElement

Constraints

A ResponsibleParty instance may not be responsible for itself. [C-3-3]

5.3.1.8 Telephone

Instances of the Telephone class represent telephone contact information.

Because telephones are first class objects within the CWM, they can be used for
purposes beyond those associated with the CWM Foundation’s Business Information
concepts.

Superclasses

ModelElement

Attributes

phoneNumber

phoneType

Identifies the model elements for which this ResponsibleParty instance has some interest or
responsibility.

class: ModelElement

defined by: ModelElementResponsibility::modelElement

multiplicity: zero or more

A textual representation of the telephone’s number.

type: String

multiplicity: exactly one

A textual representation of the telephone’s type, such as “multi-line,” or its usage, such as
“home,” “work,” “fax,” or “mobile.”

type: String

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-15

5

References

contact

5.3.2 BusinessInformation Associations

5.3.2.1 ContactEmail Protected

The ContactEmail association indicates the Email instances relevant used by Contact
instances.

Ends

contact

email

5.3.2.2 ContactLocation Protected

The ContactLocation association relates Contact instances to relevant Location
instances.

Identifies the Contact instance(s) for which the Telephone instance is relevant.

class: Contact

defined by: ContactTelephone::contact

multiplicity: zero or more

inverse: Contact::telephone

Identifies the Contact instance(s) for which this Email instance is relevant.

class: Contact

multiplicity: zero or more

Identifies the Email instances associated with this Contact instance. The ordered constraint
may be used to identify the order in which Email instances should be contacted.

class: Email

multiplicity: zero or more; ordered
5-16 Common Warehouse Metamodel, v1.1 March 2003

5

Ends

contact

location

5.3.2.3 ContactResourceLocator Protected

The ContactResourceLocator association relates ResourceLocator instances to the
Contact instances in which they participate.

Ends

contact

url

5.3.2.4 ContactTelephone Protected

The ContactTelephone association relates telephones to the Contact instances that
reference them.

Identifies the Contact instance(s) with which this Location instance is associated.

class: Contact

multiplicity: zero or more

Identifies the Location instances associated with this Contact instance. The ordered constraint
may be used to identify the order in which Location instances should be contacted.

class: Location

multiplicity: zero or more; ordered

Identifies the Contact instances for which a ResourceLocator instance is relevant.

class: Contact

multiplicity: zero or more

Identifies the ResourceLocator instances related to this ContactInfo instance. Note that the
ordered constraint on this role can be used to indicate the sequence in which ResourceLocator
should be contacted.

class: Telephone

multiplicity: zero or more; ordered
March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-17

5

Ends

contact

telephone

5.3.2.5 DocumentDescribes

The DocumentDescribes association connects a Document instance with the
ModelElement instances to which it pertains.

Ends

modelElement

document

5.3.2.6 ModelElementDescription

The ModelElementDescription association connects a Description instance with the
ModelElement instances to which it applies.

Identifies the Contact instance(s) for which the Telephone instance is relevant.

class: Contact

multiplicity: zero or more

Identifies the Telephone instance associated with this Contact instance. The ordered constraint
may be used to identify the order in which Telephone instances should be contacted.

class: Telephone

multiplicity: zero or more; ordered

Identifies the ModelElement instances for which this Document instance is relevant.

class: ModelElement

multiplicity: zero or more

Identifies the Document instances relevant to a particular ModelElement.

class: Document

multiplicity: zero or more
5-18 Common Warehouse Metamodel, v1.1 March 2003

5

Ends

modelElement

description

5.3.2.7 ModelElementResponsibility

The ModelElement Responsibility association identifies the ResponsibleParty instances
for each ModelElement and allows determination of the ModelElements for which a
ResponsibleParty instance is responsible.

Ends

modelElement

responsibleParty

5.3.2.8 ResponsiblePartyContact Protected

The ResponsiblePartyContact association allows a ResponsibleParty to have multiple
sets of contact information. The ordered constraint can be used to determine the
sequence in which the sets of contact information should be used.

Identifies the ModelElement instances for which this Description instance is relevant.

class: ModelElement

multiplicity: zero or more

Identifies the Description instances relevant for a particular ModelElement instance.

class: Description

multiplicity: zero or more

Identifies the model elements for which this ResponsibleParty instance has some interest or
responsibility.

class: ModelElement

multiplicity: zero or more

Identifies the ResponsibleParty instances relevant for a particular ModelElement instance.

class: ResponsibleParty

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Business Information Metamodel 5-19

5

Ends

contact

responsibleParty

5.3.3 OCL Representation of BusinessInformation Constraints

5.4 DataTypes Metamodel

The DataTypes package depends on the following packages:

org.omg::CWM::ObjectModel::Core

The CWM DataTypes metamodel supports definition of metamodel constructs that
modelers can use to create the specific data types they need. Although the CWM
Foundation itself does not contain specific data type definitions, a number of data type
definitions for widely used environments are provided (in the CWM Data Types
chapter) as examples of the appropriate usage of CWM Foundation classes for creating
data type definitions.

Identifies the Contact instance(s) associated with a ResponsibleParty instance. The ordered
constraint on this reference allows retention of the sequence in which multiple Contact should
be employed.

class: Contact

multiplicity: zero or more; ordered

Identifies the ResponsibleParty instances associated with this Contact instance.

class: ResponsibleParty

multiplicity: zero or more

[C-3-1] A Description may not describe itself.

context Description inv:

self.modelElement->forAll(p | p <> self)

[C-3-2] A Document may not describe itself.

context Document inv:

self.modelElement->forAll(p | p <> self)

[C-3-3] A ResponsibleParty may not describe itself.

context ResponsibleParty inv:

self.modelElement->forAll(p | p <> self)
5-20 Common Warehouse Metamodel, v1.1 March 2003

5

Figure 5-5 DataTypes metamodel

5.4.1 DataTypes Classes

5.4.1.1 Enumeration

The Enumeration class is intended as a starting point from which enumerated data
types can be created. An enumerated data type is a collection of identifiers often used
as the permitted states that some other attribute or property of the enumerated type
may take.

The isOrdered attribute of an Enumeration instance is used to determine if the ordered
constraint on the EnumerationLiterals association is relevant for the enumeration. The
particular ordering of EnumerationLiteral instances is obtained from the ordered
constraint on the association even if the value attributes of the EnumerationLiteral
instances contain non-null values that might be used to determine ordering. This is
done to provide more flexible ordering semantics.

An instance of Enumeration is also required to create a range data type. Refer to the
EnumerationLiteral class for details.

Superclasses

DataType

ModelElement
(from Core)

Enumeration
isOrdered : Boolean
/ literal : EnumerationLiteral

EnumerationLiteral

value : Expression
/ enumeration : Enumeration

1

1..*

1

literal 1..*

StructuralFeature
(from Core)

Union
/ discriminator : StructuralFeature0..1

*discriminator

0..1

*

UnionMember
memberCase : Expression
isDefault : Boolean

DataType
(from Core)

Classifier
(f rom Core)

TypeAlias

/ type : Classifier

1

*

type

1

*

Attribute
(f rom Core)

ProcedureExpression
(from Core)

QueryExpression
March 2003 OMG-CWM, v1.1: DataTypes Metamodel 5-21

5

Contained Elements

EnumerationLiteral

Attributes

isOrdered

References

literal

5.4.1.2 EnumerationLiteral

EnumerationLiteral instances describe the enumeration identifiers, and possibly the
values, associated with an enumerated data type. Enumeration identifiers are contained
in the name attribute derived from the EnumerationLiteral instance’s ModelElement
superclass.

EnumerationLiteral instances may also be used to define expression-based values such
as ranges. To do so, simply state the membership expression in the instance’s value.
For example, a range literal can be created by setting the value attribute to “m..n,”
where m represents the lower bound of the range, and n, the upper bound. In this way,
ranges and other more complicated expressions can be intermixed with simple
enumeration literals. For example, an enumeration might contain the literals “1,” “2,”
“4..7,” and “> 10.”

Consequently, a simple range data type can be created with an Enumeration instance
that owns a single EnumerationLiteral instance. For example, a data type for positive
integers could be created as shown in Figure 5-6. A model attribute of this data type
might then be declared as “posInt : PositiveInteger.”

If True, the ordered constraint on the EnumerationLiterals association is relevant. Otherwise,
the ordering of EnumerationLiteral instances is considered unspecified.

type: Boolean

multiplicity: exactly one

Identifies the EnumerationLiteral instances relevant for a particular Enumeration instance. If
the Enumeration’s isOrdered attribute is True, the ordering constraint on this reference end
can be used to determine a logical ordering for the EnumerationLiteral instances. Otherwise,
ordering is ignored.

class: EnumerationLiteral

defined by: EnumerationLiterals::literal

multiplicity: one or more; ordered

inverse: EnumerationLiteral::enumeration
5-22 Common Warehouse Metamodel, v1.1 March 2003

5

Figure 5-6 Using Enumeration and EnumerationLiteral instances to create range data types

Superclasses

ModelElement

Attributes

value

References

enumeration

5.4.1.3 QueryExpression

QueryExpression instances contain query statements in language-dependent form.

Superclasses

ProcedureExpression

The value associated with an enumeration identifier can be stored here. The attribute is
optional because enumeration literals are not required to have a specific, displayable value.
This is indicated by either an empty value attribute or a value attribute value whose
expression body attribute is a zero-length string.

type: Expression

multiplicity: zero or more

Identifies the Enumeration instance for which this enumeration literal is relevant.

class: Enumeration

defined by: EnumerationLiterals::enumeration

multiplicity: exactly one

inverse: Enumeration::literal

PositiveInteger :
Enumeration

PosIntRange :
EnumerationLiteral

Value =
">= 0"
March 2003 OMG-CWM, v1.1: DataTypes Metamodel 5-23

5

5.4.1.4 TypeAlias

The TypeAlias class is intended to provide a renaming capability for Classifier
instances. This class is required to support situations in which creation of an alias for a
class effectively creates a new class. For example, CORBA IDL type aliases have
different typeCodes than their base types and are therefore treated as distinct types.

Superclasses

DataType

References

type

Constraints

A TypeAlias instance cannot alias itself. [C-4-1]

5.4.1.5 Union

The Union class represents programming language unions and similarly structured data
types. Because of the diversity of union semantics found across software systems, the
Union and UnionMember classes are likely candidates for specialization to better
capture union semantics in specific language extension packages.

A discriminated Union has a collection of UnionMembers that determine the sets of
contents that the Union may contain. Such Unions have an attribute called the
discriminator that identifies the memberCase value of the UnionMember that the Union
currently contains. The discriminator is found via the UnionDiscriminator association
to StructuralFeature. The discriminator may be embedded within UnionMembers or
may be located outside the discriminator. If it is located within UnionMembers, the
discriminator should occur in every UnionMember at the same location (often, the
first).

Undiscriminated unions (for example, a C language union) are also supported, but have
an empty discriminator reference, and the memberCase attribute of the UnionMembers
it contains is ignored.

Undiscriminated Unions are often used to represent alternate views of a single physical
storage area. A fine degree of control over this aspect of Unions may be obtained by
creating a class that derives from both UnionMember and FixedOffsetField (in the
CWM Record package) and setting the offset attribute instances of that class
accordingly.

Identifies the Classifier instance for which this TypeAlias instance acts as an alias.

class: Classifier

defined by: ClassifierAlias::type

multiplicity: exactly one
5-24 Common Warehouse Metamodel, v1.1 March 2003

5

Superclasses

Classifier

Contained Elements

UnionMember

References

discriminator

Constraints

A Union can have at most one default UnionMember instance. [C-4-2]

5.4.1.6 UnionMember

UnionMembers are described as features of a Union and each represents one of the
members of a Union. Note, however, that multiple case values can map to a single
UnionMember. If isDefault is true, the union member is the default member.
UnionMember instances are allowed to have a memberCase and be the default case.

UnionMember instances often represent structured storage areas. A particular
UnionMember may be associated with a Classifier that describes its internal structure
via the StructuralFeatureType association (defined in the ObjectModel::Core package).
For example, the Record::Group class, itself a Classifier, can be used as the type of a
UnionMember in a manner completely analogous to how it is used to describe the type
of a structured field (see the instance diagrams in the Record metamodel chapter for
details).

Superclasses

Attribute

Attributes

memberCase

Identifies the StructuralFeature instance that serves as the discriminator for the Union.

class: StructuralFeature

defined by: UnionDiscriminator::discriminator

multiplicity: zero or more

Contains the value of the Union’s discriminator for this UnionMember.

type: Expression

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: DataTypes Metamodel 5-25

5

isDefault

5.4.2 DataTypes Associations

5.4.2.1 ClassifierAlias

The ClassifierAlias association connects TypeAlias instances with the Classifier
instances that they rename.

Ends

type

alias

5.4.2.2 EnumerationLiterals Protected

The EnumerationLiterals association links enumeration literals to the Enumeration
instances that contain them.

If the Enumeration’s isOrdered attribute is True, the ordering constraint on the
association is relevant. Otherwise, it is ignored.

Ends

enumeration

Indicates if this UnionMember is the default member of the Union (implying that when
unstated, the Union’s discriminator would assume this instance’s memberCase value).

type: Boolean

multiplicity: exactly one

Identifies the Classifier instance for which this TypeAlias instance acts as an alias.

class: Classifier

multiplicity: exactly one

Identifies the TypeAliases that have been defined for a particular Classifier instance.

class: TypeAlias

multiplicity: zero or more

Identifies the Enumeration instance for which this enumeration literal is relevant.

class: Enumeration

multiplicity: exactly one
5-26 Common Warehouse Metamodel, v1.1 March 2003

5

literal

5.4.2.3 UnionDiscriminator

The UnionDiscriminator association connects a Union instance with the
StructuralFeature instance that can be used to determine which UnionMember instance
is currently present in the Union instance. This “discriminating” attribute may be a
feature of the UnionMembers themselves or may be a feature of some Classifier that
contains the Union instance as one of its Features. In the former case, the
discriminating feature will usually be present at the same offset in each UnionMember
instance. If the discriminator reference is empty for a particular Union instance, it is
considered to be an “undiscriminated” Union and determination of the current
UnionMember residing in the Union is usage-defined.

Ends

discriminator

discriminatedUnion

Identifies the EnumerationLiteral instances relevant for a particular Enumeration instance. If
the Enumeration’s isOrdered attribute is True, the ordering constraint on this association end
can be used to determine a logical ordering for the EnumerationLiteral instances. Otherwise,
ordering is ignored.

class: EnumerationLiteral

multiplicity: one or more; ordered

aggregation: composite

Identifies the StructuralFeature instance that serves as the discriminator for the Union.

class: StructuralFeature

multiplicity: zero or one

Identifies the Union instances in which a particular StructuralFeature acts as the discriminator.

class: Union

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: DataTypes Metamodel 5-27

5

5.4.3 OCL Representation of DataTypes Constraints

5.5 Expressions Metamodel

The Expressions package depends on the following packages:

org.omg::CWM::ObjectModel::Core

The CWM Expressions metamodel provides basic support for the definition of
expression trees within the CWM. The intent of the Expressions metamodel is to
provide a place for other CWM packages (such as Transformation) and CWM
compliant tools to record shared expressions in a common form that can be used for
interchange and lineage tracking.

Figure 5-7 Expressions metamodel

[C-4-1] A TypeAlias instance cannot alias itself.

context TypeAlias inv:

self.type <> self

[C-4-2] A Union can have at most one default UnionMember instance.

context Union inv:

self.allFeatures->select(isDefault)->size <= 1

ConstantNode

value : Any Feature
(from Core)

Classifier
(from Core)

FeatureNode
/ argument : ExpressionNode
/ feature : Feature

1* 1*

ExpressionNode
expression : Expression
/ featureNode : FeatureNode
/ type : Classifier0..1 *

type

0..1 *

0..1

*

0..1

argument

* {ordered}

ModelElement
(from Core)

ElementNode
/ modelElement : ModelElement

1

*

1

*

Element
(from Core)
5-28 Common Warehouse Metamodel, v1.1 March 2003

5

The expression concept in the CWM Foundation takes a functional view of expression
trees, resulting in the ability of relatively few expression types to represent a broad
range of expressions. Every function or traditional mathematical operator that appears
in an expression hierarchy is represented as a FeatureNode. For example, the arithmetic
plus operation “a + b” can be thought of as the function “sum(a, b).” The semantics of
a particular function or operation are left to specific tool implementations and are not
captured by the CWM.

The hierarchical nature of the CWM’s representation of expressions is achieved by the
recursive nature of the OperationArgument association. This association allows the
sub-hierarchies within an expression to be treated as actual parameters of their parent
nodes.

By way of example, the following instance diagram shows one representation of a
CWM expression tree for the well-known Einstein equation E = mc2. To better
understand how the equation is mapped into the expression tree, the formula can be
rewritten in a functional notation as

Assign(E, Multiply(m, Power(c, 2)))

This functional form of the equation is then mapped into a set of expression tree
instances as shown in Figure 5-8.

Alternatively, if sharing and lineage tracking of elements within the expression are not
required, the expression could be stored using an Attribute of type ExpressionNode by
assigning the string “E = mc2” as the Attribute’s expression::body value. For
flexibility, use of the expression attribute within an expression hierarchy is allowed,
but the precise semantics of such situations are not defined by CWM.
March 2003 OMG-CWM, v1.1: Expressions Metamodel 5-29

5

Figure 5-8 A CWM expression tree for the formula E = mc2

5.5.1 Expressions Classes

5.5.1.1 ConstantNode

Instances of the ConstantNode class are ExpressionNodes that represent constant
values within expressions. Appropriate uses of the ConstantNode class place the values
of constants in the value attribute, rather than in the expression::body attribute
inherited from ExpressionNode. The latter attribute is intended for a different purpose;
see the description of the ExpressionNode class for details.

Superclasses

ExpressionNode

 : FeatureNode

 : FeatureNode

Assign :
Operation

leftSide :
Parameter

rightSide :
Parameter

E :
Attribute

 : FeatureNode

 : FeatureNode m :
Attribute

 : FeatureNode

 : FeatureNode

value = 2 :
Integer

Multiply :
Operation

multiplicand :
Parameter

multiplier :
Parameter

Power :
Operation

base :
Parameter

exponent :
Parameter :

ConstantNode

NodeFeature

NodeFeature

NodeFeature c :
Attribute

NodeFeature

NodeFeature

NodeFeature

OperationArgument

OperationArgument

OperationArgument

BehavioralFeatureParameter

BehavioralFeatureParameter

BehavioralFeatureParameter
5-30 Common Warehouse Metamodel, v1.1 March 2003

5

Attributes

value

5.5.1.2 ElementNode

An ElementNode is a node in an expression that references some ModelElement
instance. This subclass of ExpressionNode allows an expression to reference any CWM
model element that is not a Feature and cannot, therefore, be represented as a
FeatureNode.

Typically, use of this subclass of ExpressionNode implies that a tool attempting to
evaluate the expression will be able to determine if the referenced ModelElement
instance is also an instance of some interesting subclass of ModelElement that contains
a value of interest in the expression.

Superclasses

ExpressionNode

References

modelElement

5.5.1.3 ExpressionNode

All node types within an expression are derived from the ExpressionNode type.

An expression is stored as a collection of instances of the subtypes of ExpressionNode
arranged in a hierarchical fashion. The ExpressionNode instance at the top (or “root”)
of the hierarchy represents the value of the expression and serves as a starting point for
expression evaluation. Refer to the descriptions of the subtypes of ExpressionNode
(ElementNode, ConstantNode, and FeatureNode) for additional information about the
representation of expressions.

One important purpose for providing storage of expressions as a general feature of the
CWM is to promote sharing them between tools and to provide a means for recording
lineage relationships between components within expressions. Specific details of the
implementation of expression operators are left to the implementing tools.

The value of a constant in an expression tree.

type: Any

multiplicity: exactly one

Identifies the ModelElement instance that this ElementNode references.

class: ModelElement

defined by: ReferencedElement::modelElement

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Expressions Metamodel 5-31

5

When ExpressionNode is used as the type of an Attribute, an instance of the Attribute
can contain either an expression tree as described here or a textual representation of the
expression in body and language values in an attribute of type Expression (defined
ObjectModel). The expression attribute is provided for the latter usage. To obtain
CWM’s sharing and lineage tracking features for elements within an expression, the
expression must be represented as an expression hierarcy.

Superclasses

Element

Attributes

expression

References

featureNode

type

Contains a textual representation of the expression relevant for this ExpressionNode instance.

type: Expression

multiplicity: zero or one

Identifies the FeatureNode for which this ExpressionNode instance represents the value of an
argument. Because arguments can themselves represent entire expression sub-trees, this
reference is used to create hierarchies of expression nodes, permitting representation of entire
expression trees within the CWM.

class: FeatureNode

defined by: OperationArgument::featureNode

multiplicity: zero or one

inverse: FeatureNode::argument

Identifies the Classifier instance that represents the type of the expression at this level in the
expression hierarchy. Although, formally, each node within an expression tree is capable of
having a value and therefore, a data type, this reference is optional because modeling the data
type of intermediate nodes in an expression tree is not always interesting, thereby reducing the
effort required to create expression trees.

class: Classifier

defined by: ExpressionNodeClassifier::type

multiplicity: zero or one
5-32 Common Warehouse Metamodel, v1.1 March 2003

5

5.5.1.4 FeatureNode

The FeatureNode class represents ExpressionNode instances that are features; that is,
attributes or operations of some Classifier instance within the CWM.

A FeatureNode with a null OperationArgument association represents either a
parameter-less operation or an attribute value obtained from some StructuralFeature
instance.

Superclasses

ExpressionNode

Contained Elements

ExpressionNode

References

argument

feature

Constraints

A FeatureNode that has parameters other than the “this” parameter represents a Feature
that is also an Operation. [C-5-1]

If the FeatureNode represents an instance-scope feature, the first argument is a “this”
or “self” argument; that is, the object invoking the feature. The convention is enforced
by checking that the type of the first argument is the same as the type of the feature.
[C-5-2]

Identifies the ExpressionNode instances that represent the actual arguments for this
FeatureNode. By convention, the first actual argument is a reference to the object itself. If the
argument reference is null, the FeatureNode is an attribute or parameter-less function or
operation.

class: ExpressionNode

defined by: OperationArgument::argument

multiplicity: zero or more; ordered

inverse: ExpressionNode::featureNode

Identifies the Feature (attribute or operation) that this FeatureNode instance represents.

class: Feature

defined by: NodeFeature::feature

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Expressions Metamodel 5-33

5

If the FeatureNode represents a BehavioralFeature, the number of arguments must be
equal to the number of the BehavioralFeature’s parameters, plus one for the “this”
parameter if the BehavioralFeature is of instance scope. [C-5-3]

If the FeatureNode represents a BehavioralFeature, the types of the arguments must
match, in order, the types of the parameters, allowing for the optional presence of a
leading “this” parameter. [C-5-4]

5.5.2 Expressions Associations

5.5.2.1 ExpressionNodeClassifier

The ExpressionNodeClassifier association identifies the type of an ExpressionNode
instance.

Ends

expressionNode

type

5.5.2.2 NodeFeature

The NodeFeature association identifies the Feature (usually, an Attribute or Operation
subtype) that FeatureNode represents.

Ends

feature

Identifies the ExpressionNode instances for which this Classifier acts as the type.

class: ExpressionNode

multiplicity: zero or more

Identifies the Classifier instance that represents the type of the expression at this level in the
expression hierarchy. Although, formally, each node within an expression tree is capable of
having a value and therefore, a data type, this reference is optional because modeling the data
type of intermediate nodes in an expression tree is not always interesting, thereby reducing the
effort required to create expression trees.

class: Classifier

multiplicity: zero or one

Identifies the Feature (attribute or operation) that this FeatureNode instance represents.

class: Feature

multiplicity: exactly one
5-34 Common Warehouse Metamodel, v1.1 March 2003

5

featureNode

5.5.2.3 OperationArgument Protected

The OperationArgument association identifies and orders the actual arguments of an
Operation indicated by the FeatureNode end of the association. This association is
meaningful only if the FeatureNode references, via the NodeFeature association, a
Feature that is also an Operation. The association is not meaningful under other
circumstances.

Ends

argument

featureNode

5.5.2.4 ReferencedElement

The ReferencedElement association links the ElementNode instances of an expression
with the ModelElement instances to which they refer.

Identifies the FeatureNode instances that use a particular Feature.

class: FeatureNode

multiplicity: zero or more

Identifies the ExpressionNode instances that represent the actual arguments for this
FeatureNode. If the argument reference is null, the FeatureNode is an attribute or parameter-
less function or operation.

class: ExpressionNode

multiplicity: zero or more; ordered

Identifies the FeatureNode for which this ExpressionNode instance represents the value of an
argument. Because arguments can themselves represent entire expression sub-trees, this
reference is used to create hierarchies of expression nodes, permitting representation of entire
expression trees within the CWM.

class: FeatureNode

multiplicity: zero or one

aggregation: composite
March 2003 OMG-CWM, v1.1: Expressions Metamodel 5-35

5

Ends

elementNode

modelElement

5.5.3 OCL Representation of Expressions Constraints

Identifies the ElementNode instances that represent a particular ModelElement in expressions.

class: ElementNode

multiplicity: zero or more

Identifies the ModelElement instance that this ElementNode references.

class: ModelElement

multiplicity: exactly one

[C-5-1] A FeatureNode that has parameters other than the “this” parameter
represents a Feature that is also an Operation.

context FeatureNode inv:

if self.feature.ownerScope = #instance
 then self.argument->size > 1 implies
 self.feature.oclIsKindOf(Operation)
 else self.argument->size > 0 implies
 self.feature.oclIsKindOf(Operation)
endif

[C-5-2] If the FeatureNode represents an instance-scope feature, the first argument is
a “this” or “self” argument; that is, the object invoking the feature. The convention is
enforced by checking that the type of the first argument is the same as the type of
the feature.

context FeatureNode inv:

self.feature.ownerScope = #instance implies
self.argument->first.type.allFeatures->includes(self.feature)
5-36 Common Warehouse Metamodel, v1.1 March 2003

5

5.6 KeysIndexes Metamodel

The KeysIndexes package depends on the following package:

org.omg::CWM::ObjectModel::Core

Keys and indexes as means for specifying instances and for identifying alternate
sortings of instances are represented in the CWMFoundation so that they can be shared
among the various data models that employ them. The CWM Foundation defines the
base concepts (uniqueness and relationships implemented as keys) upon which more
specific key structures can be built by other CWM and tool-specific packages.

[C-5-3] If the FeatureNode represents a BehavioralFeature, the number of arguments
must be equal to the number of the BehavioralFeature’s parameters, plus one for the
“this” parameter if the BehavioralFeature is of instance scope.

context FeatureNode inv:

self.feature.oclIsKindOf(BehavioralFeature) implies
(if self.feature.ownerScope = #instance
 then self.argument->size =
 self.feature.oclAsType(BehavioralFeature).parameters->size + 1
 else self.argument->size =
 self.feature.oclAsType(BehavioralFeature).parameters->size
endif)

[C-5-4] If the FeatureNode represents a BehavioralFeature, the types of the
arguments must match, in order, the types of the parameters, allowing for the
optional presence of a leading “this” parameter.

context FeatureNode inv:

self.feature.oclIsKindOf(BehavioralFeature) implies
(if self.feature.ownerScope = #instance
 then self.argument->forAll(arg : Integer |
 self.argument->at(arg + 1)
 .allSuperTypes.union(self.argument.oclType)->
 includes(self.feature.oclAsType(BehavioralFeature)
 .parameters->at(arg))
 else self.argument->forAll(arg : Integer |
 self.argument->at(arg)
 .allSuperTypes.union(self.argument.oclType)->
 includes(self.feature.oclAsType(BehavioralFeature)
 .parameters->at(arg))
endif)
March 2003 OMG-CWM, v1.1: KeysIndexes Metamodel 5-37

5

Figure 5-9 KeysIndexes metamodel

The concepts of key and index have been placed in the CWM Foundation because they
are available in many types of data resources. In the CWM Foundation class and
association descriptions that follow, relational model examples are frequently used
when discussing the definition and usage of key and index types. This is done because
of the wide-spread availability of relational systems and is thought to promote an
understanding of the underlying concepts. These concepts, however, are no less
applicable to other data models as well.

The two central classes for representing the concept of keys are UniqueKey and
KeyRelationship. UniqueKey instances correspond to the notion that keys represent the
identity of instances -- similar to the relational model’s concept of a primary key or an
object model’s concept of an object identity. In contrast, KeyRelationship instances
correspond to the notion that keys embedded in an instance can be used to determine
the identity of other related instances -- similar to the relational model concept of
foreign key and the object model concept of a reference. Consequently, UniqueKey and
KeyRelationship are best thought of as representing roles that collections of Features
of Classifiers play rather than Classifiers describing the internal structure of keys.
Representing keys as roles rather than structural entities provides greater flexibility and
allows the reuse of Features in multiple keys and in differing relationships to each
other. Associations within the KeysIndexes package describe how UniqueKey and
KeyRelationship instances describe the roles they play for various Class instances and
the StructuralFeature instances they contain.

ModelE lement
(from Core)

Indexe dFeatu re
is As cending : Boolean
/ feature : StructuralFeature
/ index : Index

StructuralFeature
(from Core)

1

*

feature 1

*

Index

is Par titioning : Boolean
is Sor ted : Boo lean
is Uni que : Bool ean
/ indexedFeature : Inde xedFea ture
/ s pannedClas s : Cla s s

1

*

1

*

{ordered}

UniqueKey

/ feature : StructuralFeature
/ keyRelations hip : KeyRelations hip

1..*

*

feature 1..*
{ordered}

*

KeyRela tionship

/ feature : Struc turalFeature
/ uniqueKey : UniqueKey*1 *1

1.. *

*

feature
1.. *

{ordered}

*

Class
(f rom C ore)

1

*

spannedClass 1

*

*

0..1

/ownedElem ent*

/nam es pace 0..1

*

0.. 1

/owne dElem ent *

/namespace

0.. 1
5-38 Common Warehouse Metamodel, v1.1 March 2003

5

An example of the usage of Index, KeyRelationship, and UniqueKey instances to
implement a simple foreign key relationship between stars and the constellations in
which they are found can be seen in Figure 5-10. Also, Indexes are used to implement
the ordering of constellation and star IDs.

Figure 5-10 Star and constellation keys and index example

5.6.1 KeysIndexes Classes

5.6.1.1 Index

Instances of the Index class represent the ordering of the instances of some other Class,
and the Index is said to “span” the Class. Indexes normally have an ordered set of
attributes of the Class instance they span that make up the “key” of the index; this set
of relationships is represented by the IndexedFeature class that indicates how the
attributes are used by the Index instance.

The Index class is intended primarily as a starting point for tools that require the notion
of an index.

Superclasses

ModelElement

Contained Elements

IndexedFeature

Constellation :
Class

ID :
Attribute

Name :
Attribute

ConstellationKey :
UniqueKey

ConstellationID :
Attribute

Star :
Class

ID :
Attribute

Name :
Attribute

ConstellationMap :
KeyRelat ionship

ConstellationIndex :
Index

ConstellationIndexItem :
IndexedFeature

StarIndex :
Index

StarIndexItem :
IndexedFeature
March 2003 OMG-CWM, v1.1: KeysIndexes Metamodel 5-39

5

Attributes

isUnique

isSorted

isPartitioning

References

indexedFeature

spannedClass

The isUnique attribute is True if the Index instance guarantees all of its instances have a
unique key value.

type: Boolean

multiplicity: exactly one

If True, the Index instance is maintained in a sorted order.

type: Boolean

multiplicity: exactly one

If True, this Index instance is used as a partitioning index.

type: Boolean

multiplicity: exactly one

Identifies the IndexedFeature instance that associates this Index with one of the
StructuralFeature elements of the Index’s key. The ordered constraint on this reference can be
used to represent the sequential order of elements of the Index’s key.

class: IndexedFeature

defined by: IndexedFeatureInfo::indexedFeature

multiplicity: one or more; ordered

inverse: IndexedFeature::index

Identifies the Class instance spanned by the Index instance.

class: Class

defined by: IndexSpansClass::spannedClass

multiplicity: exactly one
5-40 Common Warehouse Metamodel, v1.1 March 2003

5

5.6.1.2 IndexedFeature

Instances of the IndexedFeature class map StructuralFeature instances of the spanned
Class instance to the Index instances that employ them as (part of) their key. Attributes
of IndexedFeature instances indicate how specific StructuralFeature instances are used
in Index keys.

Superclasses

ModelElement

Attributes

isAscending

References

index

feature

Constraints

The isAscending attribute is valid only if the isSorted attribute is True. [C-6-1]

5.6.1.3 KeyRelationship

KeyRelationship instances represent relationships between UniqueKey instances and
the Class(es) that reference them. This class is intended as a starting point for the
creation of “foreign key” and other associative relationships.

The isAscending attribute is true if the feature is sorted in ascending order and false, if
descending order.

type: Boolean

multiplicity: Zero or one

Identifies the Index instance for which this IndexedFeature instance is relevant.

class: Index

defined by: IndexedFeatureInfo::index

multiplicity: exactly one

inverse: Index::indexedFeature

Identifies the StructuralFeature instance for which this IndexedFeature instance is relevant.

class: StructuralFeature

defined by: IndexedFeatures::feature

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: KeysIndexes Metamodel 5-41

5

Superclasses

ModelElement

References

feature

uniqueKey

Constraints

A KeyRelationship instance must be owned by one and only one Class instance.
[C-6-2]

5.6.1.4 UniqueKey

A UniqueKey represents a collection of features of some Class that, taken together,
uniquely identify instances of the Class. Instances of UniqueKey for which all features
are required to have non-null values are candidates for use as primary keys such as
those defined by relational DBMSs.

Superclasses

ModelElement

Identifies StructuralFeature instances that participate as (part of) the key of this
KeyRelationship instance.

class: StructuralFeature

defined by: KeyRelationshipFeatures::feature

multiplicity: one or more; ordered

Identifies the UniqueKey instance that serves as the “primary key” for this KeyRelationship
instance.

class: UniqueKey

defined by: UniqueKeyRelationship::uniqueKey

multiplicity: exactly one

inverse: UniqueKey::keyRelationship
5-42 Common Warehouse Metamodel, v1.1 March 2003

5

References

feature

keyRelationship

Constraints

An UniqueKey instance must be owned by one and only one Class instance. [C-6-3]

5.6.2 KeysIndexes Associations

5.6.2.1 IndexedFeatureInfo Protected

The IndexedFeatureInfo association connects an Index instance to information about
how the StructuralFeature instances that are constituents of the Index’s key are used by
the Index.

Ends

index

Identifies the StructuralFeature instances that make up the unique key. The ordered constraint
is used to represent the sequence of StructuralFeature instances that make up the UniqueKey
instance’s key.

class: StructuralFeature

defined by: UniqueFeature::feature

multiplicity: one or more; ordered

Identifies the KeyRelationship instances that reference this UniqueKey instance.

class: KeyRelationship

defined by: UniqueKeyRelationship::keyRelationship

multiplicity: zero or more

inverse: KeyRelationship::uniqueKey

Identifies the Index instance for which this IndexedFeature instance is relevant.

class: Index

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: KeysIndexes Metamodel 5-43

5

indexedFeature

5.6.2.2 IndexedFeatures

The IndexedFeatures association links StructuralFeature instances to information about
how they participate in the keys of Index instances.

Ends

feature

indexedFeature

5.6.2.3 IndexSpansClass

Associates indexes with the classes they span. This relationship is separate from the
ownership of indexes, to allow modeling of systems where an index is NOT owned by
the object it spans. In most situations, however, the spanned and owning Class
instances will be the same.

Ends

index

Identifies the IndexedFeature instance that associates this Index with one of the
StructuralFeature elements of the Index’s key. The ordered constraint on this reference can be
used to represent the sequential order of elements of the Index’s key.

class: IndexedFeature

multiplicity: zero or more; ordered

aggregation: composite

Identifies the StructuralFeature instance for which this IndexedFeature instance is relevant.

class: StructuralFeature

multiplicity: exactly one

Identifies the IndexedFeature instances that describe how a particular StructuralFeature is used
by the keys of Index instances.

class: IndexedFeature

multiplicity: zero or more

Identifies Index instances that span this Class instance.

class: Index

multiplicity: zero or more
5-44 Common Warehouse Metamodel, v1.1 March 2003

5

spannedClass

5.6.2.4 KeyRelationshipFeatures

The KeyRelationshipFeatures association links KeyRelationship instances with the
StructuralFeature instances that comprise their key.

Ends

feature

keyRelationship

5.6.2.5 UniqueFeature

The UniqueFeature association identifies the Feature instances of a Class instance that
confer uniqueness. The ordered constraint is used to determine the order of
StructuralFeature instances in the UniqueKey instance.

Ends

feature

Identifies the Class instance the Index instance spans.

class: Class

multiplicity: exactly one

Identifies StructuralFeature instances that participate as (part of) the key of this
KeyRelationship instance. In the relational case, this reference indicates the columns that
make up the foreign key.

class: StructuralFeature

multiplicity: one or more; ordered

Identifies the KeyRelationship instances that employ a particular StructuralFeature as part of
their key.

class: KeyRelationship

multiplicity: zero or more

Identifies the StructuralFeature instances that make up the unique key. The ordered constraint
is used to represent the sequence of StructuralFeature instances that make up the UniqueKey
instance’s key. In the relational model case, these StructuralFeature instances identify the
columns that make up a table’s primary key.

class: StructuralFeature

multiplicity: one or more; ordered
March 2003 OMG-CWM, v1.1: KeysIndexes Metamodel 5-45

5

uniqueKey

5.6.2.6 UniqueKeyRelationship Protected

The UniqueKeyRelationship association links a KeyRelationship with the UniqueKey
with which it is paired. For example, in relational model terms, this association links a
foreign key -- the KeyRelationship instance -- with the primary key -- the UniqueKey
instance -- with which it is paired.

Ends

keyRelationship

uniqueKey

5.6.3 OCL Representation of KeysIndexes Constraints

Identifies the UniqueKey instances in which a particular StructuralFeature participates.

class: UniqueKey

multiplicity: zero or more

Identifies the KeyRelationship instances with which a particular UniqueKey instance is paired.

class: KeyRelationship

multiplicity: zero or more

Identifies the KeyRelationship instances that reference this UniqueKey instance. In the
relational case, this reference identifies the foreign keys that reference this primary key.

class: UniqueKey

multiplicity: exactly one

[C-6-1]The isAscending attribute is valid only if the isSorted attribute is True.

context IndexedFeature inv:

self.isAscending->notEmpty implies self.index.isSorted

[C-6-2] A KeyRelationship instance must be owned by one and only one Class
instance.

context KeyRelationship inv:

(self.namespace->size = 1) and self.namespace.oclIsKindOf(Class)

[C-6-3] A UniqueKey instance must be owned by one and only one Class instance.

context UniqueKey inv:

(self.namespace->size = 1) and self.namespace.oclIsKindOf(Class)
5-46 Common Warehouse Metamodel, v1.1 March 2003

5

5.7 SoftwareDeployment Metamodel

The Software Deployment package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::BusinessInformation

• org.omg::CWM::Foundation::TypeMapping

The Software Deployment package contains classes to record how the software in a
data warehouse is used.

A software package is represented as a SoftwareSystem object, which is a subtype of
Subsystem. A SoftwareSystem may reference one or more TypeSystems that define the
datatypes supported by the SoftwareSystem. The mappings between datatypes in
different TypeSystems may be recorded as TypeMappings, as described in Section 5.8,
“TypeMapping Metamodel,” on page 5-66.

The separate components of a software package are each represented as Components
that are either owned or imported by the SoftwareSystem. When a SoftwareSystem is
installed, the deployment is recorded as a DeployedSoftwareSystem and a set of
DeployedComponents.

A DeployedComponent represents the deployment of a specific Component on a
specific computer. Dependencies between DeployedComponents on the same computer
may be documented as Usage dependencies between them.

Individual computers are represented as Machine objects, located at a Site. A Site
represents a geographical location, which may be recorded at any relevant level of
granularity (for example, a country, a building, or a room in a building). Hierarchical
links between Sites at different levels of granularity may be documented.

A DataManager is a DeployedComponent such as a DBMS or file management system
that provides access to data. It may be associated with one or more data Packages
identifying the Schema, Relational Catalog, Files, or other data containers that it
provides access to.

A DataProvider is a DeployedComponent that acts as a client to provide access to data
held by a DataManager. For example, an ODBC or JDBC client on a specific Machine
would be represented as a DataProvider. A DataProvider may have several
ProviderConnections, each identifying a DataManager that may be accessed using the
DataProvider.

If a DataProvider uses a name for a data Package that is different from the actual name
used by the DataManager, a PackageUsage object can be added to record this.

As a DataProvider is a subtype of DataManager, it is possible for a DataProvider to
access data from a DataManager, which is actually a DataProvider acting as a client to
yet another DataManager.
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-47

5

The model for the Software Deployment package is shown in the following three
diagrams. The first diagram (Figure 5-11) shows the objects related to software
deployment, while the second diagram (Figure 5-12) displays the DataManager and
DataProvider area of the model. The third diagram (Figure 5-13) shows the inheritance
structure for all the classes in the Software Deployment package.

Figure 5-11 Software Deployment

The Components of a
SoftwareSystem may
be owned or imported

Site

/ containingSite : Site
*

*

containingSite

*

containedSite

*

Machine

ipAddress : String
hostName : String
machineID : String
/ site : Site
/ deployedComponent : DeployedComponent

0..1

*

0..1

*

eployedSoftwareSystem

/ softwareSystem : SoftwareSystem

DeployedComponent

pathname : String
/ component : Component
/ machine : Machine

11

*

*

*

*

SoftwareSystem

type : String
subtype : String
supplier : String
version : String
/ typespace : TypeSystem

*1

deployment

*1

Component

*1

deployment

*1

0..1

*

/namespace 0..1

/ownedElement *

*

*

/importer*

/importedElement*

Subsystem
(from Core)

Package
(from Core)

Location
(from BusinessInformation)
5-48 Common Warehouse Metamodel, v1.1 March 2003

5

Figure 5-12 DataManager and DataProvider

DataProvider
/ resourceConnection : ProviderConnection

DataManager
isCaseSensitive : Boolean
/ dataPackage : Package

ProviderConnection
isReadOnly : Boolean
/ dataProvider : DataProvider
/ dataManager : DataManager

1

*

1

resourceConnection

*

1

*

1

clientConnection*

Package
(from Core)

**

dataPackage

**

PackageUsage
packageAlias : Name

1..* *

/client

1..*

/clientDependency

*

1..*

*

/supplier 1..*

/supplierDependency *

TypeSystem
(from TypeMapping)

SoftwareSystem
type : String
subtype : St ring
supplie r : Stri ng
versio n : String
/ typespace : Type System

*

* typespace

*supportingSystem

*

Package
(from Core)

Machine
ipAddress : String
hostName : String
machineID : String
/ site : Site
/ deployedComponent : DeployedComponent

Component
/ designPackage : Package

0..1

*

/namespace0..1

/ownedElement*

*

*

designPackage

*

*
DeployedComponent

pathn ame : String
/ component : Componen t
/ machine : M ach ine
/ usingComponents : DeployedComponen t
/ usedComponents : DeployedComponent

1

*

1

*

*1

deployment

*1

*

*

usedComponents
*

usingCom ponents *
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-49

5

Figure 5-13 Software Deployment Inheritances

Machine

ipAddress : String
hostName : String
machineID : String
/ site : Site
/ deploy edComponent : Deploy edComponent

Site

/ containingSite : Site

DataProvider

/ resourceConnection : Prov iderConnection

DataManager

isCaseSensitiv e : Boolean
/ dataPackage : Package

Provide rConnection

isReadOnly : Boolean
/ dataProv ider : DataProv ider
/ dataManager : DataManager

DeployedSoftwareSystem

f ixLev el : String
/ soft wareSy stem : Sof twareSy stem

Dep loyedComponen t

pathname : String
/ component : Component
/ machine : Machine
/ usingComponents : Deploy edComponent
/ usedComponents : Deploy edComponent

SoftwareSystem

ty pe : String
subty pe : String
supplier : String
v ersion : String
/ ty pespace : Ty peSy stem

Component

/ designPackage : Package

PackageUsage

packageAl ias : Name

Locatio n
(from BusinessInformation)

Classifier
(from Core)

Subsystem
(f rom Core)

Package
(from Core)

Namespace
(from Core)

Dependency

(f rom Core)

ModelElement

(from Core)
5-50 Common Warehouse Metamodel, v1.1 March 2003

5

5.7.1 SoftwareDeployment Classes

5.7.1.1 Component

A Component represents a physical piece of implementation of a system, including
software code (source, binary or executable) or equivalents such as scripts or command
files. A Component is a subtype of Classifier, and so may have its own Features, such as
Attributes and Operations.

Deployment of a Component on a specific Machine is represented as a
DeployedComponent.

Superclasses

Classifier

References

designPackage

5.7.1.2 DataManager

A DataManager represents a DeployedComponent that manages access to data. For
example, a deployed DBMS or File Management System would be represented as a
DataManager.

The DataManager may be associated with one or more data Packages identifying the
Schema, Relational Catalog, Files, or other data container that it provides access to.

Superclasses

DeployedComponent

Attributes

isCaseSensitive

Identifies the Package instance containing the Component's design.

class: Package

defined by: ComponentDesign::designPackage

multiplicity: zero or more

Indicates whether or not the DataManager treats lower case letters within object names as
being different from the corresponding upper case letters.

type: Boolean

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-51

5

References

dataPackage

5.7.1.3 DataProvider

A DataProvider is a deployed software Component that acts as a client to provide
access to data that is managed by another product. For instance, a DataProvider might
represent a deployed ODBC or JDBC product.

The DataProvider may have resourceConnection references to ProviderConnections
identifying the DataManagers to which it provides access.

Superclasses

DataManager

Contained Elements

ProviderConnection

References

resourceConnection

5.7.1.4 DeployedComponent

A DeployedComponent represents the deployment of a Component on a specific
Machine.

It may represent the deployment of any type of Component. However, if the
Component is part of a SoftwareSystem, the DeployedComponent should be part of a
DeployedSoftwareSystem.

Identifies the Package(s) containing the definition of the data made available by the
DataManager.

class: Package

defined by: DataManagerDataPackage::dataPackage

multiplicity: zero or more

Identifies the ProviderConnections that the DataProvider may use to access data resources.

class: ProviderConnection

defined by: DataProviderConnections::resourceConnection

multiplicity: zero or more

inverse: ProviderConnection::dataProvider
5-52 Common Warehouse Metamodel, v1.1 March 2003

5

Usage dependencies may be used to document that one DeployedComponent uses
another DeployedComponent.

Superclasses

Package

Attributes

pathname

References

component

machine

usedComponents

A pathname for the DeployedComponent within the Machine’s file system.

type: String

multiplicity: exactly one

Identifies the Component deployed.

class: Component

defined by: ComponentDeployments::component

multiplicity: exactly one

Identifies the Machine on which the DeployedComponent is deployed.

class: Machine

defined by: ComponentsOnMachine::machine

multiplicity: exactly one

inverse: Machine::deployedComponent

Identifies the DeployedComponent instances that use this DeployedComponent.

class: DeployedComponent

defined by: DeployedComponentUsage::usedComponents

multiplicity: zero or more

inverse: DeployedComponent::usingComponents
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-53

5

usingComponents

5.7.1.5 DeployedSoftwareSystem

A DeployedSoftwareSystem represents a deployment of a SoftwareSystem.

Its associated DeployedComponents identify the individual Component deployments
that constitute the DeployedSoftwareSystem. These DeployedComponents are not
necessarily all deployed on the same Machine.

Superclasses

Package

Attributes

fixLevel

References

softwareSystem

5.7.1.6 Machine

A Machine represents a computer. The Site at which the Machine is located and the
Components deployed on the Machine may be recorded.

Identifies the DeployedComponent instances that this DeployedComponent instance uses.

class: DeployedComponent

defined by: DeployedComponentUsage::usingComponents

multiplicity: zero or more

inverse: DeployedComponent::usedComponents

Describes the fix level of the DeployedSoftwareSystem instance.

type: String

multiplicity: exactly one

Identifies the SoftwareSystem deployed.

class: SoftwareSystem

defined by: SoftwareSystemDeployments::softwareSystem

multiplicity: exactly one
5-54 Common Warehouse Metamodel, v1.1 March 2003

5

Superclasses

Namespace

Contained Elements

DeployedComponent

Attributes

ipAddress

hostName

machineID

References

site

A fixed IP address for the Machine.

type: String

multiplicity: zero or more; ordered

A Host Name for the Machine. This may be used to identify the Machine on the network
when IP addresses are dynamically allocated.

type: String

multiplicity: zero or more; ordered

An identification code for the Machine.

type: String

multiplicity: zero or one

Identifies the Site at which the Machine is located.

class: Site

defined by: SiteMachines::site

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-55

5

deployedComponent

5.7.1.7 PackageUsage

A PackageUsage represents a usage of a Package. It is particularly relevant in
situations where a specific usage uses an alternative name for the Package, as this
alternative name can be recorded using the packageAlias attribute.

For example, if a DataProvider representing an ODBC or JDBC client uses a name for
a relational database that is different from the dataPackage name used by the RDBMS
server, a PackageUsage that has the relevant ProviderConnection as client and the
server’s data Package as supplier can be added. Its packageAlias attribute can be used
to record the name by which the data Package is known to the DataProvider.

Superclasses

Dependency

Attributes

packageAlias

Constraints

A PackageUsage must have a single Package (or subtype of Package) as its supplier.
[C-8-1]

5.7.1.8 ProviderConnection

A ProviderConnection represents a connection that allows a DataProvider acting as a
client to access data from a specific DataManager. For example a ProviderConnection
could represent a connection from an ODBC or JDBC client to a DBMS.

Superclasses

ModelElement

Identifies the DeployedComponents on the Machine.

class: DeployedComponent

defined by: ComponentsOnMachine::deployedComponent

multiplicity: zero or more

inverse: DeployedComponent::machine

If this attribute is present, it identifies the name by which the Package is known to the client.

type: Name

multiplicity: zero or one
5-56 Common Warehouse Metamodel, v1.1 March 2003

5

Attributes

isReadOnly

References

dataProvider

dataManager

Constraints

A ProviderConnection must not associate a DataProvider with itself. [C-8-2]

5.7.1.9 Site

A Site represents a geographical location. It provides a grouping mechanism for a
group of machines at the same location.

Sites may be documented at different levels of granularity; containment links may be
used to record hierarchical relationships between Sites.

Superclasses

Location

Indicates whether the ProviderConnection only allows read access to the DataManager.

type: Boolean

multiplicity: exactly one

Identifies the DataProvider that is the client of the ProviderConnection.

class: DataProvider

defined by: DataProviderConnections::dataProvider

multiplicity: exactly one

inverse: DataProvider::resourceConnection

Identifies the DataManager that is accessed by the ProviderConnection.

class: DataManager

defined by: DataManagerConnections::dataManager

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-57

5

References

containingSite

Constraints

A Site must not have a containingSite reference that refers to itself. [C-8-3]

5.7.1.10 SoftwareSystem

A SoftwareSystem represents a specific release of a software product. It consists of a
set of software Components.

Superclasses

Subsystem

Contained Elements

Component

Attributes

type

Identifies a Site of which the current Site forms a part.

class: Site

defined by: RelatedSites::containingSite

multiplicity: zero or more

Identifies the type of the software product. One of the following predefined values should be
used if appropriate: OS, DBMS, MDDB, FileSystem, ODBC, JDBC, or Application.

type: String

multiplicity: zero or one
5-58 Common Warehouse Metamodel, v1.1 March 2003

5

subtype

supplier

version

References

typespace

5.7.2 SoftwareDeployment Associations

5.7.2.1 ComponentDeployments

This association identifies the deployments of a Component.

This is used in conjunction with the type attribute to provide additional information about the
type of the software product.
For some of the predefined types, suggested subtype values are listed below:
• For an Operating System product (type OS):

AIX, Linux, MVS, NT, Solaris, SunOS, VMS or Windows.
• For a Database Management System product (type DBMS):

DB2, DMS II, IMS, Informix, Oracle, SQLServer or Sybase.
• For a Multidimensional Database product (type MDDB):

Essbase or Express.

type: String

multiplicity: zero or one

The supplier of the software product.

type: String

multiplicity: zero or one

The version identification for the software product.

type: String

multiplicity: zero or one

Identifies the TypeSystem(s) containing the datatypes supported by the SoftwareSystem.

class: TypeSystem

defined by: SystemTypespace::typespace

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-59

5

Ends

component

deployment

5.7.3.2 ComponentDesign

This associates Components with the Packages containing their design. Typically this
will reference the logical schema.

Ends

component

designPackage

5.7.3.3 ComponentsOnMachine Protected

Identifies the Machine on which a DeployedComponent is deployed.

Ends

deployedComponent

Identifies the Component deployed.

class: Component

multiplicity: exactly one

Identifies the DeployedComponent.

class: DeployedComponent

multiplicity: zero or more

Identifies the Component instances whose design is described by this Package.

class: Component

multiplicity: zero or more

Identifies the Package instance containing the Component's design.

class: Package

multiplicity: zero or more

Identifies the DeployedComponents on the Machine.

class: DeployedComponent

multiplicity: zero or more
5-60 Common Warehouse Metamodel, v1.1 March 2003

5

machine

5.7.3.4 DataManagerConnections

Identifies the DataManager that is accessed by a ProviderConnection.

Ends

DataManager

clientConnection

5.7.3.5 DataManagerDataPackage

This associates the Package(s) containing the definition of the data with the
DataManager that is used to access it.

For example, it may be used to associate a Schema, Relational Catalog, or File with the
DataManager that manages access to it.

Ends

dataPackage

Identifies the Machine on which a DeployedComponent is deployed.

class: Machine

multiplicity: exactly one

aggregation: composite

Identifies the DataManager accessed by the ProviderConnection.

class: DataManager

multiplicity: exactly one

Identifies the ProviderConnections that may be used by clients to access the data provided by
this DataManager.

class: ProviderConnection

multiplicity: zero or more

Identifies a Package containing the definition of the data made available by the DataManager.

class: Package

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-61

5

dataManager

5.7.3.6 DataProviderConnections Protected

Identifies the ProviderConnections that a DataProvider acting as a client may use.

Ends

dataProvider

resourceConnection

5.7.3.7 DeployedSoftwareSystemComponents

This association identifies the DeployedComponents that constitute a
DeployedSoftwareSystem.

Ends

deployedSoftwareSystem

deployedComponent

Identifies a DataManager that provides access to the data defined in the Package.

class: DataManager

multiplicity: zero or more

Identifies the DataProvider that uses the ProviderConnection.

class: DataProvider

multiplicity: exactly one

aggregation: composite

Identifies the ProviderConnections that the DataProvider may use to access DataManagers.

class: ProviderConnection

multiplicity: zero or more

Identifies the DeployedSoftwareSystem.

class: DeployedSoftwareSystem

multiplicity: zero or more

Identifies the DeployedComponent.

class: DeployedComponent

multiplicity: zero or more
5-62 Common Warehouse Metamodel, v1.1 March 2003

5

5.7.4.8 DeployedComponentsUsage

This links a DeployedComponent to the other DeployedComponents that it uses.
Typically this might link a deployed application to the physical databases (instances of
DataManager) that it accesses.

Ends

usedComponents

usingComponents

5.7.4.9 DeployedSoftwareSystemComponents

This association identifies the DeployedComponents that constitute a
DeployedSoftwareSystem.

Ends

deployedSoftwareSystem

deployedComponent

5.7.4.10 RelatedSites

This may be used to record hierarchical relationships between Sites.

Identifies the DeployedComponent instances that use this DeployedComponent.

class: DeployedComponent

multiplicity: zero or more

Identifies the DeployedComponent instances that this DeployedComponent instance uses.

class: DeployedComponent

multiplicity: zero or more

Identifies the DeployedSoftwareSystem.

class: DeployedSoftwareSystem

multiplicity: zero or more

Identifies the DeployedComponent.

class: DeployedComponent

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-63

5

Ends

containingSite

containedSite

5.7.4.11 SiteMachines

Identifies the Site on which a Machine is located.

Ends

site

machine

5.7.4.12 SoftwareSystemDeployments

Identifies the deployments of a SoftwareSystem.

Ends

softwareSystem

Identifies other Sites of which the current Site forms a part.

class: Site

multiplicity: zero or more

Identifies other Sites that are part of the current Site.

class: Site

multiplicity: zero or more

Identifies the Site on which the Machine is located.

class: Site

multiplicity: zero or one

Identifies the Machines located at the Site.

class: Machine

multiplicity: zero or more

Identifies the SoftwareSystem deployed.

class: SoftwareSystem

multiplicity: exactly one
5-64 Common Warehouse Metamodel, v1.1 March 2003

5

deployment

5.7.4.13 SystemTypespace

A SoftwareSystem’s typespace identifies the TypeSystem(s) containing the datatypes
supported by the SoftwareSystem.

Ends

supportingSystem

typespace

5.7.5 OCL Representation of SoftwareDeployment Constraints

Identifies the deployments of the SoftwareSystem.

class: DeployedSoftwareSystem

multiplicity: zero or more

Identifies a SoftwareSystem that supports the datatypes defined by the TypeSystem.

class: SoftwareSystem

multiplicity: zero or more

Identifies a TypeSystem containing datatypes supported by the SoftwareSystem.

class: TypeSystem

multiplicity: zero or more

[C-8-1] A PackageUsage must have a single Package (or subtype of Package) as its
supplier

context PackageUsage inv:

self.supplier->size=1 and
self.supplier->at(1).oclIsKindOf(Package)

[C-8-2] A ProviderConnection must not associate a DataProvider with itself.

context ProviderConnection inv:

self.dataManager <> self.dataProvider

[C-8-3] A Site must not have a containingSite reference that refers to itself.

context Site inv:

self.containingSite -> forAll (c | c <> self)
March 2003 OMG-CWM, v1.1: SoftwareDeployment Metamodel 5-65

5

5.8 TypeMapping Metamodel

The TypeMapping package depends on the following package:

org.omg::CWM::ObjectModel::Core

The TypeMapping package supports the mapping of data types between different
systems. The purpose of these mappings is to indicate data types in different systems
that are sufficiently compatible that data values can be interchanged between them.
Multiple mappings are allowed between any pair of types and a means of identifying
the preferred mapping is provided.

Figure 5-14 TypeMapping metamodel

Figure 5-15 provides a simple example of the use of the TypeMapping package to map
the CORBA IDL v2.2 long data type and the Java 2 int data type to each other.

TypeM app ing

isBestMatch : Boolean
isLossy : Boolean
/ sourceTy pe : Classif ier
/ targetT ype : Classifier

Cl assi fi er
(from Core)

1

*

sourceTy pe 1

mappingFrom *

1

*

targetTy pe1

mappingTo*

TypeSystem

v ersion : String
*0..1

/ownedElem ent

*

/namespace

0..1

*

0..1

/ownedElement *

/namespace 0..1

ModelElement

(from Core)

Package
(from Core)
5-66 Common Warehouse Metamodel, v1.1 March 2003

5

Figure 5-15 Mapping the CORBA IDL long and Java int data types

5.8.1 TypeMapping Classes

5.8.1.1 TypeMapping

TypeMapping instances permit the creation of mappings between data types defined
within different environments and are used to indicate data type compatibilities that
permit direct assignment of values from one environment (the “source” type) into
equivalent values in another environment (the “target” type). For example, an integer
field data type in a record-oriented DBMS (the source type) might be mapped to a
compatible integer data type in a relational DBMS (the target type).

Whereas the actual transfer of data values between environments is accomplished using
the CWM’s Transformation package, TypeMapping instances can be used to identify
both the permissible and preferred mappings between data types. Value interchange
between a pair of data types is considered permissible if a TypeMapping instance is
defined for the pair. A TypeMapping instance is considered the preferred mapping if
the instance’s isBestMatch attribute has the value true.

Typically, there will be one TypeMapping Instance between a pair of data types that is
considered the preferred mapping. To promote flexible use of this feature, there is no
requirement that a preferred TypeMapping instance must be identified between a pair
of data types nor are multiple preferred instances prohibited. In these latter cases,
however, the precise semantics are usage-defined.

CORBAIDLv2.2 :
TypeSystem

Java2 :
TypeSystem

int :
DataType

long :
DataType

 :
TypeMapping

 :
TypeMapping

MappingTarget

MappingSource MappingTarget

isBestMatch = true :
Boolean

isLossy = false :
Boolean

isBestMatch = true :
Boolean

isLossy = false :
Boolean

ElementOwnership

ElementOwnershipElementOwnership

ElementOwnership

MappingSource
March 2003 OMG-CWM, v1.1: TypeMapping Metamodel 5-67

5

Interchange between data types defined by non-preferred mappings may often function
as intended. However, the isLossy boolean may be set to indicate that such
interchanges may be subject to validity restrictions in certain circumstances. For
example, it may be valid to move data values from a 32-bit integer data type to a 16-bit
integer data type as long as the actual values in the 32-bit underlying data type do not
exceed the range permitted for 16-bit integers. The CWM Foundation leaves the
understanding and handling of such differences to individual tools. If such differences
must be modeled, consider using the CWM Transformation package to filter data
values during interchange.

TypeMapping instances are unidirectional, so two instances are required to show that a
data type pair can be mutually interchanged between environments.

Superclasses

ModelElement

Attributes

isBestMatch

isLossy

References

sourceType

True if this TypeMapping instance represents the best available mapping between a pair of
data types in different software systems.

type: Boolean

multiplicity: exactly one

True if this TypeMapping instance may result in a data conversion error if the source data is
within certain ranges. For example, storing a 32-bit unsigned integer value into a 16-bit
unsigned integer container will result in a data conversion error only when the source data has
a value greater than 65535.

type: Boolean

multiplicity: exactly one

Identifies the Classifier instance that is the source of information exchange.

class: Classifier

defined by: MappingSource::sourceType

multiplicity: exactly one
5-68 Common Warehouse Metamodel, v1.1 March 2003

5

targetType

Constraints

The targetType and sourceType references may not refer to the same Classifier
instance. [C-8-1]

5.8.1.2 TypeSystem

Instances of the TypeSystem class collect together the data types (subclasses of
Classifier) defined by a software system and the TypeMapping instances defining how
they are mapped to data types in other TypeSystems. TypeMapping instances collected
by a TypeSystem instance include both those in which the software system’s data types
act as sources and as targets of mappings. Classifiers and TapeMappings are
maintained in a single collection via the ElementOwnership association but can be
distinguished by their respective types.

Because it is a Package, a TypeSystem can also serve to collect together the Classifier
instances for a particular software system.

Superclasses

Package

Contained Elements

TypeMapping

Attributes

version

Constraints

A TypeSystem may own only Classifiers and TypeMappings. [C-8-2]

Identifies the Classifier instance that is the target of information exchange.

class: Classifier

defined by: MappingTarget::targetType

multiplicity: exactly one

A string describing the version of the TypeSystem represented.

type: String

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: TypeMapping Metamodel 5-69

5

5.8.2 TypeMapping Associations

5.8.2.1 MappingSource

The MappingSource association indicates the underlying Classifier instance of a
particular TypeMapping.

Ends

sourceType

mappingFrom

5.8.2.2 MappingTarget

The MappingTarget association indicates the exposed data type for a particular
TypeMapping instance.

Ends

targetType

mappingTo

5.8.3 OCL Representation of TypeMapping Constraints

[C-8-1] The sourceType and targetType references may not refer to the same Classifier
instance.

Identifies the Classifier instance that is the source of information exchange.

class: Classifier

multiplicity: exactly one

Identifies the TypeMapping instances in which a particular Classifier participates.

class: TypeMapping

multiplicity: zero or more

Identifies the Classifier instance that is the target of information exchange.

class: Classifier

multiplicity: exactly one

Identifies the TypeMapping instance of a particular Classifier instance.

class: TypeMapping

multiplicity: zero or more
5-70 Common Warehouse Metamodel, v1.1 March 2003

5

context TypeMapping inv:

self.sourceType <> self.targetType

[C-8-2] A TypeSystem may own only Classifiers and TypeMappings.

context TypeSystem inv:

self.ownedElement->forAll(e | e.oclIsKindOf(Classifier) or
e.oclIsKindOf(TypeMapping))
March 2003 OMG-CWM, v1.1: TypeMapping Metamodel 5-71

5

5-72 Common Warehouse Metamodel, v1.1 March 2003

Relational 6
Contents

This chapter contains the following topics.

6.1 Overview

The Relational package describes data accessible through a relational interface such as
a native RDBMS, ODBC, or JDBC. The Relational package is based on the [SQL]
standard section concerning RDBMS catalogs.

The scope of the top level container, Catalog, is intended to cover all the tables a user
can use in a single statement. A catalog is also the unit that is managed by a data
resource. A catalog contains schemas which themselves contain tables. Tables are
made of columns that have an associated data type.

The Relational package uses constructs in the ObjectModel package to describe the
object extensions added to SQL by the [SQL] standards.

The Relational package also addresses the issues of indexing, primary keys, and
foreign keys by extending the corresponding concepts from the Foundation packages.

Topic Page

“Overview” 6-1

“Organization of the Relational Package” 6-2

“Relational Classes” 6-13

“Relational Associations” 6-29

“OCL Representation of Relational Constraints” 6-31
March 2003 Common Warehouse Metamodel, v1.1 6-1

6

6.2 Organization of the Relational Package

6.2.1 Inheritance

The Relational package depends on the following packages:

• org.omg::CWM::ObjectModel::Behavioral

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Instance

• org.omg::CWM::Foundation::DataTypes

• org.omg::CWM::Foundation::KeysIndexes

The Relational package references the ObjectModel and Foundation packages.

Figure 6-1 shows the Relational package classes and their inheritance from the
ObjectModel and Foundation classes. The Relational package, as do the other data
packages, define top-level containers (Catalog, Schema) that extend the ObjectModel
Package class. ColumnSet and SQLStructuredType extend Class. The Columns
contained in the ColumnSet are extensions of the ObjectModel Attribute. The data type
of a column (SQLDataType) inherits from ObjectModel Classifier. This structuring of
the classes will be particularly useful to describe the object extensions of SQL.
6-2 Common Warehouse Metamodel, v1.1 March 2003

6

Figure 6-1 Relational Package Inheritances

6.2.2 Containers

In addition to owning Tables and/or Views, Schemas also own Procedures and
Triggers.

Package
(from Core)

Schema

View

ColumnSet

QueryColu
mnSet

SQLDat aType

SQLDistinctTypeSQLSimpleType

SQLStructuredTy peNamedCol
umnSet

ForeignKeyTrigger

ethod
fr om Behavior al)

UniqueConstraint

Catalog

Class
(from Core)

UniqueKey
(from KeysIndexes)

Key Relationship
(from KeysIndexes)

Attribute
(from Core)

Primary Key

odelElement

(from Core)

onstraint
(from Core)

Table

CheckConstraint QLIndex

Column

SQLIndexColumn

Index
(from Keys Indexes)

IndexedFeature
(from KeysIndexes)

DataTy pe
(from Core)

TypeAlias
(from DataTypes)

SQLParameter

Procedure

Parameter
(from Behavioral)

Class ifier
(from Core)
March 2003 OMG-CWM, v1.1: Organization of the Relational Package 6-3

6

Figure 6-2 Schemas and owned objects

6.2.3 Tables, Columns, and Data Types

A ColumnSet represents any form of relational data. A NamedColumnSet is a
cataloged version of a ColumnSet, which is owned by a Schema. A NamedColumnSet
can be a logical View or a physical Table. Instead of being a NamedColumnSet, a
ColumnSet can be a QueryColumnSet, which is the result of an SQL query.

Columns are associated with an SQLDataType, using the type association from
StructuralFeature to Classifier inherited from ObjectModel Core.

Figure 6-3 shows the original two data types: simple type and distinct type. Simple
types are defined by the [SQL] standards, however, some RDBMS implementations use
additional types. An SQL distinct type is defined from a simple type.

Package
(from Core)

DataManager
(from Softwa reDeploymen t)

Catalog

defaultCharacterSetName : String
defaultCollationName : String

*

*

/dataPackage

*

*

SQLIndex

filterCondition : String
isNullable : Boolean
autoUpdate : Boolean

Procedure

type : ProcedureType

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLSt ructuredType
/ usingTrigger : Trigger

Trigger

eventManipulat ion : EventManipulat ionType
actionCondi tion : BooleanExpression
actionS tatement : ProcedureExpression
actionOrientation : ActionOrientationType
conditionTiming : Condit ionTimingType
conditionReferenc eNewTable : String
conditionReferenc eOldTable : St ring
/ table : Table
/ usedColumnSet : NamedColumnSet

Schema
*

0..1 /ownedElement

*/namespace

0..1

0..1

*

/namespace

0..1

/ownedElement

*

0..1

*

/namespace

0..1

/ownedElement*

0..1

*

/namespace

0..1

/ownedElement

*
/ownedElement

/namespace

0..1
*

0..1
*

6-4 Common Warehouse Metamodel, v1.1 March 2003

6

Figure 6-3 Tables, columns and data types

6.2.4 Structured Types and Object Extensions

The [SQL] standard adds object-oriented notions to SQL with structured types.

A structured type is defined in terms of columns, as illustrated in the following
example: CREATE TYPE person_t AS(name varchar(20), birthyear integer). Since a
SQLStructuredType is a Classifier that owns Attributes, it is natural to associate an
SQLStructuredType to a set of Columns. Similarly, to represent a type created by
CREATE TYPE emp_t UNDER person_t AS(salary integer). We use the ObjectModel
Generalization to associate the two types. As a result, the following instances are
created to represent the above two examples.

View

isReadOnly : Boolean
checkOption : Boolean
queryExpression : QueryExpression

Qu eryColumnSet

query : QueryExpression

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLStructuredType
/ usingTrigger : Trigger

SQLSimpleType

characterMaximumLength : Integer
characterOctetLength : Integer
numericPrecision : Integer
numericPrecisionRadix : Integer
numericScale : Integer
dateTimePrecision : Integer

SQLDistinctType

length : Integer
precision : Integer
scale : Integer
/ sqlSimpleType : SQLSimpleType

1

*

sqlSimpleType

1

sqlDistinctType *

{ordered}

{ordered}

{ordered}

Table

isTemporary : Boolean
temporaryScope : S tring
/ trigger : Trigg er
isSystem : Boolean

CheckConstraint

deferrability : DeferrabilityType

*

*

/constrainedElement

*

/constran t*

ColumnSet

SQLDataType

typeNumber : Integer

Column

precision : Integer
scale : Integer
isNullable : NullableType
length : Integer
collationName : String
characterSetName : String
/ optionScopeColumnSet : NamedColumnSet
/ referencedTableType : SQLStructuredType

**

/constrainedElement

*

/constraint

*

*

0..1 /feature

*/owner

0..1
1

*
/type

1/structura lFeature

*

March 2003 OMG-CWM, v1.1: Organization of the Relational Package 6-5

6

Figure 6-4 Instance diagram for two structured types

An association between Column and SQLStructuredType (ColumnRefStructuredType)
has been added to represent structured type attributes that reference another type, as in
CREATE TYPE dept_t AS (name varchar(40), mgr REF (emp_t). This leads to the
following instance diagram:

Figure 6-5 Instance diagram for a structured type containing a REF clause

P ers on_t :
S Q LS truc turedTy pe

 :
G eneraliz at ion

parent

nam e : Co lum n

x a mpl e 1 : CRE A TE TY P E P ers on_t A S (nam e varc ha r(20), bi rt hy ear i nte ger)
 CR E A TE TY P E E m p_t UNDE R p ers on_ t AS (s a lary i nte ger)

birthy ear :
Colum n

va rc har :
S Q LS im pleTy pe

E m p_t :
S Q LS truc turedTy pe

s alary : Colum n

c hil d

int eger :
S Q LS im pleTy pe

name : Column

Example 2: CREATE TYPE Dept_t AS (name varchar(40), mgr REF Emp_t)
 See Example 1 for details on Emp_t.

mgr : Column

varchar :
SQLSimpleType

Dept_t :
SQLStructuredType

Emp_t :
SQLStructuredType
6-6 Common Warehouse Metamodel, v1.1 March 2003

6

A structured type can be used as the data type of a column, but also as a template for a
table, as in CREATE TABLE person OF person_t(ref is oid user generated) or CREATE
TABLE emp OF emp_t UNDER person. In these cases, the table will be created with
columns that copy the content of the structured type, as described in the [SQL]
standard. This allows programs that do not understand the object extensions to still
work with the table, both at the data and metadata level. However, an association
between the Table (this applies to views as well) and the SQLStructuredType allows
the user of the model to remember which template was used to create the table. It is the
responsibility of the application using the model to keep the SQLStructuredType and
the Table list of columns synchronized. Figure 6-6 represents the examples above:

Figure 6-6 Instance diagram for typed tables

Finally, when a table (or a column) uses a structured type with a reference to another
structured type, the reference is mapped to a table or view of the corresponding
structured type, using the options scope clause. This represents an association between
the column of the table or view with another table or view. This is modeled by the
ColumnOptionsTable between a Column and a NamedColumnSet in CWM. For
example, the statement CREATE TABLE dept OF dept_t (ref is oid user generated, mgr
WITH OPTIONS SCOPE emp) would be represented by the following:

 :
Generalization

parent

salary : Column

Example 3: CREATE TABLE Person OF Person_t (ref is oid user generated)
 CREATE TABLE Emp OF Emp_t UNDER Person
 See Example 1 for details on Person_t and Emp_t.

birthyear :
Column

child

 :
Generalization

parent

salary : Column

birthyear :
Column

child

salary : Column

oid : Column

salary : Column

Person_t :
SQLStructuredType

Emp_t :
SQLStructuredType

Person : Table

Emp : Table

ColumnSetOfStructuredType

ColumnSetOfStructuredType
March 2003 OMG-CWM, v1.1: Organization of the Relational Package 6-7

6

Figure 6-7 Instance diagram showing the use of Options Scope clause

In summary, the SQLStructuredType has the following associations:

Figure 6-8 SQLStructuredType and its associations

Example 4: CREATETABLE Dept OF Dept_t (ref is oid user generated,
 mgr W ITH OPTIONS SCOPE Emp)
 See Example 2 for details on Dept_t and Example 3 on Emp.

name : Column

mgr : Column

Dept_t :
SQLStructuredType

Emp_t :
SQLStructuredType

name : Column

mgr : Column

Dept : Table

oid : Column

Emp : Table

ColumnSetOfStructuredType

ColumnSetOfStructuredType

ColumOptionsTable

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLStructuredType
/ usingTrigger : Trigger

Column

precision : Integer
scale : Integer
isNullable : NullableType
length : Integer
collationName : String
characterSetName : String
/ optionScopeColumnSet : NamedColumnSet
/ referencedTableType : SQLStructuredType

0.. 1

* optionScopeColumnSet

0.. 1optionScopeColumn

*

SQLStructuredType

/ referencingColumn : Column
/ columnSet : NamedColumnSet

*

0..1

columnSet *

type

0..1

*

0..1

referencingColumn*

ref erencedTableType

0..1

*

0..1

/ feature

*

/owner
0..1

{ordered}
6-8 Common Warehouse Metamodel, v1.1 March 2003

6

6.2.5 Keys

The concept of a key, a set of attributes that defines uniqueness among the instances of
a class, is already introduced in the Foundation Keys&Indexes package by the
UniqueKey class. The Relational model extends the UniqueKey class to
UniqueConstraint. Similarly, the Relational package uses KeyRelationship from the
Foundation package as the basis of a ForeignKey. The generic associations of the
Foundation’s UniqueKey and KeyRelationship between themselves, Class and
StructuralFeatures are inherited by associations between UniqueConstraint,
ForeignKey, Table, and Columns in the Relational package.

Figure 6-9 UniqueConstraint and ForeignKey

Attribute
(from Core)

StructuralFeature

(from Core)

UniqueKey
(from KeysIndexes)

*

1..*

*

feature

1..*

KeyRelationship
(from KeysIndexes)

*

1..*

* feature

1..*

{ordered}

1

*

1

*

{ordered}

{ordered}

PrimaryKey

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLStructuredType
/ usingTrigger : Trigger

ColumnSet
UniqueConstraint

deferrability : DeferrabilityType

able

isTemporary : Boolean
temporaryScope : String
/ trigger : Trigger
isSystem : Boolean

0..1

0..1

/ownedElement0..1/namespace

0..1

*

0..1

/ownedElement

*

/namespace

0..1

Column

precision : Integer
scale : Integer
isNullable : NullableType
length : Integer
collationName : String
characterSetName : String
/ optionScopeColumnSet : NamedColumnSet
/ referencedTableType : SQLStructuredType

0..1

*

optionScopeColumnSet

0..1

optionScopeColumn

*
*

0..1

/feature

*

/owner

0..1
*

1..*

/uniqueKey

*

/feature

1..*

ForeignKey

deleteRule : ReferentialRuleType
updateRule : ReferentialRuleType
deferrability : DeferrabilityType

*

0..1

/ownedElement

*

/namespace

0..1

1..*

* /feature

1..*/keyRelaitonship

*

{ordered}
March 2003 OMG-CWM, v1.1: Organization of the Relational Package 6-9

6

6.2.6 Index

Similar to the keys, indexing is part of the Foundation and is extended in the Relational
package.

Figure 6-10 Indexing

6.2.7 Triggers

Triggers represent an action performed by the RDBMS when a certain table is
changed. Triggers are associated to the Table they monitor and are owned by a Schema,
which may or may not be the same as the Schema owning the table. In addition,
Triggers that use tables in their expressions are associated with them.

Attribute

StructuralFeature

IndexedFeature

(from KeysIndexes)

*

1

*

feature

1

Index
(from KeysIndexes)

*

1 indexedFeature

*index

1

{ordered}

Table

isTemporary : Boolean
temporaryScope : String
/ trigger : Trigger
isSystem : Boolean

SQLIndex

fi lterCondi tion : Stri ng
isNul lable : Boolean
autoUpdate : Boolean

*

1
/index

*/spannedClass

1
IndexSpansClass

NamedColumnSet

/ optionScopeColumn : Column
/ type : SQLStructuredType
/ usingTrigger : Trigger

ColumnSet

SQLIndexColumn

*

1
/indexedFeature

*

/index 1 IndexedFeatureInfo

Column

precision : Integer
scale : Integer
isNullable : NullableType
length : Integer
collationName : String
characterSetName : String
/ optionScopeColumnSet : NamedColumnSet
/ referencedTableType : SQLStructuredType

0..1

*
optionScopeColumnSet

0..1 optionScopeColumn

*

*

0..1

/feature

*

/owner

0..1

*

1

/i ndexedFeature *

/feature 1

{ordered}
6-10 Common Warehouse Metamodel, v1.1 March 2003

6

Figure 6-11 Triggers

6.2.8 Procedures

Procedures extend the ObjectModel Method class and are owned by a Schema (see
Figure 6-2 on page 6-4). The parameter and other information about the Procedure are
illustrated in Figure 6-12.

Figure 6-12 Stored Procedures

N a m e d C o lu m n S e t
T a b le

T r i g g e r

e ve n t M a n ip u la t i o n : E ve n t M a n ip u la t i o n T y p e
a c t i o n C o n d i t i o n : B o o le a n E x p re s s io n
a c t i o n S t a t e m e n t : P ro c e d u r e E x p re s s io n
a c t i o n O r i e n t a t i o n : A c t i o n O r i e n t a t i o n T y p e
c o n d i t i o n T im in g : C o n d i t i o n T im in g T y p e
c o n d i t i o n R e fe r e n c e N e w T a b le : S t r i n g
c o n d i t i o n R e fe r e n c e O ld T a b le : S t r in g
/ t a b le : T a b le
/ u s e d C o lu m n S e t : N a m e d C o lu m n S e t

*

*

u s e d C o lu m n S e t *

u s in g T r i g g e r

*

1

*

t a b le 1

t r i g g e r
*

{o rd e re d }

S c h e m a

*

0 . . 1

/ o w n e d E l e m e n t *

/ n a m e s p a c e 0 . . 1

M odelE lem en t
(f rom C o re)

M et hod
(from B ehavio ra l)

F ea ture
(f rom Co re)

B ehaviora lF eatu re
(f rom B ehavio ra l)

C l as s i fie r
(f rom C o re)

ar am eter
(from B eh avio ra l)

n

.. 1 param ete r

n

{o rdered}
behaviora lF ea tu re

.. 1 1

* ty pe

1param ete r

*

Q LP ar am e terP roc edu re *

0 . .1 /param eter

*
/behaviora lF eatu re

0 . .1

{o rdered}
March 2003 OMG-CWM, v1.1: Organization of the Relational Package 6-11

6

6.2.9 Instances

It is sometimes necessary to provide either a copy or a sample of the data as part of the
metadata. For example, one may want to specify during the design phase what will be
the content of a Gender table. This is similar to the use of Collaboration diagrams in
UML.

Figure 6-13 shows how a Rowset inherits from Extent, from the Foundation package. It
represents all the data comprised in a ColumnSet. A RowSet can only be owned by a
ColumnSet or any derived class. A RowSet contains Rows. Row inherits from Object.
Its structure is defined by the corresponding ColumnSet and its Columns. Each Row is
divided into ColumnValues, which match the value of a relational table, at the
intersection of a row and a column. ColumnValue inherits from DataValue from
ObjectModel.

Figure 6-13 Relational Instance classes

Figure 6-14 shows a collaboration diagram, we show how the instances for the two
column, two row Gender table are represented, and how they are associated with the
Gender table definition. Two kinds of Instances are instantiated: Row and
ColumnValue. The Row is associated with the AttributeLink through the instance/slot
association. The ColumnValue is associated with the AttributeLink through the value
association. While not shown on the diagram to keep it readable, each Instance is
associated with a Class: the Row would be associated with the ColumnSet, and the
ColumnValue with the SQLType of the corresponding Column.

at aV alue
(f rom Instance)

Ro wColumnValue

Package
(f rom Core)

RowSet

ColumnSet

*

0..1

ownedE le mnt *

/nam espace 0..1

StructuralFeature
(from Core)

Extent
(f rom Instance)

Classi fier
(from Core)

1 n

ty pe

1 n

Instance
(f rom Instance)

*

0..1 /o wne dElement

*/nam espace

0..1

1

* classi fier

1instance

*

Object
(f rom Instance)

Attribute
(f rom Core)

1

*

/type1

*

Slot
(f rom Instance)

1

*

value
1

val ueS lot
*

*
0..1

slot

*

instan ce

0..1

1

*

/feature

1

/slot

*

6-12 Common Warehouse Metamodel, v1.1 March 2003

6

Figure 6-14 Collaboration diagram showing use of instance classes

6.3 Relational Classes

6.3.1 Catalog

A Catalog is the unit of logon and identification. It also identifies the scope of SQL
statements: the tables contained in a catalog can be used in a single SQL statement.

Superclasses

 Package

Contained Elements

Schema

Gender : Table

Code : Column

Name : Column

 : Slot

 : Slot

 : Slot

 : Slot

 : RowSet

 : Row

 : Row

M : ColumnValue

Male : ColumnValue

F : ColumnValue

Female : ColumnValue
March 2003 OMG-CWM, v1.1: Relational Classes 6-13

6

Attributes

defaultCharacterSetName

defaultCollationName

6.3.2 CheckConstraint

A rule that specifies the values allowed in one or more columns of every row of a table.

Superclasses

Constraint

Attributes

deferrability

6.3.3 Column

A column in a result set, a view, a table, or an SQLStructuredType.

Superclasses

Attribute

The name of the default character set used for the values in the column.
This field applies only to columns whose datatype is a character string.

type: String

multiplicity: exactly one

The name of the default collation sequence used to sort the data values in the column. This
applies only to columns whose datatype is a form of character string.

type: String

multiplicity: exactly one

Indicates the timing of the constraint enforcement during multiple-user updates.

type: DeferrabilityType (initiallyDeferred | initiallyImmediate |
notDeferrable)

multiplicity: exactly one
6-14 Common Warehouse Metamodel, v1.1 March 2003

6

Attributes

characterSetName

collationName

isNullable

length

precision

scale

The name of the character set used for the values in the column. This field applies only to
columns whose datatype is a character string.

type: String

multiplicity: exactly one

The name of the collation sequence used to sort the data values in the column. This applies
only to columns whose datatype is a form of character string.

type: String

multiplicity: exactly one

Indicates if null values are valid in this column.

type: NullableType (columnNoNulls | columnNullable |
columnNullableUnknown)

multiplicity: exactly one

The length of fixed length character or byte strings. Maximum length if length is variable.

type: Integer

multiplicity: zero or one

The total number of digits in the field.

type: Integer

multiplicity: zero or one

constraints: Scale must be specified when precision is specified

The number of digits on the right of the decimal separator.

type: Integer

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Relational Classes 6-15

6

References

referencedTableType

optionScopeColumnSet

Constraints

The scale attribute is valid only if the precision attribute is specified. [C-3]

6.3.4 ColumnSet

A set of columns, representing either the result of a query, a view, or a physical table.

Superclasses

Class

Contained Elements

Column

6.3.5 ColumnValue

The value in a column instance.

Superclasses

DataValue

The column, used in an SQLStructuredType is a REF to a type. This references the REF’ed
SQLStructuredType.

class: SQLStructuredType

defined by: ColumnRefStructuredType::referencedTableType

multiplicity: zero or one

inverse: SQLStructuredType::referencingColumn

Reference to the NamedColumnSet (Table or View) indicated in the SCOPE clause of the
Column definition.

class: NamedColumnSet

defined by: ColumnOptionsColumnSet::optionScopeColumnSet

multiplicity: zero or one

inverse: NamedColumnSet::optionScopeColumn
6-16 Common Warehouse Metamodel, v1.1 March 2003

6

6.3.6 ForeignKey

A Foreign Key associates columns from one table with columns of another table.

Superclasses

KeyRelationship

Attributes

deleteRule

updateRule

deferrability

6.3.7 NamedColumnSet

A catalogued set of columns, which may be Table or View.

Note for typed tables: It is assumed that the typed table will own a set of columns
conforming to the type they are OF. This set of columns allows the manipulation of the
table by products that ignore this [SQL] extension. It also allows the columns of type
REF, to be copied to a column with a SCOPE reference.

Superclasses

ColumnSet

An enumerated type. Indicates the disposition of the data records containing the foreign key
value when the record of the matching primary key is deleted.

type: ReferentialRuleType (importedKeyNoAction |
importedKeyCascade | importedKeySetNull |
importedKeyRestrict | importedKeySetDefault)

multiplicity: exactly one

Same as deleteRule for updates of the primary key data record

type: ReferentialRuleType (importedKeyNoAction |
importedKeyCascade | importedKeySetNull |
importedKeyRestrict | importedKeySetDefault)

multiplicity: exactly one

Indicates if the validity of the ForeignKey is to be tested at each statement or at the end of a
transaction.

type: DeferrabilityType (initiallyDeferred | initiallyImmediate |
notDeferrable)

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Relational Classes 6-17

6

References

usingTrigger

type

optionScopeColumn

6.3.8 PrimaryKey

There is only one UniqueConstraint of type PrimaryKey per Table. It is implemented
specifically by each RDBMS.

Superclasses

UniqueConstraint

6.3.9 Procedure

This class describes Relational DBMS Stored procedures and functions.

Superclasses

Method

A Trigger that references this NamedColumnSet in its expression

class: Trigger

defined by: TriggerUsingColumnSet::usingTrigger

multiplicity: zero or more

inverse: Trigger::usedColumnSet

For typed Tables and Views, reference the base SQLStructuredType.

class: SQLStructuredType

defined by: ColumnSetOfStructuredType::type

multiplicity: zero or one

inverse: SQLStructuredType::columnSet

This NamedColumnSet is referenced in a SCOPE clause of the referenced Column.

class: Column

defined by: ColumnOptionsColumnSet::optionScopeColumn

multiplicity: zero or more

inverse: Column::optionScopeColumnSet
6-18 Common Warehouse Metamodel, v1.1 March 2003

6

Attributes

type

6.3.10 QueryColumnSet

The result set of a query.

Superclasses

ColumnSet

Attributes

query

6.3.11 Row

An instance of a ColumnSet.

Superclasses

Object

6.3.12 RowSet

Each instance of RowSet owns a collection of Row instances. The inherited association
between Namespace (a superclass of Package) and ModelElement is used to contain
Instances.

Superclasses

Extent

Contained Elements

Row

A Procedure can be either a Function or a true Procedure. This indicates whether this object
returns a value or not.

type: ProcedureType (procedure | function)

multiplicity: exactly one

The query expression generating this result. The language attribute of the expression should
generally begin with “SQL.”

type: QueryExpression

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Relational Classes 6-19

6

6.3.13 Schema

A schema is a named collection of tables

Superclasses

Package

Contained Elements

NamedColumnSet

Trigger

Procedure

SQLIndex

CheckConstraint

6.3.14 SQLDataType abstract

An SQLDataType is used to reference any datatype associated with a column.

Superclasses

Classifier

Attributes

typeNumber

6.3.15 SQLDistinctType

A datatype defined as a Distinct Type, per [SQL] standard.

Superclasses

SQLDataType

TypeAlias

The number assigned to the datatype by the owning RDBMS.

type: Integer

multiplicity: zero or one
6-20 Common Warehouse Metamodel, v1.1 March 2003

6

Attributes

length

precision

scale

References

sqlSimpleType

6.3.16 SQLIndex

An Index on a table.

Superclasses

Index

Contained Elements

SQLIndexColumn

The length of fixed length character or byte strings. Maximum length if length is variable.

type: Integer

multiplicity: zero or one

The total number of digits in the field.

type: Integer

multiplicity: zero or one

The number of digits on the right of the decimal separator.

type: Integer

multiplicity: zero or one

The SQLSimpleType used to define the SQLDstinctType.

class: SQLSimpleType

definedBy: SQLDistinctTypeWithSQLSimpleType

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Relational Classes 6-21

6

Attributes

filterCondition

isNullable

autoUpdate

6.3.17 SQLIndexColumn

Associates an index with its columns.

This is really an association (link) class. It is associated with one index and one
column.

Superclasses

IndexedFeature

6.3.18 SQLParameter

Parameters of stored procedures.

Superclasses

Parameter

6.3.19 SQLSimpleType

A simple datatype used with an SQL column. Examples are Integer, Varchar, LOB,
CLOB, etc.

Which subset of the table is indexed.

type: String

multiplicity: exactly one

Entries in this index can be null.

type: Boolean

multiplicity: exactly one

The index is updated automatically.

type: Boolean

multiplicity: exactly one
6-22 Common Warehouse Metamodel, v1.1 March 2003

6

Superclasses

DataType

SQLDataType

Attributes

characterMaximumLength

characterOctetLength

numericPrecision

numericPrecisionRadix

numericScale

dateTimePrecision

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR.

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR.

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR.

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR.

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR.

type: Integer

multiplicity: zero or one

See [SQL], corresponding field in DATA_TYPE_DESCRIPTOR.

type: Integer

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Relational Classes 6-23

6

6.3.20 SQLStructuredType

A Datatype defined as Structured Type, per [SQL] standard.

Superclasses

Class

SQLDataType

Contained Elements

Column

References

columnSet

referencingColumn

6.3.21 Table

A materialized NamedColumnSet.

Superclasses

NamedColumnSet

Contained Elements

UniqueConstraint

ForeignKey

A NamedColumnSet created as of this type.

class: NamedColumnSet

defined by: ColumnSetOfStructuredType::columnSet

multiplicity: zero or more

inverse: NamedColumnSet::type

Reference a column of an SQLStructuredType (otherType) that is created with a REF clause
referencing this SQLStructuredType (thisType). Note that in general, otherType and thisType
are two different instances of SQLStructuredType.

class: Column

defined by: ColumnRefStructuredType::referencingColumn

multiplicity: zero or more

inverse: Column::referencedTableType
6-24 Common Warehouse Metamodel, v1.1 March 2003

6

Attributes

isSystem

isTemporary

temporaryScope

References

trigger

Constraints

Attribute temporaryScope is meaningful only when the isTemporary flag is True [C-1]

Indicates that the Table is a System Table (generally part of or view on the system catalog).

type: Boolean

multiplicity: exactly one

Indicates that the table content is temporary. SQL92 standards provide two types of temporary
tables (local Temporary and Global Temporary). However, RDBMS products have
implemented variations on this theme. It is recommended that the product manufacturers
provide specific temporary information (besides the temporaryScope attribute) in their
extensions.

type: Boolean

multiplicity: exactly one

This attribute is meaningful only when the isTemporary flag is True [C-1]. The scope
indicates when the data of this table are available. “SESSION,” “APPLICATION” are
examples of possible values. Look at the Scope attribute for Global Temporary tables in the
SQL standards for more details.

type: String

multiplicity: zero or one

constraints: May not be specified if isTemporary is set to false.

Associates triggers executed during changes to the table.

class: Trigger

defined by: TableOwningTrigger::trigger

multiplicity: zero or more; ordered

inverse: Trigger::table
March 2003 OMG-CWM, v1.1: Relational Classes 6-25

6

6.3.22 Trigger

An action run by the DBMS when specified events occur on the table owning the
Trigger.

Superclasses

ModelElement

Attributes

eventManipulation

actionCondition

actionStatement

actionOrientation

conditionTiming

Indicates what types of events are using the current Trigger.

type: EventManipulationType (insert | delete | update)

multiplicity: exactly one

A boolean expression that defines when the trigger has to be executed.

class: BooleanExpression

multiplicity: exactly one

The Trigger action itself.

class: ProcedureExpression

multiplicity: exactly one

Indicates if the trigger is called once per statement execution or before or after each row of the
table is modified.

class: ActionOrientationType (row | statement)

multiplicity: exactly one

Indicates if the trigger activity is run before or after the statement or row is modified.

class: ConditionTimingType (before | after)

multiplicity: exactly one
6-26 Common Warehouse Metamodel, v1.1 March 2003

6

conditionReferenceNewTable

conditionReferenceOldTable

References

usedColumnSet

table

6.3.23 UniqueConstraint

A condition to define uniqueness of rows in a table. An example of UniqueConstraint
is a primary key.

Superclasses

UniqueKey

The alias for the owning table name, used in the actionStatement, to represent the state of the
table after the insert/delete/update.

class: String

multiplicity: exactly one

The alias for the name of the owning table, used in the actionStatement, to represent the state
of the table before the update/delete/insert.

class: String

multiplicity: exactly one

Tables referenced by the actionStatement or the actionCondition.

class: NamedColumnSet

defined by: TriggerUsingColumnSet::usedColumnSet

multiplicity: zero or more

inverse: NamedColumnSet::usingTrigger

The table that owns the Trigger.

class: Table

defined by: TableOwningTrigger::table

multiplicity: exactly one

inverse: Table::trigger
March 2003 OMG-CWM, v1.1: Relational Classes 6-27

6

Attributes

deferrability

6.3.24 View

A view is a non-materialized set of rows, defined by the associated query.

Superclasses

NamedColumnSet

Contained Elements

QueryExpression

Attributes

isReadOnly

queryExpression

checkOption

Indicates if the validity of the UniqueConstraint is to be tested at each statement or at the end
of a transaction.

type: DeferrabilityType (initiallyDeferred | initiallyImmediate |
notDeferrable)

multiplicity: exactly one

Indicates whether the underlying tables can be updated through an update to this View.

type: Boolean

multiplicity: exactly one

The query associated with the View. The query result must match the set of Columns
associated with the View (in parent class ColumnSet).

type: QueryExpression

multiplicity: exactly one

This field is meaningful only if the view is not ReadOnly. CheckOption indicates that the
RDBMS will validate that changes made to the data verify the view filtering condition and
belong to the view result set.

type: Boolean

multiplicity: exactly one

constraints: only used when isReadOnly=false
6-28 Common Warehouse Metamodel, v1.1 March 2003

6

Constraints

checkOption is valid only if isReadOnly is False. [C-2]

6.4 Relational Associations

6.4.1 ColumnOptionsColumnSet protected

Associates Columns with NamedColumnSets they reference in their OPTIONS clause.

Ends

optionScopeColumn

optionScopeColumnSet

6.4.2 ColumnRefStructuredType protected

Associates Columns of a StructuredType with the Type they reference in the REF
clause.

Ends

referencedTableType

referencingColumn

Reference to the Column that contains theSCOPE clause.

class: Column

multiplicity: zero or more

Reference to the NamedColumnSet indicated in the SCOPE clause of the Column definition.

class: NamedColumnSet

multiplicity: zero or one

The column, used in an SQLStructuredType is a REF to a type. This references the REF’ed
SQLStructuredType.

class: SQLStructuredType

multiplicity: zero or one

Reference to a column of an SQLStructuredType (otherType) that is created with a REF
clause referencing this SQLStructuredType (thisType). Note that in general, otherType and
thisType are two different instances of SQLStructuredType.

class: Column

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Relational Associations 6-29

6

6.4.3 ColumnSetOfStructuredType protected

Associates structured types with NamedColumnSets defined of this type.

Ends

type

columnSet

6.4.4 DistinctTypeHasSimpleType

Ends

sqlDistinctType

sqlSimpleType

6.4.5 TableOwningTrigger protected

Associates a Table with its Triggers. The Trigger will be activated when an action is
performed on the Table.

For typed Tables and Views, reference to the base SQLStructuredType.

class: SQLStructuredType

multiplicity: zero or one

A NamedColumnSet created as of this type.

class: NamedColumnSet

multiplicity: zero or more

Distinct types that use this simple type.

class: SQLDistinctType

multiplicity: zero or more

The Simple type used to define the distinct class.

class: SQLSimpleType

multiplicity: exactly one
6-30 Common Warehouse Metamodel, v1.1 March 2003

6

Ends

table

trigger

6.4.6 TriggerUsingColumnSet protected

This associates a Trigger with the NamedColumnSets it uses in its expressions.

Ends

usedColumnSet

usingTrigger

6.5 OCL Representation of Relational Constraints

[C-1] temporaryScope is valid only if the isTemporary is True.

context Table inv:

self.temporaryScope.notEmpty implies self.isTemporary=True

[C-2] checkOption is valid only if isReadOnly is False.

context View inv:

self.checkOption implies self.isReadOnly=False

The table that owns the Trigger.

class: Table

multiplicity: exactly one

Associates triggers executed during changes to the table.

class: Trigger

multiplicity: zero or more; ordered

NamedColumnSets referenced by the actionStatement or the actionCondition.

class: NamedColumnSet

multiplicity: zero or more

A Trigger that references this table in its expression.

class: Trigger

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: OCL Representation of Relational Constraints 6-31

6

[C-3] scale is valid only if precision is specified.

context Column inv:

self.scale.nonEmpty implies self.precision.notEmpty
6-32 Common Warehouse Metamodel, v1.1 March 2003

Record 7
Contents

This chapter contains the following topics.

7.1 Overview

The Record package covers the basic concept of a record and its structure. The
package takes a broad view of the notion of record, including both traditional data
records such as those stored in files and databases, as well as programming language
structured data types. In fact, the concepts described here can be used as a foundation
for extension packages describing any information structure that is fundamentally
hierarchical, or “nested” in nature such as documents, questionnaires, and
organizational structures.

7.2 Organization of the Record Package

The Record package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Instance

Topic Page

“Overview” 7-1

“Organization of the Record Package” 7-1

“Record Classes” 7-7

“Record Associations” 7-11

“OCL Representation of Record Constraints” 7-12
March 2003 Common Warehouse Metamodel, v1.1 7-1

7

Because of the antiquity of many record-based models, individual system
implementations employing record models may have unusual features (such as occurs-
depending arrays, various COBOL rename/remapping semantics, etc.) that are not
shared with other implementations. When such features are limited to single
implementations or languages, they have been purposefully left out of the Record
metamodel. Rather, unusual features of this sort should be placed into extension
packages designed to meet the needs of those implementations or languages. For
example, record structuring features endemic to the COBOL language have been
placed in the COBOLData metamodel in the CWMX package described in Volume 2
and do not appear here. In this way, COBOL-only features do not burden other record
oriented implementations unnecessarily.

The Record metamodel appears in Figure 7-1.

Figure 7-1 Record Package

The instance diagram in Figure 7-2 shows how a record description is represented in
this model. The record contains three fields, one of which is a group item that itself has
embedded fields. The main RecordDef is named Customer. It contains three Fields:
account, custName, and custAddress.

FixedOffsetField

of f set : I nteger
of f setUn itBits : Integer

Package
(from Core)

RecordFi le

isS elf Describing : Boolean
recordD elim iter : Integer
skipRecords : Int eger
/ record : RecordDef

RecordDef

f i eldDe limite r : String
isF ixed Width : Boo lean
t extD elim it er : String
/ file : RecordFile

* *

f i le

*

record

*

{ordered}

Group Class
(from Core)

F ield

length : Integer
precision : Integer
scale : Integer

Classifier

(from Core)

*

1

/f ea ture *

{ordered}

/owner1

Attribute
(from Core)

1 */type1 *
7-2 Common Warehouse Metamodel, v1.1 March 2003

7

Figure 7-2 Record metamodel instance example

The account is a numeric field with a type of long, which is an instance of DataType.
Size information about the field -- its length, precision, and scale -- are not relevant
for the long data type.

The field custName has a type of char, which is another instance of DataType. The
field is 50 characters in length but needs no precision or scale information.

Field custAddress is a single field; its internal structure is determined from its type
Address, an instance of Group containing six fields.

• address1 and address2 have type of char and are 80 characters long.

• city is also of type char but is 30 characters long.

• state, postcode, and country are of the type char as well but are 3, 11, and 20
characters long, respectively.

Customer :
RecordDef

account :
Field

long :
DataType

custAddress :
Field

Address :
Group

address1 :
Field

address2 :
Field

state :
Field

postcode :
Field

middleNam
e : Field

char :
DataType

StructuralFeatureType

StructuralFeatureType

StructuralFeatureType

StructuralFeatureType

country :
Field

length = 80 :
Integer

length = 30 :
Integer

length = 3 :
Integer

length = 11 :
Integer

length = 20 :
Integer

length = 50 :
Integer

custName :
Field

ClassifierFeature

ClassifierFeature
March 2003 OMG-CWM, v1.1: Organization of the Record Package 7-3

7

The following text shows how the example RecordDef would be described in three
widely used programming languages.

C Programming Language

typedef struct Address {
 char address1[80];
 char address2[80];
 char city[30];
 char state[3];
 char postcode[11];
 char country[20];
} Address;
typedef struct Customer {
 long account;
 char custName[50];
 Address custAddress;
} Customer;
Customer cust;

COBOL Programming Language

01 Customer.
 05 account PIC 999999
 USAGE BINARY.
 05 custName PIC X(50).
 05 custAddress.
 10 address1 PIC X(80).
 10 address2 PIC X(80).
 10 city PIC X(30).
 10 state PIC X(3).
 10 postcode PIC X(11).
 10 country PIC X(20).

PL/1 Programming Language

DECLARE
 1 CUSTOMER ,
 2 ACCOUNT FIXED BIN(31,0),
 2 CUSTNAME CHAR(50),
 2 CUSTADDRESS,
 3 ADDRESS1 CHAR(80),
 3 ADDRESS2 CHAR(80),
 3 CITY CHAR(30),
 3 STATE CHAR(3),
 3 POSTCODE CHAR(11),
 3 COUNTRY CHAR(20);
7-4 Common Warehouse Metamodel, v1.1 March 2003

7

7.2.1 Instances

Instances of records are created by extending the ObjectModel’s Instance package as
shown in Figure 7-3.

Figure 7-3 Record metamodel instances

Figure 7-4 shows an example of how record instances are created using the Record,
FieldValue, and RecordSet classes. The example uses the metamodel instances in
Figure 7-2 on page 7-3 to store the address of the President of the United States.

DataValue
(f rom Instance)

Object
(f rom Instance)

FieldValue Record RecordSet

Extent
(f rom Instance)

Instance
(f rom Instance)
March 2003 OMG-CWM, v1.1: Organization of the Record Package 7-5

7

Figure 7-4 Record instance example

 : RecordFile Customer :
RecordDef

 :
Record

 : RecordSet

 : Slot

 : Slot

 : Slot

 :
FieldValue

 :
FieldValue

value = "The
President" : String

value = "123475" :
String

account :
Field

custName :
Field

 : Object

 : Slot

address :
Group

 : Slot

 : Slot

 : Slot

 : Slot

 : Slot

 :
FieldValue

 :
FieldValue

 :
FieldValue

 :
FieldValue

 :
FieldValue

 :
FieldValue

value = "The White
House" : String

value = "1600 Pennsylvania
Avenue NW" : String

value = "Washington" :
String

value = "DC" :
String

value = "20500" :
String

value = "USA" :
String

address1 :
Field

address2 :
Field

city :
Field

state :
Field

postcode :
Field

country :
Field

FeatureSlot

FeatureSlot

FeatureSlot

FeatureSlot

FeatureSlot

FeatureSlot

SlotValue

SlotValue

SlotValue

SlotValue

SlotValue

SlotValue

ElementOwnership

ElementOwnership

SlotValue

SlotValue

InstanceClassifier

ObjectSlot

FeatureSlot

FeatureSlot

InstanceClassifier

ObjectSlot

Classi fierFeature
7-6 Common Warehouse Metamodel, v1.1 March 2003

7

7.3 Record Classes

7.3.1 Field

A Field is the fundamental information container within a RecordDef. It holds one
piece of information, which may itself have structure. The inherited associations
StructuralFeatureType and ElementOwnership provide access to a Field instance’s type
and owning classifier, respectively.

Superclasses

Attribute

Attributes

length

precision

scale

Constraints

Owner and type cannot refer to the same Classifier. [C-1]

The scale attribute is valid only if the precision attribute is specified. [C-2]

The precision attribute is valid only if the length attribute is not specified. [C-3]

7.3.2 FieldValue

The value currently held in a Field instance.

The length of a fixed length character or byte string field.

type: Integer

multiplicity: zero or one

The total number of digits in a numeric field.

type: Integer

multiplicity: zero or one

The number of digits on the right of the decimal separator in a numeric field.

type: Integer

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Record Classes 7-7

7

Superclasses

DataValue

7.3.3 FixedOffsetField

Instances of FixeOffsetField represent fields that have a fixed location in a record.

FixedOffsetFields can be used as a foundation for recording details of physical record
layouts and as a means of representing the internal structure of undiscriminated; that is,
C-type unions.

Superclasses

Field

Attributes

offset

offsetUnitBits

7.3.4 Group

A Group is a structured data type and is used to collect together Field instances within
a Record. Groups can be used in RecordDef instances as shown in the foregoing
example.

Superclasses

Classifier

7.3.5 Record

A Record, a subclass of Object, represents a single data record. Each Record is
described by a RecordDef instance found via the Object’s InstanceClassifier
association.

Specifies the offset of the field within its container in units of the number of bits indicated in
the offsetUnitBits attribute.

type: Integer

multiplicity: exactly one

The number of bits making up one record offset unit. For example, for a byte-relative offset,
the value of this attribute would typically be 8.

type: Integer

multiplicity: exactly one
7-8 Common Warehouse Metamodel, v1.1 March 2003

7

Superclasses

Object

7.3.6 RecordDef

A RecordDef is an ordered collection of Fields representing the structure of a Record.
Examples of RecordDefs include definitions of

• language-specific data structures

• database records

• IMS segments

The internal structure of a RecordDef instance is constructed by adding Field instances
as features (using the ElementOwnership association) and pointing each Field
instance's inherited type reference to the Classifier instance representing the Field’s
data type. The referenced instance can be either a primitive data type (an instance of
DataType, such as “integer”) or a structured data type (such as a Group instance).

Refer to the foregoing example for more details of the relationships between
RecordDefs, Fields, Records, and their values.

Superclasses

 Class

Contained Elements

Field

Attributes

fieldDelimiter

isFixedWidth

The value of a fieldDelimiter used to separate field values in an input stream.

type: String

multiplicity: zero or one

True if the record is fixed length. Otherwise, the record can be of variable length.

type: Boolean

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Record Classes 7-9

7

textDelimiter

References

file

7.3.7 RecordFile

A RecordFile is the definition of a file. It may have one or more RecordDefs, defining
the structure of the records in the file. Each of these RecordDefs defines a valid
structure for records in the file. Subclasses of RecordFile in extensions to support
specific languages and systems may be used to represent specific types of files such as
COBOL CopyLib files and C-language header files.

Physical deployments of a RecordFile can be found via the DataManagerDataPackage
association in the SoftwareDeployment package.

Superclasses

Package

Attributes

isSelfDescribing

The delimiter of a text string in the record, such as a quote.

type: String

multiplicity: zero or one

Identifies files containing Records described by the RecordDef.

class: RecordFile

defined by: RecordToFile::file

multiplicity: zero or more

inverse: RecordFile::record

True if the contents of fields in the first record of the file contain field names applicable to
subsequent records.

type: Boolean

multiplicity: exactly one
7-10 Common Warehouse Metamodel, v1.1 March 2003

7

recordDelimiter

skipRecords

References

record

7.3.8 RecordSet

A RecordSet represents a collection of Record instances.

Superclasses

Extent

Contained Elements

Record

7.4 Record Associations

7.4.1 RecordToFile Protected

A Record definition can apply to records stored in a RecordFile.

Contains the value that serves as a logical end-of-record indication in a stream-oriented file. A
common example includes the usage of carriage-return characters and carriage-return/line-
feed character pairs as new-line characters in ASCII text files.

type: String

multiplicity: zero or one

The number of records to ignore at the beginning of a file. The specific semantics of records
that are skipped may be beyond the scope of CWM.

type: Integer

multiplicity: zero or one

The record definitions used to describe the layout of individual record instances stored in the
file. The ordering of these RecordDefs may be used to indicate the physical sequence in which
records of various types are expected.

class: RecordDef

defined by: RecordToFile::record

multiplicity: zero or more; ordered

inverse: RecordDef::file
March 2003 OMG-CWM, v1.1: Record Associations 7-11

7

Ends

file

record

7.5 OCL Representation of Record Constraints

[C-1] The owner of a Field and the type of a Field may not refer to the same Classifier
instance.

context Field inv:

self.owner <> self.type

[C-2] The scale attribute is valid only if the precision attribute is specified.

context Field inv:

self.scale->notEmpty implies self.precision->notEmpty

[C-3] The precision attribute is valid only if the length attribute is not specified.

context Field inv:

self.precision->notEmpty implies self.length->isEmpty

Identifies the set of files in which a record is stored.

class: RecordFile

multiplicity: zero or more

Identifies the set of records stored in the file. The ordering may indicate the physical ordering
of records with different layouts.

class: RecordDef

multiplicity: zero or more; ordered
7-12 Common Warehouse Metamodel, v1.1 March 2003

Multidimensional 8
Contents

This chapter contains the following topics.

8.1 Overview

The CWM Multidimensional metamodel is a generic representation of a
multidimensional database.

Multidimensional databases are OLAP databases that are directly implemented by
multidimensional database systems. In a multidimensional database, key OLAP
constructs (dimensions, hierarchies, etc.) are represented by the internal data structures
of a multidimensional database server, and common OLAP operations (consolidation,
drill-down, etc.) are performed by the server acting on those data structures.
Multidimensional databases are often classified as “physical OLAP” or “MOLAP”
(memory-based OLAP) databases.

Multidimensional databases offer enhanced performance and flexibility over OLAP
systems that simulate multidimensional functionality using other technologies (for
example, relational database or spreadsheet):

Topic Page

“Overview” 8-1

“Organization of the Multidimensional Package” 8-2

“Multidimensional Classes” 8-4

“Multidimensional Associations” 8-8

“OCL Representation of Multidimensional Constraints” 8-10
March 2003 Common Warehouse Metamodel, v1.1 8-1

8

• Performance: Multidimensional databases provide rapid consolidation times and
formula calculations, and consistent query response times regardless of query
complexity. This is accomplished, in part, through the use of efficient cell storage
techniques and highly-optimized index paths.

• Flexibility: The specification and use of multidimensional schemas and queries
(including the design of cubes, dimensions, hierarchies, member formulas, the
manipulation of query result sets, etc.) can be accomplished in a relatively straight-
forward manner, since the server directly supports (and exposes) the
multidimensional paradigm.

The CWM Multidimensional metamodel does not attempt to provide a complete
representation of all aspects of commercially available, multidimensional databases.
Unlike relational database management systems, multidimensional databases tend to be
proprietary in structure, and there are no published, widely agreed upon, standard
representations of the logical schema of a multidimensional database. Therefore, the
CWM Multidimensional Database metamodel is oriented toward complete generality
of specification. Tool-specific extensions to the metamodel are relatively easy to
formulate, and several examples are provided in Volume 2, Extensions, of the CWM
Specification.

8.2 Organization of the Multidimensional Package

8.2.1 Dependencies

The Multidimensional package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Instance

8.2.2 Major Classes and Associations

The major classes and associations of the Multidimensional metamodel are shown in
Figure 8-1.
8-2 Common Warehouse Metamodel, v1.1 March 2003

8

Figure 8-1 Multidimensional Metamodel: Classes and Associations

Schema is the container of all elements comprising a Multidimensional model. It also
represents the logical unit of deployment of a Multidimensional database instance.

Dimension represents a physical dimension in a Multidimensional database. Whereas
the OLAP metamodel defines “dimension” as a purely conceptual entity, this
Dimension represents the dimension object exposed by the programming model of a
Multidimensional database.

A Dimension may reference other instances of Dimension to form arbitrarily complex
dimensional structures (for example, hierarchies with varying levels of detail).

DimensionedObject represents an attribute of Dimension. Examples of
DimensionedObjects include measures (variables), formulas, consolidation functions,
member alias names, etc. DimensionedObjects are contained by the Schema and
referenced by the Dimensions that use them.

MemberSet represents the collection of Members associated with an instance of
Dimension, and MemberValue represents an instance value of a Member. MemberSet,
Member, and MemberValue enable the specification and interchange of both M1-level
Multidimensional models and associated M0-level data values.

MemberValue

Object
(from Instance)

DataValue
(from Instance)

Member

Instance
(from Instance)

Extent
(f rom Instance)

*

0..1

/ownedElement

* /namespace

0..1

DimensionedObject
/ dimension : Dimension
/ schema : Schema

Schema
/ dimensionedObject : DimensionedObject
/ dimension : Dimension

*

1

*

1

MemberSet

/ dimension : Dimension

Dimension
/ dimensionedObject : DimensionedObject
/ component : Dimension
/ composite : Dimension
/ memberSet : MemberSet
/ schema : Schema

** **

{ordered}
*

*

composite*

component

**

1

*

1

*

1

*

1

March 2003 OMG-CWM, v1.1: Organization of the Multidimensional Package 8-3

8

8.2.3 Inheritance from the ObjectModel

Figure 8-2 illustrates the inheritance of the Multidimensional classes from metaclasses
of the Object Model.

Figure 8-2 Multidimensional Metamodel: Inheritance from Object Model

8.3 Multidimensional Classes

8.3.1 Dimension

Dimension represents physical dimension in a multidimensional database (for example,
a dimension object defined by the programming model/API of an OLAP database
server). Tool-specific extensions to the Multidimensional package will generally
contain classes that derive from Dimension.

Superclasses

Class

8.3.1.1 Contained Elements

MemberSet

8.3.1.2 References

dimensionedObject

References the collection of DimensionedObjects associated with a Dimension.

class: DimensionedObject

defined by: DimensionsReferenceDimensionedObjects
::dimensionedObject

multiplicity: zero or more; ordered

inverse: DimensionedObject::dimension

DimensionedObject Schema

Package
(from Core)

Class
(f rom Core)

MemberValueMember

Attribute
(f rom Core)

Dimension

DataValue
(from Instance)

MemberSet

Extent
(f rom Instance)

Object
(from Instance)
8-4 Common Warehouse Metamodel, v1.1 March 2003

8

component

composite

memberSet

schema

8.3.1.3 Constraints

A Dimension may not reference itself as a component, nor as a composite. [C-1]

The transitive closure of components of an instance of Dimension must not include the
Dimension instance.

The transitive closure of composites of an instance of Dimension must not include the
Dimension instance.

References “component” Dimensions comprising this Dimension.

class: Dimension

defined by: CompositesReferenceComponents::component

multiplicity: zero or more

inverse: Dimension::composite

References “composite” Dimensions comprised (in part) from this Dimension.

class: Dimension

defined by: CompositesReferenceComponents::composite

multiplicity: zero or more

inverse: Dimension::component

References the collection of MemberSets owned by a Dimension.

class: MemberSet

defined by: DimensionOwnsMemberSets::memberSet

multiplicity: zero or more

inverse: MemberSet::dimension

References the Schema owning a Dimension.

class: Schema

defined by: MDSchemaOwnsDimensions::schema

multiplicity: exactly one

inverse: Schema::dimension
March 2003 OMG-CWM, v1.1: Multidimensional Classes 8-5

8

8.3.2 DimensionedObject

DimensionedObject represents an attribute of Dimension.

Superclasses

Attribute

References

dimension

schema

8.3.3 Member

Member represents a member of a Dimension.

Superclasses

Object

8.3.4 MemberSet

MemberSet represents the collection of Members associated with an instance of
Dimension.

Superclasses

Extent

Contained Elements

• Member

References the collection of Dimensions associated with this DimensionedObject.

class: Dimension

defined by: DimensionsReferenceDimensionedObjects::dimension

multiplicity: zero or more

inverse: Dimension::dimensionedObject

References the Schema owning a DimensionedObject.

class: Schema

defined by: MDSchemaOwnsDimensionedObjects::schema

multiplicity: exactly one

inverse: Schema::dimensionedObject
8-6 Common Warehouse Metamodel, v1.1 March 2003

8

• MemberValue

References

dimension

8.3.5 MemberValue

MemberValue represents an instance value of a Member.

Superclasses

DataValue

8.3.6 Schema

Schema contains all elements comprising a Multidimensional database.

Superclasses

Package

Contained Elements

• Dimension

• DimensionedObject

References

dimensionedObject

References the Dimension owning a MemberSet.

class: Dimension

defined by: DimensionOwnsMemberSets::dimension

multiplicity: exactly one

inverse: Dimension::memberSet

References the collection of DimensionedObjects owned by a Schema.

class: DimensionedObject

defined by: MDSchemaOwnsDimensionedObjects::
dimensionedObject

multiplicity: zero or more

inverse: DimensionedObject::Schema
March 2003 OMG-CWM, v1.1: Multidimensional Classes 8-7

8

dimension

8.4 Multidimensional Associations

8.4.1 CompositesReferenceComponents

A Dimension may reference other instances of Dimension in order to derive more
complex dimensional structures.

Ends

composite

component

8.4.2 DimensionOwnsMemberSets

A Dimension may own any number of MemberSets.

Ends

dimension

References the collection of Dimensions owned by a Schema.

class: Dimension

defined by: MDSchemaOwnsDimensions::dimension

multiplicity: zero or more

inverse: Dimension::Schema

“Composite” Dimensions referencing “Component” Dimensions.

class: Dimension

multiplicity: zero or more

“Component” Dimensions referenced by “Composite” Dimensions.

class: Dimension

multiplicity: zero or more

Dimension owning MemberSets.

class: Dimension

multiplicity: exactly one

aggregation: composite
8-8 Common Warehouse Metamodel, v1.1 March 2003

8

memberSet

8.4.3 DimensionsReferenceDimensionedObjects

A Dimension may reference several instances of DimensionedObject. A
DimensionedObject may be referenced by several Dimensions.

Ends

dimension

dimensionedObject

8.4.4 MDSchemaOwnsDimensionedObjects

A Multidimensional Schema may own any number of DimensionedObjects.

Ends

schema

dimensionedObject

MemberSets owned by a Dimension.

class: MemberSet

multiplicity: zero or more

Dimensions referencing DimensionedObjects.

class: Dimension

multiplicity: zero or more

DimensionedObjects referenced by Dimensions.

class: DimensionedObject

multiplicity: zero or more; ordered

Schema owning DimensionedObjects.

class: schema

multiplicity: exactly one

aggregation: composite

DimensionedObjects owned by a Schema.

class: DimensionedObject

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Multidimensional Associations 8-9

8

8.4.5 MDSchemaOwnsDimensions

A Multidimensional Schema may own any number of Dimensions.

Ends

schema

dimension

8.5 OCL Representation of Multidimensional Constraints

[C-1] A Dimension may not reference itself as a component, nor as a composite.
context Dimension
inv: self.component->excludes(self)
inv: self.composite->excludes(self)

Schema owning Dimensions.

class: schema

multiplicity: exactly one

aggregation: composite

Dimensions owned by a Schema.

class: Dimension

multiplicity: zero or more
8-10 Common Warehouse Metamodel, v1.1 March 2003

XML 9
Contents

This chapter contains the following topics.

9.1 Overview

XML is rapidly becoming a very important type of data resource, especially in the
Internet environment. On the one hand, HTML is evolving to be XML-compliant; in
the near future, all HTML documents can be expected to become valid XML
documents. On the other hand, XML is quickly becoming the standard format for
interchange of data and/or metadata (for example, XMI). Therefore, XML documents
(or streams) representing data and/or metadata can be expected to appear everywhere.

The XML package contains classes and associations that represent common metadata
describing XML data resources. It is based on XML 1.0 [XML]. XML Schema is an
ongoing activity in the W3C. As future standards are adopted by the W3C on XML
Schema, this package will be revised and extended accordingly.

Topic Page

“Overview” 9-1

“Organization of the XML Package” 9-2

“XML Classes” 9-4

“XML Associations” 9-11

“OCL Representation of XML Constraints” 9-13
March 2003 Common Warehouse Metamodel, v1.1 9-1

9

9.1.1 Semantics

This section provides a description of the main features of the XML package.

An XML schema contains a set of definitions and declarations, in the form of XML
element type definitions. An XML element type may contain a set of XML attributes
and/or a content model. An attribute can have one of the following defaults: required,
implied, default, or fixed. The content model can be one of the following types: empty,
any, mixed, or element. Except for the empty content model, a content model consists
of constituent parts, particularly element type references. The allowed occurrence of
the constituents can be one of the following types: one, zero; or one, zero or more; or
one or more.

An any content model consists of any element types. A mixed content model consists
of character data and specified element type references. An element content model
consists of specified element type references and/or element content models. An
element content model can be one of the following types: choice or sequence.

9.2 Organization of the XML Package

The XML package depends on the following packages:

• omg.org::CWM::ObjectModel::Core

• omg.org::CWM::ObjectModel::Instance

• omg.org::CWM::Foundation::DataTypes

The metamodel diagram for the XML package is split into two parts. The first diagram
shows the XML classes and associations, while the second shows the inheritance
hierarchy.
9-2 Common Warehouse Metamodel, v1.1 March 2003

9

Figure 9-1 XML Package: Relationships

lementContent

order : ElementOrderType
/ ownedContent : ElementContent
/ ownerContent : ElementContent

*

*

ownedContent*

ownerContent

*

ElementTypeReference

ccurrence : OccurrenceType
 ownerContent : Content

Content

type : ContentType
occurrence : OccurrenceType
/ elementType : ElementType
/ ownedElementType : ElementTypeReference

*

* ownedElementType

*ownerContent

*

Text

/ ownerContent : MixedContent
MixedContent

/ text : Text 1..11..1

text

1..1

ownerContent

1..1

Content

type : ContentType
occurrence : OccurrenceType
/ elementType : ElementType
/ ownedElementType : ElementTypeReference

Schema

version : String
xmlNamespace : String
/ elementType : ModelElement

Attribute

defaultKind : AttributeDefault
/ elementType : Classifier

ElementType

/ schema : Namespace
/ attribute : Feature
/ content : Content

0..1

*

+content0..1

+elementType*

*

0..1 modelElement

*/names pace

0..1

*

0..1

/feature
*

/owner
0..1

ElementDocument *

0..1 /ownedElement

*/namespace

0..1
March 2003 OMG-CWM, v1.1: Organization of the XML Package 9-3

9

Figure 9-2 XML Package: Hierarchy

9.3 XML Classes

The XML package contains the following classes, in alphabetical order:

• Attribute

• Content

• Document

• Element

S c h e m a

ve rs io n : S t r in g
x m lN a m e s p a c e : S t r in g
/ e le m e n t T y p e : M o d e lE le m e n t

E le m e n t T y p e

/ s c h e m a : N a m e s p a c e
/ a t t r i b u t e : F e a t u re
/ c o n t e n t : C o n t e n t

P a c k a g e
(fro m C o re)

C las s
(fro m C o re)

C o n te n t

t y p e : C o n t e n t Ty p e
o c c u r re nc e : O c c u rre n c e T y p e
/ e le m e nt T y p e : E le m e n t T y p e
/ o w n e d E le m e nt T y p e : E le m e n t T y p e R e fe re n c e

E le m e n t C o n t e n t

o rd e r : E l e m e n tO rd e rTy p e
/ o w n e d C o n t e n t : E l e m e n tC o n t e n t
/ o w n e rC on t e n t : E le m e nt C o n te n t

M ix e d C o n t e n t

/ t e x t : T e x t

T e x t

/ o w n e rC o n t e n t : M ix e d C o n t e n t

M o d e lE le m e n t
(f ro m C o re)

E x t e n t
(fro m In s t a n c e)

E le m e n t

O b j ec t
(fro m I n s t a n c e)

D o c u m e n t

A t t r ib u t e
d e fa u lt K in d : A tt ri b u t e D e fau l t
/ e le m e nt T y p e : C l a s s i fie r

E le m e n t T y p e R e fe re n c e

o c c u r re n c e : O c c u rre n c e T y p e
/ o w n e rC o n t e n t : C o n t e n t

A t tr ib u te
(fro m C o re)
9-4 Common Warehouse Metamodel, v1.1 March 2003

9

• ElementContent

• ElementType

• ElementTypeReference

• MixedContent

• Schema

• Text

9.3.1 Attribute

This represents an XML attribute declaration. In XML, attributes are used to associate
name-value pairs with elements. Each attribute declaration specifies the name, data
type, and default value (if any) of each attribute associated with a given element type.

Superclasses

org.omg::CWM::ObjectModel::Core::Attribute

Attributes

defaultKind

References

elementType

9.3.2 Content

This represents the content model of an ElementType. In XML, each document
contains one or more elements, the boundaries of which are normally delimited by
start-tags and end-tags. The body between the start-tag and end-tag is called the
element’s content. An element type declaration constrains the element’s content.

Superclasses

ModelElement

Identifies the kind of attribute default.

type: AttributeDefault (xml_required | xml_implied | xml_default |
xml_fixed)

multiplicity: exactly one

Identifies the ElementType that owns the Attribute.

class: Classifier

defined by: Classifier-Feature::owner

multiplicity: zero or one

inverse: ElementType::attribute
March 2003 OMG-CWM, v1.1: XML Classes 9-5

9

Attributes

type

occurrence

References

elementType

ownedElementType

9.3.3 Document

This represents an XML document, which is a collection of XML Elements.

Superclasses

Extent

Contained Elements

Element

Identifies the type of the content model.

type: ContentType (xml_empty | xml_any | xml_mixed |
xml_element)

multiplicity: exactly one

Identifies the allowed occurrence of the content constituents.

type: OccurrenceType (xml_one | xml_zeroOrOne |
xml_zeroOrMore, | xml_oneOrMore)

multiplicity: exactly one

Identifies the ElementType that owns the Content.

class: ElementType

defined by: ElementTypeContent::elementType

multiplicity: zero or more

inverse: ElementType::content

Identifies the ElementTypeReferences owned by the Content.

class: ElementTypeReference

defined by: ContentElementTypeReference::ownedElementType

multiplicity: zero or more

inverse: ElementTypeReference::ownerContent
9-6 Common Warehouse Metamodel, v1.1 March 2003

9

9.3.4 Element

This represents an instance of an ElementType.

Superclasses

Object

9.3.5 ElementContent

This represents an element content that contains only ElementTypeReferences. In
XML, an element type has element content when elements of that type must contain
only child elements (no character data), optionally separated by white space. In this
case, the constraint includes a content model that governs the allowed types of the
child elements and the order in which they are allowed to appear.

Superclasses

Content

Attributes

order

References

ownedContent

ownerContent

Identifies the order type of the element content.

type: ElementOrderType (xml_choice | xml_sequence)

multiplicity: exactly one

Identifies the content owned by the ElementContent.

class: ElementContent

defined by: OwnedElementContent::ownedContent

multiplicity: zero or more

inverse: ElementContent::ownerContent

Identifies the content that owns the ElementContent.

class: ElementContent

defined by: OwnedElementContent::ownerContent

multiplicity: zero or more

inverse: ElementContent::ownerElement
March 2003 OMG-CWM, v1.1: XML Classes 9-7

9

Constraints

An ElementContent may not be its own owner content or owned content, transitive
closure.

9.3.6 ElementType

This represents an XML element type definition. In XML, each document contains one
or more elements. The element structure may, for validation purposes, be constrained
using element type and attribute declarations. An element type declaration constrains
the element’s content.

Superclasses

Class

Contained Elements

Attribute

References

schema

attribute

content

Identifies the Schema that owns the ElementType.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: Schema::elementType

Identifies the Attributes owned by the ElementType.

class: Feature

defined by: Classifier-Feature::feature

multiplicity: zero or more

inverse: Attribute::elementType

Identifies the content of the ElementType.

class: Content

defined by: ElementTypeContent::content

multiplicity: zero or one

inverse: Content::elementType
9-8 Common Warehouse Metamodel, v1.1 March 2003

9

9.3.7 ElementTypeReference

This represents an XML element type reference. In XML, an element content or a
mixed content of an element type may contain references to element type definitions.

Superclasses

org.omg::CWM::ObjectModel::Core::Attribute

Attributes

occurrence

References

ownerContent

9.3.8 MixedContent

This represents a mixed content of character data and ElementTypeReferences. In
XML, an element type has mixed content when elements of that type may contain
character data, optionally interspersed with child elements. In this case, the types of the
child elements may be constrained, but not their order or their number of occurrences.

Superclasses

Content

Contained Elements

Text

Identifies the allowed occurrence of the ElementTypeReference.

type: OccurrenceType (xml_one | xml_zeroOrOne |
xml_zeroOrMore | xml_oneOrMore)

multiplicity: exactly one

Identifies the Content that owns the ElementTypeReference.

class: Content

defined by: ContentElementTypeReference::owner

multiplicity: zero or more

inverse: Content::ownedElementType
March 2003 OMG-CWM, v1.1: XML Classes 9-9

9

References

text

9.3.9 Schema

This represents an XML schema that contains a set of definitions and declarations. In
XML, this is known as document type definition, or DTD, which provides a grammar
for a class of documents.

Superclasses

Package

Contained Elements

ElementType

Attributes

version

xmlNamespace

Identifies the Text owned by the MixedContent.

class: Text

defined by: MixedContentText::text

multiplicity: exactly one

inverse: Text::ownerContent

Identifies the version of the XML.

type: String

multiplicity: exactly one

Identifies the XML namespace of the Schema.

type: String

multiplicity: exactly one
9-10 Common Warehouse Metamodel, v1.1 March 2003

9

References

elementType

9.3.10 Text

This represents character data. In XML, a mixed content of an element type may
contain text.

Superclasses

org.omg::CWM::ObjectModel::Core::Attribute

References

ownerContent

9.4 XML Associations

The XML package contains the following associations, in alphabetical order:

• ContentElementTypeReference

• ElementTypeContent

• MixedContentText

• OwnedElementContent

9.4.1 ContentElementTypeReference protected

This association relates a Content with its constituent ElementTypeReferences.

Identifies the ElementTypes owned by the Schema.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: Element::schema

Identifies the Content that owns the Text.

class: MixedContent

defined by: MixedContentText::ownerContent

multiplicity: exactly one

inverse: MixedContent::text
March 2003 OMG-CWM, v1.1: XML Associations 9-11

9

Ends

ownerContent

ownedElementType

9.4.2 ElementTypeContent protected

This association relates an ElementType with its Content.

Ends

elementType

content

9.4.3 MixedContentText protected

This association relates a MixedContent with its Text.

Identifies the owner Content.

class: Content

multiplicity: zero or more

aggregation: shared

Identifies the owned ElementTypeReferences.

class: ElementTypeReference

multiplicity: zero or more

Identifies the ElementType.

class: ElementType

multiplicity: zero or more

aggregation: shared

Identifies the Content of the ElementType.

class: Content

multiplicity: zero or one
9-12 Common Warehouse Metamodel, v1.1 March 2003

9

Ends

ownerContent

text

9.4.4 OwnedElementContent protected

This association relates an ElementContent with its constituent ElementContents.

Ends

ownerContent

ownedContent

9.5 OCL Representation of XML Constraints

None

Identifies the owner MixedContent.

class: MixedContent

multiplicity: exactly one

aggregation: composite

Identifies the Text of the MixedContent.

class: Text

multiplicity: exactly one

Identifies the owner ElementContent.

class: ElementContent

multiplicity: zero or more

aggregation: shared

Identifies the owned ElementContents.

class: ElementContent

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: OCL Representation of XML Constraints 9-13

9

9-14 Common Warehouse Metamodel, v1.1 March 2003

Transformation 10
Contents

This chapter contains the following topics.

10.1 Overview

A key aspect of data warehousing is to extract, transform, and load data from
operational resources to a data warehouse or data mart for analysis. Extraction,
transformation, and loading can all be characterized as transformations. In fact,
whenever data needs to be converted from one form to another in data warehousing,
whether for storage, retrieval, or presentation purposes, transformations are involved.
Transformation, therefore, is central to data warehousing.

The Transformation package contains classes and associations that represent common
transformation metadata used in data warehousing. It covers basic transformations
among all types of data sources and targets: object-oriented, relational, record,
multidimensional, XML, OLAP, and data mining.

The Transformation package is designed to enable interchange of common metadata
about transformation tools and activities. Specifically it is designed to:

Topic Page

“Overview” 10-1

“Organization of the Transformation Package” 10-4

“Transformation Classes” 10-9

“Transformation Associations” 10-21

“OCL Representation of Transformation Constraints” 10-28
March 2003 Common Warehouse Metamodel, v1.1 10-1

10
• Relate a transformation with its data sources and targets.
These data sources and targets can be of any type (e.g., object-oriented, relational)
or granularity (e.g., class, attribute, table, column). They can be persistent (e.g.,
stored in a relational database) or transient.

• Accommodate both “black box” and “white box” transformations.
In the case of “black box” transformations, data sources and targets are related to a
transformation and to each other at a coarse-grain level. We know the data sources
and targets are related through the transformation, but we don’t know how a specific
piece of a data source is related to a specific piece of a data target. In the case of
“white box” transformations, however, data sources and targets are related to a
transformation and to each other at a fine-grain level. We know exactly how a
specific piece of a data source is related to a specific piece of a data target through
a specific part of the transformation.

• Allow grouping of transformations into logical units.
At the functional level, a logical unit defines a single unit of work, within which all
transformations must be executed and completed together. At the execution level,
logical units can be used to define the execution grouping and sequencing (either
explicitly through precedence constraints or implicitly through data dependencies).
A key consideration here is that both parallel and sequential executions (or a
combination of both) can be accommodated.

The Transformation package assumes the existence of the following packages that
represent types of potential data sources or targets: ObjectModel (object-oriented),
Relational, Record, Multidimensional, XML, OLAP, and Data Mining. The
Transformation package is an integral part of the following packages: OLAP, Data
Mining, Warehouse Process, and Warehouse Operation. In particular, the
Transformation and Warehouse Process packages together provide metamodel
constructs that facilitate scheduling and execution in data warehousing, and the
Transformation and Warehouse Operation packages together provide metamodel
constructs that enable data lineage in data warehousing.

10.1.1 Semantics

This section provides a description of the main features of the Transformation package,
as illustrated in Figure 10-1 on page 10-3:
10-2 Common Warehouse Metamodel, v1.1 March 2003

10
Figure 10-1 Sample Transformation Package

A transformation transforms a set of source objects into a set of target objects. The
elements of a data object set can be any ObjectModel model elements, but typically are
tables, columns, or model elements that represent transient, in memory, objects. Data
object sets can be both sources and targets for different transformations. In particular, a
given data object set can be the target of one transformation and the source of one or
more transformations within the same logical unit. This is often the case with
transformations that produce and consume temporary objects.

Transformations allow a wide range of types (and granularity) to be defined for their
data sources and targets. For example, the source type of a transformation can be an
XML schema while the target type is a column, if the transformation deals with storing
an XML document in a column of a relational database. More typically, the source
types of a transformation are classes and attributes while the target types are tables and
columns, or vice versa, if the transformation deals with converting object data into
relational data, or vice versa.

Existing programs, queries, or rules (in fact, any ObjectModel operations) can be used
to perform a transformation by associating them with the transformation using the
transformation use dependency.

Transformations can be grouped into logical units. At the functional level, they are
grouped into transformation tasks, each of which defines a set of transformations that
must be executed and completed together - a logical unit of work. At the execution
level, transformation steps are used to coordinate the flow of control between
transformation tasks, with each transformation step executing a single transformation
task. The transformation steps are further grouped into transformation activities.
Within each transformation activity, the execution sequence of its transformation steps
are defined either explicitly by using the step precedence dependency or precedence
constraint, or implicitly through data dependency.

Transformation
Step 1

Transformation
Step 2

Source Transformation Data
Object

Set

Source Transformation Target

Source Transformation Target

Transformation
Activity

TransformationTask A

TransformationTask B

...
Program/Query/Rule

DataObjectSet

Target Transformation

DataObjectSetDataObjectSet

TransformationMap/
TransformationTree
March 2003 OMG-CWM, v1.1: Overview 10-3

10
There are certain “white-box” transformations that are commonly used and can relate
data sources and targets to a transformation and to each other at a detailed level. These
transformations are convenient to use and they provide data lineage at a fine-grain
level. One such transformation is the transformation map, which consists of a set of
classifier maps that in turn consists of a set of feature maps or classifier-feature maps.
The other is the transformation tree, which represents a transformation as a unary or
binary expression tree. For an example usage of the transformation map, please see
Figure 10-2 on page 10-6.

10.2 Organization of the Transformation Package

The Transformation package depends on the following packages:

• omg.org::CWM::ObjectModel::Behavioral

• omg.org::CWM::ObjectModel::Core

• omg.org::CWM::Foundation::Expressions

• omg.org::CWM::Foundation::SoftwareDeployment

The CWM uses packages to control complexity and create groupings of logically
interrelated classes and associations. The Transformation package is one such package.
Within the Transformation package itself, however, the definition of subpackages is
purposefully left out to reduce the length and complexity of the fully qualified names
of Transformation classes and associations. There are, however, several groupings of
classes and associations that form related sets of functionality within the
Transformation package. Although separate subpackages have not been created for
these functional areas, their identification improves the understandability of the
Transformation package.

The Transformation package contains metamodel elements that support the following
functions:

• Transformation and data lineage. These classes and associations deal with
transformations and their sources, targets, constraints, and operations.

• Transformation grouping and execution. These classes and associations deal with
grouping of transformations to form logical units and to define execution sequences.

• Specialized transformations. These classes and associations define specialized,
“white box,” transformations that are commonly used in data warehousing.
10-4 Common Warehouse Metamodel, v1.1 March 2003

10
The specific Transformation classes and associations supporting each functional area
are delineated in Table 10-1.

The metamodel diagram for the Transformation package is split into four parts. The
first two diagrams show the Transformation classes and associations, while the last two
show the inheritance hierarchy.

Table 10-1 Transformation Classes and Associations

Functional Area Classes Associations

Transformation and data
lineage

Transformation

DataObjectSet
TransformationUse

TransformationSource
TransformationTarget
DataObjectSetElement

Transformation grouping
and execution

TransformationTask

TransformationStep
TransformationActivity
PrecedenceConstraint
StepPrecedence

TransformationTaskElement
InverseTransformationTask
TransformationStepTask

Specialized transformations TransformationMap
ClassifierMap

FeatureMap

ClassifierFeatureMap

TransformationTree

ClassifierMapSource
ClassifierMapTarget
FeatureMapSource
FeatureMapTarget
CFMapClassifier
CFMapFeature
March 2003 OMG-CWM, v1.1: Organization of the Transformation Package 10-5

10
Figure 10-2 Transformation Package: Relationships - 1

Mo de l E lemen t

(from Co re)

Da taO b jectS e t

/ e lem en t : M o de lE lem en t
/ sou rceT ra nsfo rm a tion : T ransfo rm a tion
/ ta rge tT ra nsfo rm a tion : T ra nsfo rm a tion

1 ..*

*

e le m e n t
1 ..*

se t *

T ransfo rm a tion

fun ctio n : P rocedu reExp ression
fun ctio nDe scrip tion : S tring
isP rim a ry : Boo lean
/ sou rce : Da taO b je ctS e t
/ ta rge t : Da taO b je ctS e t
/ u se : Dep end ency

* *

so u rce T ran sfo rm a ti on

*

so u rce

*

* *

ta rge tT ran sfo rm a tio n

*

ta rge t

*

ransfo rma tion T ask

/ transfo rm a tion : T ransfo rm a tio n
/ in ve rseT a sk : T ran sfo rm a tionT ask
/ o rig in a lT ask : T ra nsfo rm a tionT ask

*

*

o ri g ina lT a sk

*

inve rseT ask

*
*

1 ..*

task *

tra nsfo rm a tion1 ..*

T ransfo rm a tion A cti vi ty

cre a tio nDa te : S trin g
/ step : M o de lE lem en t

T ransfo rm a tion S te p

/ ta sk : T ra nsfo rm a tionT ask
/ a cti vi ty : Nam espa ce
/ p rece den ce : Con stra i n t
/ p rece d ing S te p : Depe nde ncy
/ succe ed in gS tep : Dep end ency

*

1

ste p*

task1

0 ..1

* /na m e space

0 ..1/owned E le m en t

*

P reced enceCo nstra in t

S tepP rece dence

/ p rece d ing S te p : M ode lE le m e n t
/ succe ed in gS tep : M od e lE lem ...

T ransform a tion S te p

/ ta sk : T ra nsfo rm a tionT ask
/ a cti vi ty : Nam espa ce
/ p rece den ce : Con stra i n t
/ p rece d ing S te p : Depe nde ncy
/ succe ed in gS tep : Dep end ency

*

1 ..* /co nstra i n t

*/co nstra ine dE le m e n t

1 ..*

*

1 ..*

/su pp l i e rDe pen den cy*

/su pp l i e r1 ..*

*

1 ..*

/cl i en tDep ende ncy
*

/cl ien t 1 ..*

T ransfo rm a tion

fun ctio n : P rocedu reExp ress...
fun ctio nDe scrip tion : S tring
isP rim a ry : Boo lean
/ sou rce : Da taO b je ctS e t
/ ta rge t : Da taO b je ctS e t
/ u se : Dep end ency

O p era tion

(fro m B eha vio ra l)

T ransfo rm a tion U se

typ e : St rin g
/ transfo rma tio n : M ode lE le m ...
/ o pera ti on : M ode lE le m en t

*

..* /cl i en tDep ende ncy

*/cl ien t

..*

..*

*

/su pp l i e r ..*

/su pp l i e rDe pen den cy *
10-6 Common Warehouse Metamodel, v1.1 March 2003

10
Figure 10-3 Transformation Package: Relationships - 2

Feature
(from Core)

Classifier
(from Core)

Feature
(from Core)

Classifier
(from Core)

FeatureMap

function : ProcedureExpression
functionDescript ion : String
/ source : Feature
/ target : Feature
/ classifierMap : ClassifierMap

1..*

target

1..*

featureMap

1..**

source

1..*

featureMap

*

ClassifierFeatureMap

function : ProcedureExpression
functionDescript ion : String
classifierToFeature : Boolean
/ classifier : Classifier
/ feature : Feature
/ classifierMap : ClassifierMap

1..**

classifier

1..*

cfMap

*

1..**

feature

1..*

cfMap

*

ClassifierMap

function : ProcedureExpression
functionDescription : String
/ source : Classifier
/ target : Classifier
/ transformationMap : Namespace
/ featureMap : FeatureMap
/ cfMap : ClassifierFeatureMap

1..**

source

1..*

classifierMap

*

1..**

arget

1..*

classifierMap

*

*

0..1

featureMap*

classifierMap0..1

*

0..1

cfMap *

classifierMap 0..1

TransformationMap
/ classifierMap : ModelElement

*

0..1

/ownedElement *

/namespace 0..1
March 2003 OMG-CWM, v1.1: Organization of the Transformation Package 10-7

10
Figure 10-4 Transformation Package: Hierarchy - 1

Transformation

function : ProcedureExpression
functionDescription : String
isPrimary : Boolean
/ source : DataObjectSet
/ target : DataObjectSet
/ use : Dependency

DataObjectSet

/ element : ModelElement
/ sourceTransformation : Transformation
/ targetTransformation : Transformation

TransformationTask

/ transformation : Transformation
/ inverseTask : TransformationTask
/ originalTask : TransformationTask

TransformationStep

/ task : TransformationTask
/ activity : Namespace
/ precedence : Constraint
/ precedingStep : Dependency
/ succeedingStep : Dependency

ModelElement
(from Core)

ModelElement
(from Core)

TransformationActivity

creationDate : String
/ step : ModelElement

Dependency
(from Core)

PrecedenceConstraint
TransformationUse

type : String
/ transformation : ModelElement
/ operation : ModelElement

Subsystem
(from Core)

Namespace
(from Core)

StepPrecedence

/ precedingStep : ModelElement
/ succeedingStep : ModelElement

Constraint
(from Core)

Component
(from SoftwareDepl oyment)
10-8 Common Warehouse Metamodel, v1.1 March 2003

10
Figure 10-5 Transformation Package: Hierarchy - 2

10.3 Transformation Classes

The Transformation package contains the following classes, in alphabetical order:

• ClassifierFeatureMap

• ClassifierMap

• DataObjectSet

• FeatureMap

• PrecedenceConstraint

• StepPrecedence

• Transformation

• TransformationActivity

• TransformationMap

• TransformationStep

• TransformationTask

• TransformationTree

• TransformationUse

Transformation

function : ProcedureExpression
functionDescription : String
isPrimary : Boolean
/ source : DataObjectSet
/ target : DataObjectSet
/ use : Dependency

TransformationMap

/ classifierMap : ModelElement

TransformationTree

type : TreeType
body : ExpressionNode

FeatureMap

function : ProcedureExpression
functionDescription : String
/ source : Feature
/ target : Feature
/ classifierMap : ClassifierMap

Namespace
(from Core)

ModelElement
(from Core)

ClassifierFeatureMap

function : ProcedureExpression
functionDescription : String
classifierToFeature : Boolean
/ classifier : Classifier
/ feature : Feature
/ classifierMap : ClassifierMap

ClassifierMap

function : ProcedureExpression
functionDescription : String
/ source : Classifier
/ target : Classifier
/ transformationMap : Namespace
/ featureMap : FeatureMap
/ cfMap : ClassifierFeatureMap
March 2003 OMG-CWM, v1.1: Transformation Classes 10-9

10
10.3.1 ClassifierFeatureMap

This represents a mapping of Classifiers to Features.

Superclasses

ModelElement

Attributes

function

functionDescription

classifierToFeature

References

classifierMap

classifier

Any code or script for the FeatureMap.

type: ProcedureExpression

multiplicity: exactly one

A short description for any code or script performed by the FeatureMap.

type: String

multiplicity: exactly one

Identifies if the mapping is from Classifiers (source) to Features (target). The default is true.

type: Boolean

multiplicity: exactly one

Identifies the ClassifierMap owning the ClassifierFeatureMap.

class: ClassifierMap

defined by: ClassifierMapToCFMap::classifierMap

multiplicity: zero or one

inverse: ClassifierMap::cfMap

Identifies the source/target Classifier of the ClassifierFeatureMap.

class: Classifier

defined by: CFMapClassifier::classifier

multiplicity: one or more
10-10 Common Warehouse Metamodel, v1.1 March 2003

10
feature

10.3.2 ClassifierMap

This represents a mapping of source Classifiers to target Classifiers. A ClassifierMap
may consist of a group of ClassifierFeatureMaps and/or FeatureMaps.

Superclasses

Namespace

Contained Elements

ClassifierFeatureMap, FeatureMap

Attributes

function

functionDescription

References

transformationMap

Identifies the source/target Features of the ClassifierFeatureMap.

class: Feature

defined by: CFMapFeature::feature

multiplicity: one or more

Any code or script for the ClassifierMap.

type: ProcedureExpression

multiplicity: exactly one

A short description for any code or script performed by the ClassifierMap.

type: String

multiplicity: exactly one

Identifies the TransformationMap that owns the ClassifierMap.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: TransformationMap::classifierMap
March 2003 OMG-CWM, v1.1: Transformation Classes 10-11

10
source

target

featureMap

cfMap

10.3.3 DataObjectSet

This represents a set of data objects that can be the source or target of a
Transformation.

Superclasses

ModelElement

Identifies the source Classifiers of the ClassifierMap.

class: Classifier

defined by: ClassifierMapSource::source

multiplicity: one or more

Identifies the target Classifiers of the ClassifierMap.

class: Classifier

defined by: ClassifierMapTarget::target

multiplicity: one or more

Identifies the FeatureMaps owned by the ClassifierMap.

class: FeatureMap

defined by: ClassifierMapToFeatureMap::featureMap

multiplicity: zero or more

inverse: FeatureMap::classifierMap

Identifies the ClassifierFeatureMaps owned by the ClassifierMap.

class: ClassifierFeatureMap

defined by: ClassifierMapToCFMap::cfMap

multiplicity: zero or more

inverse: ClassifierFeatureMap::classifierMap
10-12 Common Warehouse Metamodel, v1.1 March 2003

10
References

element

sourceTransformation

targetTransformation

10.3.4 FeatureMap

This represents a mapping of source Features to target Features.

Superclasses

ModelElement

Attributes

function

Identifies the elements in the DataObjectSet.

class: ModelElement

defined by: DataObjectSetElement::element

multiplicity: one or more

Identifies the Transformation of the source.

class: Transformation

defined by: TransformationSource::sourceTransformation

multiplicity: zero or more

inverse: Transformation::source

Identifies the Transformation of the target.

class: Transformation

defined by: TransformationTarget::targetTransformation

multiplicity: zero or more

inverse: Transformation::target

Any code or script for the FeatureMap.

type: ProcedureExpression

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Transformation Classes 10-13

10
functionDescription

References

classifierMap

source

target

10.3.5 PrecedenceConstraint

This is used to define order-of-execution constraint among TransformationSteps. It
may be used independent of or in conjunction with StepPrecedence.

Superclasses

Constraint

10.3.6 StepPrecedence

This is used to define explicit order-of-execution relationships among
TransformationSteps. It may be used independent of or in conjunction with
PrecedenceConstraint

A short description for any code or script performed by the FeatureMap.

type: String

multiplicity: exactly one

Identifies the ClassifierMap owning the FeatureMap.

class: ClassifierMap

defined by: ClassifierMapToFeatureMap::classifierMap

multiplicity: zero or one

inverse: ClassifierMap::featureMap

Identifies the source Features of the FeatureMap.

class: Feature

defined by: FeatureMapSource::source

multiplicity: one or more

Identifies the target Features of the FeatureMap.

class: Feature

defined by: FeatureMapTarget::target

multiplicity: one or more
10-14 Common Warehouse Metamodel, v1.1 March 2003

10
Superclasses

Dependency

References

precedingStep

succeedingStep

Constraints

The preceding step and succeeding step must not be the same. [C-1]

10.3.7 Transformation

This represents a transformation from a set of sources to a set of targets.

If a model already exists for the object that performs the Transformation, then the
model can be related to the Transformation via a TransformationUse dependency.

Superclasses

Namespace

Attributes

function

Identifies the preceding TransformationStep that the StepPrecedence dependency is for.

class: ModelElement

defined by: Dependency-ModelElement::supplier

multiplicity: one or more

inverse: TransformationStep::succeedingStep

Identifies the succeeding TransformationStep that the StepPrecedence dependency is for.

class: ModelElement

defined by: Dependency-ModelElement::client

multiplicity: one or more

inverse: TransformationStep::precedingStep

Any code or script for the Transformation.

type: ProcedureExpression

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Transformation Classes 10-15

10
functionDescription

isPrimary

References

source

target

use

10.3.8 TransformationActivity

This represents a transformation activity. Each TransformationActivity consists of a set
of TransformationSteps.

A short description for any code or script performed by the Transformation.

type: String

multiplicity: exactly one

This Transformation is the primary transformation for the associated TransformationTask.

type: Boolean

multiplicity: exactly one

Identifies the sources of the Transformation.

class: DataObjectSet

defined by: TransformationSource::source

multiplicity: zero or more

inverse: DataObjectSet::sourceTransformation

Identifies the targets of the Transformation.

class: DataObjectSet

defined by: TransformationTarget::target

multiplicity: zero or more

inverse: DataObjectSet::targetTransformation

Identifies the TransformationUse dependency.

class: Dependency

defined by: Dependency-ModelElement::clientDependency

multiplicity: zero or more

inverse: TransformationUse::transformation
10-16 Common Warehouse Metamodel, v1.1 March 2003

10
Superclasses

Subsystem

Contained Elements

TransformationStep

Attributes

creationDate

References

step

10.3.9 TransformationMap

This represents a specialized Transformation that consists of a group of
ClassifierMaps.

Superclasses

Transformation

Contained Elements

ClassifierMap

When the TransformationActivity was created.

type: String

multiplicity: exactly one

Identifies the TransformationSteps owned by the TransformationActivity.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: TransformationStep::activity
March 2003 OMG-CWM, v1.1: Transformation Classes 10-17

10
References

classifierMap

10.3.10 TransformationStep

This represents the usage of a TransformationTask in a TransformationActivity. A
TransformationStep relates to one TransformationTask.

TransformationSteps are used to coordinate the flow of control between their
TransformationTasks. Ordering of the TransformationSteps are defined using the
PrecedenceConstrainedBy dependency.

Superclasses

ModelElement

References

task

activity

Identifies the ClassifierMaps owned by the TransformationMap.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: ClassifierMap::transformationMap

Identifies the TransformationTask that the TransformationStep performs.

class: TransformationTask

defined by: TransformationStepTask::task

multiplicity: exactly one

inverse: TransformationTask::step

Identifies the TransformationActivity that owns the TransformationStep.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: TransformationActivity::step
10-18 Common Warehouse Metamodel, v1.1 March 2003

10
precedence

precedingStep

succeedingStep

10.3.11 TransformationTask

This represents a set of Transformations that must be executed together as a single task
(logical unit).

A TransformationTask may have an inverse task. A transformation task that maps a
source set “A” into a target set “B” can be reversed by the inverse transformation task
that maps “B” into “A.”

Superclasses

Component

References

transformation

Identifies the PrecedenceConstraint.

class: Constraint

defined by: Constraint-ModelElement::constraint

multiplicity: zero or more

Identifies the preceding StepPrecedence dependency.

class: Dependency

defined by: Dependency-ModelElement::clientDependency

multiplicity: one or more

inverse: StepPrecedence::succeedingStep

Identifies the succeeding StepPrecedence dependency.

class: Dependency

defined by: Dependency-ModelElement::supplierDependency

multiplicity: one or more

inverse: StepPrecedence::precedingStep

Identifies the Transformations that belong to the TransformationTask.

class: Transformation

defined by: TransformationTaskElement::transformation

multiplicity: one or more
March 2003 OMG-CWM, v1.1: Transformation Classes 10-19

10
inverseTask

originalTask

Constraints

A TransformationTask may not be its own inverse task [C-2] or original task [C-3].

10.3.12 TransformationTree

This represents a specialized Transformation that can be modeled as an expression tree.

Superclasses

Transformation

Attributes

type

body

Identifies the inverse TransformationTask.

class: TransformationTask

defined by: InverseTransformationTask::inverseTask

multiplicity: zero or more

inverse: TransformationTask::originalTask

Identifies the original TransformationTask.

class: TransformationTask

defined by: InverseTransformationTask::originalTask

multiplicity: zero or more

inverse: TransformationTask::inverseTask

Identifies the type of TransformationTree, which can be unary or binary.

type: TreeType (tfm_unary | tfm_binary)

multiplicity: exactly one

Identifies the expression tree that embodies the TransformationTree.

type: ExpressionNode

multiplicity: exactly one
10-20 Common Warehouse Metamodel, v1.1 March 2003

10
10.3.13 TransformationUse

This is a specialized dependency used to associate a Transformation to the model of an
existing object (for example, program, query, or rule) that performs the transformation.

Superclasses

Usage

Attributes

type

References

transformation

operation

10.4 Transformation Associations

The Transformation package contains the following associations, in alphabetical order:

• CFMapClassifier

• CFMapFeature

• ClassifierMapSource

• ClassifierMapTarget

• ClassifierMapToCFMap

• ClassifierMapToFeatureMap

• DataObjectSetElement

Identifies the type of object that can perform the transformation.

type: String

multiplicity: exactly one

Identifies the Transformation that the TransformationUse dependency is for.

class: ModelElement

defined by: Dependency-ModelElement::client

multiplicity: one or more

inverse: Transformation::use

Identifies the Operation that the TransformationUse dependency is on.

class: ModelElement

defined by: Dependency-ModelElement::supplier

multiplicity: one or more
March 2003 OMG-CWM, v1.1: Transformation Associations 10-21

10
• FeatureMapSource

• FeatureMapTarget

• InverseTransformationTask

• TransformationSource

• TransformationStepTask

• TransformationTarget

• TransformationTaskElement

10.4.1 CFMapClassifier

This association relates a ClassifierFeatureMap to its source/target Classifiers.

Ends

cfMap

classifier

10.4.2 CFMapFeature

This association relates a ClassifierFeatureMap to its source/target Features.

Ends

cfMap

feature

Identifies the ClassifierFeatureMap.

class: ClassifierFeatureMap

multiplicity: zero or more

Identifies the source/target Classifiers of the ClassifierFeatureMap.

class: Classifier

multiplicity: one or more

Identifies the ClassifierFeatureMap.

class: ClassifierFeatureMap

multiplicity: zero or more

Identifies the source/target Features of the ClassifierFeatureMap.

class: Feature

multiplicity: one or more
10-22 Common Warehouse Metamodel, v1.1 March 2003

10
10.4.3 ClassifierMapSource

This association relates a ClassifierMap to its source Classifiers.

Ends

classifierMap

source

10.4.4 ClassifierMapTarget

This association relates a ClassifierMap to its target Classifiers.

Ends

classifierMap

target

10.4.5 ClassifierMapToCFMap derived protected

This association relates a ClassifierMap to its ClassifierFeatureMaps.

Identifies the ClassifierMap.

class: ClassifierMap

multiplicity: zero or more

Identifies the source Classifiers of the ClassifierMap.

class: Classifier

multiplicity: one or more

Identifies the ClassifierMap.

class: ClassifierMap

multiplicity: zero or more

Identifies the target Classifiers of the ClassifierMap.

class: Classifier

multiplicity: one or more
March 2003 OMG-CWM, v1.1: Transformation Associations 10-23

10
Ends

classifierMap

cfMap

10.4.5.1 Derivation

This association is derived from the Namespace-ModelElement association. All
ownedElement ends of the association must be ClassifierFeatureMaps. [C-4]

10.4.6 ClassifierMapToFeatureMap derived protected

This association relates a ClassifierMap to its FeatureMaps.

Ends

classifierMap

featureMap

10.4.6.1 Derivation

This association is derived from the Namespace-ModelElement association. All
ownedElement ends of the association must be FeatureMaps. [C-5]

Identifies the owning ClassifierMap.

class: ClassifierMap

multiplicity: zero or one

Identifies the owned ClassifierFeatureMaps.

class: ClassifierFeatureMap

multiplicity: zero or more

Identifies the owning ClassifierMap.

class: ClassifierMap

multiplicity: zero or one

Identifies the owned FeatureMaps.

class: FeatureMap

multiplicity: zero or more
10-24 Common Warehouse Metamodel, v1.1 March 2003

10
10.4.7 DataObjectSetElement

This association relates a DataObjectSet to its elements.

Ends

set

element

10.4.8 FeatureMapSource

This association relates a FeatureMap to its source Features.

Ends

featureMap

source

10.4.9 FeatureMapTarget

This association relates a FeatureMap to its target Features.

Identifies the DataObjectSet.

class: DataObjectSet

multiplicity: zero or more

Identifies the elements in the DataObjectSet.

class: ModelElement

multiplicity: one or more

Identifies the FeatureMap.

class: FeatureMap

multiplicity: zero or more

Identifies the source Features of the FeatureMap.

class: Feature

multiplicity: one or more
March 2003 OMG-CWM, v1.1: Transformation Associations 10-25

10
Ends

featureMap

target

10.4.10 InverseTransformationTask protected

This association relates a TransformationTask to its inverse. A transformation task that
maps a source set “A” into a target set “B” can be reversed by the inverse
transformation task that maps “B” into “A.”

10.4.10.1 Ends

originalTask

inverseTask

10.4.11 TransformationSource protected

This association relates a Transformation to its sources.

Identifies the FeatureMap.

class: FeatureMap

multiplicity: zero or more

Identifies the target Features of the FeatureMap.

class: Feature

multiplicity: one or more

Identifies the original TransformationTask.

class: TransformationTask

multiplicity zero or more

Identifies the inverse TransformationTask.

class: TransformationTask

multiplicity zero or more
10-26 Common Warehouse Metamodel, v1.1 March 2003

10
10.4.11.1 Ends

sourceTransformation

source

10.4.12 TransformationStepTask

This association relates a TransformationStep to its TransformationTask.

10.4.12.1 Ends

step

task

10.4.13 TransformationTarget protected

This association relates a Transformation to its targets.

Ends

targetTransformation

Identifies the Transformation.

class: Transformation

multiplicity: zero or more

Identifies the sources of the Transformation.

class: DataObjectSet

multiplicity: zero or more

Identifies the TransformationStep.

class: TransformationStep

multiplicity zero or more

Identifies the TransformationTask.

class: TransformationTask

multiplicity exactly one

Identifies the Transformation.

class: Transformation

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Transformation Associations 10-27

10
target

10.4.14 TransformationTaskElement

This association relates a TransformationTask to its Transformations.

Ends

task

transformation

10.5 OCL Representation of Transformation Constraints

[C-1] The preceding step and succeeding step of StepPrecedence must not be the same.

context StepPrecedence

inv: self.precedingStep->forAll(p | self.succeedingStep->forAll(q | p <> q))

[C-2] A TransformationTask may not be its own inverse task.

context TransformationTask

inv: self.inverseTask->forAll(p | p <> self)

[C-3] A TransformationTask may not be its own original task.

context TransformationTask

inv: self.originalTask->forAll(p | p <> self)

Identifies the targets of the Transformation.

class: DataObjectSet

multiplicity: zero or more

Identifies the TransformationTask.

class: TransformationTask

multiplicity: zero or more

aggregation: shared

Identifies the Transformations.

class: Transformation

multiplicity: one or more
10-28 Common Warehouse Metamodel, v1.1 March 2003

10
[C-4] The ClassifierMapToCFMap association is derived from the Namespace-
ModelElement association. All ownedElement ends of the association must be
ClassifierFeatureMaps.

context ClassifierMapToCFMap

inv Namespace-ModelElement.allInstances.select(ownedElement.oclIsKindOf(
ClassifierFeatureMap))

[C-5] The ClassifierMapToFeatureMap association is derived from the Namespace-
ModelElement association. All ownedElement ends of the association must be
FeatureMaps.

context ClassifierMapToFeatureMap

inv Namespace-ModelElement.allInstances.select(ownedElement.oclIsKindOf(
FeatureMap))
March 2003 OMG-CWM, v1.1: OCL Representation of Transformation Constraints 10-29

10
10-30 Common Warehouse Metamodel, v1.1 March 2003

OLAP 11
Contents

This chapter contains the following topics.

11.1 Overview

Online Analytical Processing (OLAP) is a class of analytic application software that
exposes business data in a multidimensional format. This multidimensional format
usually includes the consolidation of data drawn from multiple and diverse information
sources. Unlike more traditionally structured representations (for example, the tabular
format of a relational database), the multidimensional orientation is a more natural
expression of the way business enterprises view their strategic data. For example, an
analyst might use an OLAP application to examine total sales revenue by product and
geographic region over time, or, perhaps, compare sales margins for the same fiscal
periods of two consecutive years. The ultimate objective of OLAP is the efficient
construction of analytical models that transform raw business data into strategic
business insight.

Topic Page

“Overview” 11-1

“Objectives of the OLAP Package” 11-2

“Organization of the OLAP Package” 11-3

“OLAP Classes” 11-10

“OLAP Associations” 11-29

“OCL Representation of OLAP Constraints” 11-41
March 2003 Common Warehouse Metamodel, v1.1 11-1

11
There are many ways to implement OLAP. Most OLAP systems are constructed using
OLAP server tools that enable logical OLAP structures to be built on top of a variety
of physical database systems, such as relational or native multidimensional databases.
The following features are generally found in most OLAP systems:

• Multidimensional representation of business data.

• Upward consolidation of multidimensional data in a hierarchical manner, possibly
with the application of specialized processing rules.

• The ability to navigate a hierarchy from a consolidated value to the lower level
values forming it.

• Support for time-series analysis; that is, OLAP users are generally concerned with
data and consolidations at specific points in time -- By date, week, quarter, etc.

• Support for modeling and scenario analysis -- A user should be able to apply
arbitrary “what-if” analyses to a result set without affecting the stored information.

• Consistent response times, regardless of how queries are formulated -- This is
critical for effective analysis and modeling.

OLAP applications integrate well into the data warehousing environment, because a
data warehouse provides relatively clean and stable data stores to drive the OLAP
application. These data stores are usually maintained in relational tables that can be
read directly by OLAP tools or loaded into OLAP servers. These relational tables are
often structured in a manner that reveals the inherent dimensionality of the data (such
as the ubiquitous Star and Snowflake schemas). Also, the data transformation and
mapping services provided by a data warehouse can be used to supply OLAP systems
with both metadata and data. Transformation-related metadata can be used to track the
lineage of consolidated OLAP data back to its various sources.

11.2 Objectives of the OLAP Package

The primary objectives of the CWM OLAP package are:

• Define a metamodel of essential OLAP concepts common to most OLAP systems.

• Provide a facility whereby instances of the OLAP metamodel are mapped to
deployment-capable structures; that is, models of physical data resources, such as
the CWM Relational and Multidimensional packages.

• Ensure that navigation through the logical OLAP model hierarchy and its various
resource models is always performed in a uniform manner; that is, by defining a
standard usage of the CWM Transformation package as a means of implementing
these mappings.

• Leverage services provided by other CWM packages, where appropriate (for
example, use the CWM Foundation package to supply a standard representation of
expressions).
11-2 Common Warehouse Metamodel, v1.1 March 2003

11
11.3 Organization of the OLAP Package

11.3.1 Dependencies

The OLAP package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::Expressions

• org.omg::CWM::Analysis::Transformation

11.3.2 Major Classes and Associations

Figure 11-1 OLAP Metamodel: Major Classes and Associations

The major classes and associations of the OLAP metamodel are shown in Figure 11-1.

Schema is the logical container of all elements comprising an OLAP model. It is the
root element of the model hierarchy and marks the entry point for navigating OLAP
models.

Cube

isVirtual : Boolean
/ cubeDimensionAssociation : CubeDimensionAssociation
/ cubeRegion : CubeRegion
/ schema : Schema

CubeDeployment
/ cubeRegion : CubeRegion
/ deploym entGroup : Deploym entGroup
/ contentMap : ContentMap

Hierarchy
/ dimension : D imension
/ cubeDimensionAssociation : CubeDim ensionAssociation
/ defaultedDimension : Dimension

CubeDimensionAssociation

/ dimension : Dimension
/ cube : Cube
/ calcHierarchy : Hierarchy

0..1

*

calcHierarchy

0..1

*

*1 *1

Schema

/ cube : Cube
/ dimension : Dimension
/ deploymentGroup : DeploymentGroup

*

1

*

1

CubeRegion
isReadOnly : Boolean
isFull yReal ized : Boolean
/ memberSelectionGroup : MemberSelectionGroup
/ cube : Cube
/ cubeDeployment : CubeDeploym ent

*

1

*

1

*

1

*

{ordered}

1

Dimension

isTime : Boolean
isMeasure : Boolean
/ hierarchy : Hierarchy
/ memberSelection : MemberSelection
/ cubeDimensionAssociation : CubeDimensionAssociation
/ displayDefault : Hierarchy
/ schema : Schema

*

1

*

10..1

0..1

0..1

displayDefault

0..1

* 1* 1

*

1

*

1

MemberSelectionGroup

/ memberSelection : MemberSelection
/ cubeRegion : CubeRegion*1 *1

MemberSelection

/ dimension : Dimension
/ memberSelectionGroup : MemberSelectionGroup

*

1

*

1

* 1..** 1..*
March 2003 OMG-CWM, v1.1: Organization of the OLAP Package 11-3

11
A Schema contains Dimensions and Cubes. A Dimension is an ordinate within a
multidimensional structure and consists of a list of unique values; that is, members that
share a common semantic meaning within the domain being modeled. Each member
designates a unique position along its ordinate.

A Cube is a collection of analytic values; that is, measures that share the same
dimensionality. This dimensionality is specified by a set of unique Dimensions from
the Schema. Each unique combination of members in the Cartesian product of the
Cube’s Dimensions identifies precisely one data cell within a multidimensional
structure.

CubeDimensionAssociation relates a Cube to its defining Dimensions. Features
relevant to Cube-Dimension relationships (for example, calcHierarchy) are exposed by
this class.

A Dimension has zero or more Hierarchies. A Hierarchy is an organizational structure
that describes a traversal pattern through a Dimension, based on parent/child
relationships between members of a Dimension. Hierarchies are used to define both
navigational and consolidation/computational paths through the Dimension; that is, a
value associated with a child member is aggregated by one or more parents. For
example, a Time Dimension with a base periodicity of days might have a Hierarchy
specifying the consolidation of days into weeks, weeks into months, months into
quarters, and quarters into years.

A specific Hierarchy may be designated as the default Hierarchy for display purposes
(for example, a user interface that displays the Dimension as a hierarchical tree of
members). CubeDimensionAssociation can also identify a particular Hierarchy as the
default Hierarchy for consolidation calculations performed on the Cube.

Dimensions and Hierarchies are described further in Section 11.3.3, “Dimension and
Hierarchy,” on page 11-5.

MemberSelection models mechanisms capable of partitioning a Dimension’s collection
of members. For example, consider a Geography Dimension with members
representing cities, states, and regions. An OLAP client interested specifically in cities
might define an instance of MemberSelection that extracts the city members.

CubeRegion models a sub-unit of a Cube that is of the same dimensionality as the
Cube itself. Each “dimension” of a CubeRegion is represented by a MemberSelection
of the corresponding Dimension of the Cube. Each MemberSelection may define some
subset of its Dimension’s members.

CubeRegions are used to implement Cubes. A Cube may be realized by a set of
CubeRegions that map portions of the logical Cube to physical data sources. The
MemberSelections defining CubeRegions can also be grouped together via
MemberSelectionGroups, enabling the definition of CubeRegions with specific
semantics. For example, one can specify a CubeRegion containing only the “input
level” data cells of a Cube.
11-4 Common Warehouse Metamodel, v1.1 March 2003

11
A CubeRegion may own any number of CubeDeployments. CubeDeployment is a
metaclass that represents an implementation strategy for a multidimensional structure.
The ordering of the CubeDeployment classes may optionally be given some
implementation-specific meaning (for example, desired order of selection of several
possible deployment strategies, based on optimization considerations).

11.3.3 Dimension and Hierarchy

Figure 11-2 shows Dimension and Hierarchy, along with several other classes that
model hierarchical structuring and deployment mappings.

11.3.3.1 Dimension

The OLAP metamodel defines two special types of Dimension: Time and Measure.

A Time Dimension provides a means of representing time-series data within a
multidimensional structure. The members of a Time Dimension usually define some

Figure 11-2 OLAP Metamodel: Dimension and Hierarchy

Hierarchy

/ dimension : Dimension
/ cubeDimensionAssociation : CubeDimensionAssociation
/ defaultedDimension : Dimension

Dimension

isTime : Boolean
isMeasure : Boolean
/ hierarchy : Hierarchy
/ memberSelection : MemberSelection
/ cubeDimensionAssociation : CubeDimensionAssociation
/ displayDefault : Hierarchy
/ schema : Schema

1

*

1

*
0..1

0..1

displayDefault
0..1

defaultedDimension

0..1

LevelBasedHierarchy
/ hierarchyLevelAssociation : HierarchyLevelAssociation

Level

/ hierarchyLevelAssociation : HierarchyLevelAssociation

*

1

/memberSelection *

/dimension

1

HierarchyLevelAssociation
/ levelBasedHierarchy : LevelBasedHierarchy
/ currentLevel : Level
/ dimensionDeployment : DimensionDeployment

*

1

*
{ordered}

1

*

1

*

currentLevel
1

DimensionDeployment
/ hierarchyLevelAssociation : HierarchyLevelAssociation
/ valueBasedHierarchy : ValueBasedHierarchy
/ structureMap : StructureMap
/ listOfValues : StructureMap
/ immediateParent : StructureMap
/ deploymentGroup : DeploymentGroup

*0..1 *
{ordered}

0..1

ValueBasedHierarchy
/ dimensionDeployment : DimensionDeployment

*

0..1

*
{ordered}

0..1
March 2003 OMG-CWM, v1.1: Organization of the OLAP Package 11-5

11
base periodicity (for example, days of the week). The implementation of a Time
Dimension might provide support for advanced “time-intelligent” functionality, such as
the ability to automatically convert between different periodicities and calendars.

The members of a Measure Dimension describe the meaning of the analytic values
stored in each data cell of a multidimensional structure. For example, an OLAP
application may define Sales, Quantity, and Weight as its measures. In this case, each
data cell within the Cube stores three values, with each value corresponding to one of
the three measures. A measure may have an associated data type. For example, Sales
might be of a monetary type, Quantity an integer, and Weight a real number.

11.3.3.2 Hierarchy

The OLAP metamodel specifies two subclasses of Hierarchy: LevelBasedHierarchy
and ValueBasedHierarchy.

LevelBasedHierarchy

LevelBasedHierarchy describes hierarchical relationships between specific levels of a
Dimension. LevelBasedHierarchy is used to model both “pure level” hierarchies (for
example, dimension-level tables) and “mixed” hierarchies; that is, levels plus linked
nodes. Dimensional levels are modeled by the Level class, a subclass of
MemberSelection that partitions a Dimension’s members into disjoint subsets, each
representing a distinct level.

For example, the Geography Dimension cited earlier contains members representing
cities, states, and regions, such as “Stamford,” “Connecticut,” and “NorthEast.” It
might also contain a single member called “USA” representing all regions of the
United States. Therefore, the Geography Dimension could have four Levels named
“City,” “State,” “Region,” and “ALL” respectively. Each Level specifies the subset of
members belonging to it: All cities belong to the “City” Level, all states belong to the
“State” Level, all regions belong to the “Region” Level, and the single “USA” member
belongs to the “ALL” Level.

When used in the definition of a consolidation path, the meaning of “level” is quite
clear: Members occupying a given Level consolidate into the next higher Level (for
example, City rolls up into State, State into Region, and Region into ALL).

LevelBasedHierarchy contains an ordered collection of HierarchyLevelAssocations that
defines the natural hierarchy of the Dimension. The ordering defines the hierarchical
structure in top-down fashion; that is, the “first” HierarchyLevelAssociation in the
ordered collection represents the upper-most level of the dimensional hierarchy. A
HierarchyLevelAssociation may own any number of DimensionDeployments.
DimensionDeployment is a metaclass that represents an implementation strategy for
hierarchical Dimensions. The ordering of the DimensionDeployment classes may
optionally be given an implementation-specific meaning (for example, desired order of
selection of several possible deployment strategies, based on optimization
considerations).
11-6 Common Warehouse Metamodel, v1.1 March 2003

11
ValueBasedHierarchy

A ValueBasedHierarchy defines a hierarchical ordering of members in which the
concept of level has little or no significance. Instead, the topological structure of the
hierarchy conveys meaning. ValueBasedHierarchies are often used to model situations
where members are classified or ranked according to their distance from a common
root member (for example, an organizational chart of a corporation). In this case, each
member of the hierarchy has some specific “metric” or “value” associated with it.

ValueBasedHierarchy can be used to model pure “linked node” hierarchies (for
example, asymmetric hierarchical graphs or parent-child tables).

As with LevelBasedHierarchy, ValueBasedHierarchy also has an ordered collection of
DimensionDeployments, where the ordering semantics are left to implementations to
define.

11.3.4 Inheritance from the Object Model

Figure 11-3 OLAP Metamodel: Inheritance from Object Model

Figure 11-3 illustrates how classes of the OLAP metamodel inherit from the CWM
Object Model. Two classes requiring further explanation are:

• Measure: A subclass of Attribute that describes the meaning of values stored in the
data cells of a multidimensional structure. Different OLAP models often give
different interpretations to the term “measure.” In a relational Star Schema,

Class
(from Core)

Hierarchy

CubeDimensionAssociation

Package
(from Core)

CodedLevel

encoding : ExpressionNode

TransformationMap
(f rom Transformation)

Level

Attribute
(from Core)

Measure

HierarchyLevelAssociation

StructureMap

MemberSelectionDimension Cube

MemberSelectionGroup

Schema

DimensionDeployment

CubeRegion

CubeDeployment

DeploymentGroup

ContentMap
March 2003 OMG-CWM, v1.1: Organization of the OLAP Package 11-7

11
individual measures might be represented by non-key columns of a Fact table (for
example, “Sales” and “Quantity” columns). In this case, measure may be an
attribute of a Cube or CubeRegion that models the Fact table. On the other hand,
measures can also be represented by members of a Measure Dimension. A Fact
table supporting this representation has a single Measure column with column
values consisting of the members “Sales” and “Quantity,” and a single “value”
column; that is, an implicit data dimension storing the corresponding measure
values. A similar notion of Measure Dimension is used in modeling pure hypercube
representations of multidimensional servers. Thus, the concept of measure can be
represented either as a Dimension or as an Attribute, depending on the type of
OLAP system being modeled.

• Coded Level: A subclass of Level that assigns a unique encoding, or label, to each
of its members. CodedLevel is not essential to the OLAP metamodel, but is
provided as a helper class for certain applications that might benefit from the ability
of OLAP systems to structure data hierarchically. For example, CodedLevel could
be used to model systems of nomenclature or classification.

11.3.5 Deploying OLAP Models

The CWM OLAP metamodel describes logical models of OLAP systems, but does not
directly specify how an OLAP system is physically deployed. Modeling the
deployment of an OLAP system requires mapping instances of OLAP metaclasses to
instances of other CWM metaclasses representing physical resources (for example,
mapping an OLAP Dimension to a Relational Table). This approach offers several
advantages:

• The status of the OLAP metamodel as a conceptual model is preserved by this level
of indirection. When using OLAP, a client may perceive to be working directly with
OLAP objects, but the actual implementation of those objects is hidden from the
client. For example, a client may view a member as a value of a Dimension, but
whether that member value comes from a row of a relational table, or from a cell in
a multidimensional database, is usually not obvious to the client. On the other hand,
if a client needs to determine how a logical OLAP structure is physically realized,
the metadata describing this mapping is fully available (assuming that the
implementation allows the client to drill-down through the metadata).

• The possibility of defining mappings based on expressions means that the amount
of metadata required to describe large models (for example, Dimensions containing
large collections of members) can be kept within reasonable bounds. It is generally
more efficient to provide expressions that specify where large metadata sets reside,
how to connect to them, and how to map their contents, rather than representing
them directly as part of the metadata content.

All of the OLAP metaclasses are potential candidates for such deployment mappings.
In addition, some OLAP models may also define mappings between several OLAP
metaclass instances, forming a natural hierarchy of logical objects (for example,
Dimension Attributes are mapped to Level Attributes which, in turn, are mapped to
Table Columns).
11-8 Common Warehouse Metamodel, v1.1 March 2003

11
The CWM Transformation package is used as the primary means of describing these
mappings. A modeler constructing an OLAP model based on CWM will generally
define instances of the TransformationMap metaclass to link logical OLAP objects
together, and to link those logical objects to other objects representing their physical
data sources.

StructureMap is a subclass of TransformationMap that models structure-oriented
transformation mappings; that is, member identity and hierarchical structure. This type
of transformation mapping needs to be connected to the OLAP metamodel in a very
specific way (according to Level and Hierarchy), so the StructureMap subclass is
defined to make these associations explicit. Two specific usages of StructureMap are
defined: ListOfValues, which maps attributes identifying members residing at a specific
Level, or at a specific Level within a particular Hierarchy, and ImmediateParent, which
maps attributes identifying the hierarchical parent(s) of the members.

On the other hand, relatively simple TransformationMaps can be defined within any
OLAP model to represent attribute-oriented transformations (for example, mapping
Dimension Attributes to Table Columns that store attribute values).

ContentMap is a subclass of TransformationMap that models content-oriented
transformation mappings; that is, cell data or measure values. For example, an instance
of ContentMap might be used to map each of a CubeRegion’s Measures to Columns of
an underlying Fact Table.

Note that, in either case (structural mapping or content mapping), the traversal patterns
used by any CWM OLAP implementation are always the same, since both deployment
mappings are based on the same usage of CWM TransformationMaps.

In addition to representing structural mappings, instances of TransformationMap and
its subclasses are also capable of storing implementation-dependent functions or
procedures that yield the instance values associated with mapped model elements. For
example, a “list of values” StructureMap might store an SQL statement such as “select
memberName from Product where productFamily = ’consumerElectronics’ “ as the
value of its formula attribute.

Figure 11-4 illustrates the CWM metaclasses and associations that describe
deployment mappings between logical OLAP models and physical resource models.
Note that it is possible to combine both Cube (content) and Dimension (structure)
deployments together within the context of a single OLAP Schema (via the
DeploymentGroup metaclass). Thus, an OLAP Schema can have several possible
deployments that users may select based on implementation-specific considerations
(for example, physical optimizations).
March 2003 OMG-CWM, v1.1: Organization of the OLAP Package 11-9

11
Figure 11-4 OLAP Metamodel: Deployment Mapping Structures

11.4 OLAP Classes

11.4.1 CodedLevel

CodedLevel is a subclass of Level that assigns a unique encoding, or label, to each of
its Dimension members.

Superclasses

Level

ContentMap

/ cubeDeployment : CubeDeployment

Schema

/ cube : Cube
/ dimension : Dimension
/ deploymentGroup : DeploymentGroup

CubeDeployment
/ cubeRegion : CubeRegion
/ deploymentGroup : DeploymentGroup
/ contentMap : ContentMap

*

1

*

1

DeploymentGroup
/ schema : Schema
/ cubeDeployment : CubeDeployment
/ dimensionDeployment : DimensionDeployment

*

1

*

1

*

1

*

1

DimensionDeployment

/ hierarchyLevelAssociation : HierarchyLevelAssociation
/ valueBasedHierarchy : ValueBasedHierarchy
/ structureMap : StructureMap
/ listOfValues : StructureMap
/ immediateParent : StructureMap
/ deploymentGroup : DeploymentGroup

*

1

*

1

StructureMap

/ dimensionDeployment : DimensionDeployment
/ dimensionDeploymentLV : DimensionDeployment
/ dimensionDeploymentIP : DimensionDeployment

1

*

1

*

0..1

0..1

0..1

listOfValues

0..1

0..1

0..1

0..1

immediateParent

0..1
11-10 Common Warehouse Metamodel, v1.1 March 2003

11
Attributes

encoding

11.4.2 ContentMap

ContentMap is a subclass of TransformationMap that maps CubeRegion attributes to
their physical data sources.

Superclasses

TransformationMap

References

cubeDeployment

11.4.3 Cube

A Cube is a collection of analytic values; that is, measures that share the same
dimensionality. This dimensionality is specified by a set of unique Dimensions from
the Schema. Each unique combination of members in the Cartesian product of the
Cube’s Dimensions identifies precisely one data cell within a multidimensional
structure.

Synonyms: Multidimensional Array, Hypercube, Hypervolume.

Superclasses

Class

Contained Elements

• CubeDimensionAssociation

• CubeRegion

Encoding is an expression that generates a unique encoding, or label, for each member of a
CodedLevel.

type: ExpressionNode

multiplicity: exactly one

References the CubeDeployment owning a ContentMap.

class: CubeDeployment

defined by: CubeDeploymentOwnsContentMaps::cubeDeployment

multiplicity: exactly one

inverse: CubeDeployment::contentMap
March 2003 OMG-CWM, v1.1: OLAP Classes 11-11

11
Attributes

isVirtual

References

cubeDimensionAssociation

cubeRegion

schema

Constraints

Ensure that the Dimensions defining a Cube are unique. [C-1].

A Cube without CubeRegions cannot be mapped to a deployment structure; that is,
physical source of data. [C-2]

If true, then this Cube is a Virtual Cube; that is, it has no physical realization.

type: Boolean

multiplicity: exactly one

References the collection of CubeDimensionAssociations owned by a Cube.

class: CubeDimensionAssociation

defined by: CubeOwnsCubeDimensionAssociations::cubeDimensionAssociation

multiplicity: zero or more

inverse: CubeDimensionAssociation::cube

References the collection of CubeRegions owned by a Cube.

class: CubeRegion

defined by: CubeOwnsCubeRegions::cubeRegion

multiplicity: zero or more

inverse: CubeRegion::cube

References the Schema owning a Cube.

class: Schema

defined by: SchemaOwnsCubes::schema

multiplicity: exactly one

inverse: Schema::cube
11-12 Common Warehouse Metamodel, v1.1 March 2003

11
11.4.4 CubeDeployment

CubeDeployment represents a particular implementation strategy for the data portions
of an OLAP model. It does so by organizing a collection of ContentMaps, which in
turn define a mapping to an implementation model.

Superclasses

Class

Contained Elements

ContentMap

References

cubeRegion

deploymentGroup

contentMap

References the CubeRegion owning a CubeDeployment.

class: CubeRegion

defined by: CubeRegionOwnsCubeDeployments::cubeRegion

multiplicity: exactly one

inverse: CubeRegion::cubeDeployment

References the DeploymentGroup associated with this CubeDeployment.

class: DeploymentGroup

defined by: DeploymentGroupReferencesCubeDeployments::cubeDeployment

multiplicity: exactly one

inverse: DeploymentGroup::cubeDeployment

References the ContentMaps owned by a CubeDeployment.

class: ContentMap

defined by: CubeDeploymentOwnsContentMaps::contentMap

multiplicity: zero or more

inverse: ContentMap::cubeDeployment
March 2003 OMG-CWM, v1.1: OLAP Classes 11-13

11
11.4.5 CubeDimensionAssociation

CubeDimensionAssociation relates a Cube to the Dimensions that define it. Features
relevant to Cube-Dimension relationships (for example, calcHierarchy) are exposed by
this class.

Superclasses

Class

References

dimension

cube

calcHierarchy

Constraints

If a calcHierarchy is defined, it must be a Hierarchy owned by the Dimension
referenced by the CubeDimensionAssociation. [C-3]

References the Dimension associated with a CubeDimensionAssociation.

class: Dimension

defined by: CubeDimensionAssociationsReferenceDimension::dimension

multiplicity: exactly one

inverse: Dimension::cubeDimensionAssociation

References the Cube owning a CubeDimensionAssociation.

class: Cube

defined by: CubeOwnsCubeDimensionAssociations::cube

multiplicity: exactly one

inverse: Cube::cubeDimensionAssociation

References the default calculation Hierarchy of the Dimension associated with a
CubeDimensionAssociation.

class: Hierarchy

defined by: CubeDimensionAssociationsReferenceCalcHierarchy::calcHierarchy

multiplicity: zero or one
11-14 Common Warehouse Metamodel, v1.1 March 2003

11
11.4.6 CubeRegion

CubeRegion models a sub-unit of a Cube that is of the same dimensionality as the
Cube itself. Each “dimension” of a CubeRegion is represented by a MemberSelection
of the corresponding Dimension of the Cube. Furthermore, these MemberSelections
may define subsets of their Dimension members.

Synonyms: Sub-Cube, Partition, Slice, Region, Area.

Superclasses

Class

Contained Elements

• CubeDeployment

• MemberSelectionGroup

Attributes

isReadOnly

isFullyRealized

References

memberSelectionGroup

If true, then the CubeRegion content is read-only; that is, may not be written or updated
through the CubeRegion. For example, a CubeRegion implemented via an SQL view may not
permit updates to the underlying base table.

type: Boolean

multiplicity: exactly one

If true, then this CubeRegion has a direct physical realization and is not bound by any
MemberSelections.

type: Boolean

multiplicity: exactly one

References the collection of MemberSelectionGroups owned by a Cube.

class: MemberSelectionGroup

defined by: CubeRegionOwnsMemberSelectionGroups::memberSelectionGroup

multiplicity: zero or more

inverse: MemberSelectionGroup::cubeRegion
March 2003 OMG-CWM, v1.1: OLAP Classes 11-15

11
cube

cubeDeployment

Constraints

A “fully realized” CubeRegion has no MemberSelectionGroups (and hence, no
MemberSelections). [C-4]

A CubeRegion defined by MemberSelections must have, for each Dimension of its
owning Cube, a corresponding MemberSelection within each of its
MemberSelectionGroups. [C-5]

A CubeRegion defined by MemberSelections must have, within each
MemberSelectionGroup, a MemberSelection corresponding to each Dimension of its
owning Cube. [C-6]

11.4.7 DeploymentGroup

DeploymentGroup represents a logical grouping of model elements defining a single,
complete deployment of an instance of Olap Schema; that is, CubeDeployments and
DimensionDeployments.

The usage of DeploymentGroup is as follows: A user may specify a particular
DeploymentGroup as the session-wide, default deployment for all metadata queries
performed throughout the session. Alternatively, for queries involving some particular
deployed object (for example, a Cube or a Dimension), the user may be asked to
choose from a list of deployments. This either becomes the default deployment for the
remainder of the session, or the user may continue to be asked to specify a deployment
for each subsequent query against deployed objects.

Superclasses

Package

References the Cube owning a CubeRegion.

class: Cube

derived from: CubeOwnsCubeRegions::cube

multiplicity: exactly one

inverse: Cube::cubeRegion

References the CubeDeployments owned by a CubeRegion.

class: CubeDeployment

derived from: CubeRegionOwnsCubeDeployments::cubeDeployment

multiplicity: zero or more; ordered

inverse: CubeDeployment::CubeRegion
11-16 Common Warehouse Metamodel, v1.1 March 2003

11
References

schema

cubeDeployment

dimensionDeployment

11.4.8 Dimension

A Dimension is an ordinate within a multidimensional structure, and consists of a
unique list of values; that is, members that share a common semantic meaning within
the domain being modeled. Each member designates a unique position along its
ordinate.

Typical Dimensions are: Time, Product, Geography, Scenario (for example, actual,
budget, forecast), Measure (for example, sales, quantity).

Superclasses

Class

Contained Elements

• Hierarchy

• MemberSelection

References the Schema owning a DeploymentGroup.

class: Schema

defined by: SchemaOwnsDeploymentGroups::schema

multiplicity: exactly one

inverse: Schema::deploymentGroup

References the collection of CubeDeployments associated with a DeploymentGroup.

class: CubeDeployment

defined by: DeploymentGroupReferencesCubeDeployments::cubeDeployment

multiplicity: zero or more

inverse: CubeDeployment::deploymentGroup

References the collection of DimensionDeployments associated with a DeploymentGroup.

class: DimensionDeployment

defined by: DeploymentGroupReferencesDimensionDeployments::dimensionDeployment

multiplicity: zero or more

inverse: DimensionDeployment::deploymentGroup
March 2003 OMG-CWM, v1.1: OLAP Classes 11-17

11
Attributes

isTime

isMeasure

References

hierarchy

memberSelection

cubeDimensionAssociation

If true, then this Dimension is a Time Dimension; that is, its members collectively represent a
time series.

type: Boolean

multiplicity: exactly one

If true, then this Dimension is a Measure Dimension; that is, its members represent Measures.

type: Boolean

multiplicity: exactly one

References the collection of Hierarchies owned by a Dimension.

class: Hierarchy

defined by: DimensionOwnsHierarchies::hierarchy

multiplicity: zero or more

inverse: Hierarchy::dimension

References the collection of MemberSelections owned by a Dimension.

class: MemberSelection

defined by: DimensionOwnsMemberSelections::memberSelection

multiplicity: zero or more

inverse: MemberSelection::dimension

References the collection of CubeDimensionAssociations referencing this Dimension.

class: CubeDimensionAssociation

defined by: CubeDimensionAssociationsReferenceDimension::
cubeDimensionAssociation

multiplicity: zero or more

inverse: CubeDimensionAssociation::dimension
11-18 Common Warehouse Metamodel, v1.1 March 2003

11
displayDefault

schema

Constraints

A Dimension may be a Time Dimension, a Measure Dimension, or neither, but never
both types at the same time. [C-7]

The default display Hierarchy (if defined) must be one of the Hierarchies owned by the
Dimension. [C-8]

11.4.9 DimensionDeployment

A DimensionDeployment represents a particular implementation strategy for the
dimensional/hierarchical portions of an OLAP model. It does so by organizing a
collection of StructureMaps, which in turn define a mapping to an implementation
model.

Superclasses

Class

Contained Elements

StructureMap

References the default display Hierarchy of a Dimension.

class: Hierarchy

defined by: DimensionHasDefaultHierarchy::displayDefault

multiplicity: zero or one

References the Schema owning a Dimension.

class: Schema

defined by: SchemaOwnsDimensions::schema

multiplicity: exactly one

inverse: Schema::dimension
March 2003 OMG-CWM, v1.1: OLAP Classes 11-19

11
References

hierarchyLevelAssociation

valueBasedHierarchy

structureMap

listOfValues

References the HierarchyLevelAssociation owning a DimensionDeployment.

class: HierarchyLevelAssociation

defined by: HierarchyLevelAssociationOwnsDimensionDeployments::
hierarchyLevelAssociation

multiplicity: zero or one

inverse: HierarchyLevelAssociation::dimensionDeployment

References the ValueBasedHierarchy owning a DimensionDeployment.

class: ValueBasedHierarchy

defined by: ValueBasedHierarchyOwnsDimensionDeployments::
valueBasedHierarchy

multiplicity: zero or one

inverse: ValueBasedHierarchy::dimensionDeployment

References the collection of StructureMaps owned by a DimensionDeployment.

class: StructureMap

defined by: DimensionDeploymentOwnsStructureMaps::structureMap

multiplicity: zero or more

inverse: StructureMap::dimensionDeployment

References the “list of values” StructureMap owned by a DimensionDeployment.

class: StructureMap

defined by: DimensionDeploymentHasListOfValues::listOfValues

multiplicity: zero or one

inverse: StructureMap::dimensionDeploymentLV
11-20 Common Warehouse Metamodel, v1.1 March 2003

11
immediateParent

deploymentGroup

11.4.9.1 Constraints

An instance of DimensionDeployment must be referenced exclusively by either a
HierarchyLevelAssociation or a ValueBasedHierarchy. [C-9]

Within a DimensionDeployment, an “immediate parent” StructureMap must always
have an associated and distinct “list of values” StructureMap. [C-10]

A StructureMap referenced as a “list of values” StructureMap must not reside outside
of the DimensionDeployment’s collection of StructureMaps. [C-11]

A StructureMap referenced as an “immediate parent” StructureMap must not reside
outside of the DimensionDeployment’s collection of StructureMaps. [C-12]

11.4.10 Hierarchy abstract

A Hierarchy is an organizational structure that describes a traversal pattern through a
Dimension, based on parent/child relationships between members of the Dimension.
Hierarchies are used to define both navigational and consolidation/computational paths
through the Dimension; that is, a value associated with a child member is aggregated
by one or more parents.

Superclasses

Class

References the “immediate parent” StructureMap owned by a DimensionDeployment.

class: StructureMap

defined by: DimensionDeploymentHasImmediateParent::immediateParent

multiplicity: zero or one

inverse: StructureMap::DimensionDeploymentIP

References the DeploymentGroup associated with this DimensionDeployment.

class: DeploymentGroup

defined by: DeploymentGroupReferencesDimensionDeployments::deploymentGroup

multiplicity: exactly one

inverse: DeploymentGroup::dimensionDeployment
March 2003 OMG-CWM, v1.1: OLAP Classes 11-21

11
References

dimension

cubeDimensionAssociation

defaultedDimension

hierarchyMemberSelectionGroup

11.4.11 HierarchyLevelAssociation

HierarchyLevelAssociation is a class that orders Levels within a LevelBasedHierarchy,
and provides a means of mapping Level and/or Hierarchy -oriented Dimension
attributes to deployment structures; that is, physical data sources.

References the Dimension owning a Hierarchy.

class: Dimension

defined by: DimensionOwnsHierarchies::dimension

multiplicity: exactly one

inverse: Dimension::hierarchy

References the collection of CubeDimensionAssociations designating this Hierarchy as their
default calculation Hierarchy.

class: cubeDimensionAssociation

defined by: CubeDimensionAssociationsReferenceCalcHierarchy::
cubeDimensionAssociation

multiplicity: zero or more

inverse: CubeDimensionAssociation::calcHierarchy

References the Dimension for which this Hierarchy is the “display default” Hierarchy.

class: Dimension

defined by: DimensionHasDisplayDefault::defaultedDimension

multiplicity: zero or one

inverse: Dimension::displayDefault

References HierarchyMemberSelectionGroups that are based upon this Hierarchy.

class: HierarchyMemberSelectionGroup

defined by: HierarchyMemberSelectionGroupReferencesHierarchy::
hierarchyMemberSelectionGroup

multiplicity: zero or many

inverse: HierarchyMemberSelectionGroup:hierarchy
11-22 Common Warehouse Metamodel, v1.1 March 2003

11
11.4.11.1 Superclasses

Class

11.4.11.2 Contained Elements

DimensionDeployment

11.4.11.3 References

levelBasedHierarchy

currentLevel

dimensionDeployment

11.4.12 HierarchyMemberSelectionGroup

This subtype of MemberSelectionGroup allows users to specify that a particular cube
region is determined by hierarchy. This allows the description of data to vary by
hierarchy and, therefore, provides the ability to model multiple measure values per
hierarchy.

References the LevelBasedHierarchy owning this HierarchyLevelAssociation.

class: LevelBasedHierarchy

defined by: LevelBasedHierarchyOwnsHierarchyLevelAssociations::
levelBasedHierarchy

multiplicity: exactly one

inverse: LevelBasedHierarchy::hierarchyLevelAssociation

References the “current” Level associated with this HierarchyLevelAssociation.

class: Level

defined by: HierarchyLevelAssociationsReferenceLevel::currentLevel

multiplicity: exactly one

inverse: Level::hierarchyLevelAssociation

References the collection of DimensionDeployments owned by a HierarchyLevelAssociation.

class: DimensionDeployment

defined by: HierarchyLevelAssociationOwnsDimensionDeployments::
dimensionDeployment

multiplicity: zero or more; ordered

inverse: DimensionDeployment::hierarchyLevelAssociation
March 2003 OMG-CWM, v1.1: OLAP Classes 11-23

11
Superclasses

MemberSelectionGroup

References

hierarchy

Constraints

Each Hierarchy referenced by a HierarchyMemberSelectionGroup must have precisely
one corresponding MemberSelection (of the same Dimension) in the
HierarchyMemberSelectionGroup’s collection of MemberSelections. [C-15]

11.4.13 Level

Level is a subclass of MemberSelection that assigns each member of a Dimension to a
specific level within the Dimension.

Superclasses

MemberSelection

References

hierarchyLevelAssociation

References the Hierarchies that this HierarchyMemberSelectionGoup is based upon.

class: Hierarchy

defined by: HierarchyMemberSelectionGroupReferencesHierarchy::
hierarchy

multiplicity: one or more

inverse: Hierarchy::hierarchyMemberSelectionGroup

References the HierarchyLevelAssociations denoting this Level as “current level.”

class: HierarchyLevelAssociation

defined by: HierarchyLevelAssociationsReferenceLevel::hierarchyLevelAssociation

multiplicity: zero or more

inverse: HierarchyLevelAssociation::currentLevel
11-24 Common Warehouse Metamodel, v1.1 March 2003

11
11.4.14 LevelBasedHierarchy

A LevelBasedHierarchy is a Hierarchy that describes relationships between specific
levels of a Dimension. LevelBasedHierarchy is used to model both “pure level”
hierarchies (for example, dimension-level tables) and “mixed” hierarchies; that is,
levels plus linked nodes.

Supertypes

Hierarchy

Contained Elements

HierarchyLevelAssociation

References

hierarchyLevelAssociation

Constraints

The currentLevel of each HierarchyLevelAssociation must refer to a Level owned by
the Dimension of the LevelBasedHierarchy containing the HierarchyLevelAssociation.
[C-13]

No two HierarchyLevelAssociations may designate the same Level instance as their
“current level.” [C-14]

11.4.15 Measure

Measure is a subclass of Attribute representing Dimension Measures (for example,
Sales, Quantity, Weight). Synonym: Variable.

Supertypes

Attribute

11.4.16 MemberSelection

MemberSelection represents an arbitrary subset of the members of a Dimension.

References the collection of HierarchyLevelAssociations owned by a LevelBasedHierarchy.

class: HierarchyLevelAssociation

defined by: LevelBasedHierarchyOwnsHierarchyLevelAssociations::
hierarchyLevelAssociation

multiplicity: zero or more; ordered

inverse: HierarchyLevelAssociation::levelBasedHierarchy
March 2003 OMG-CWM, v1.1: OLAP Classes 11-25

11
Superclasses

Class

References

dimension

memberSelectionGroup

11.4.17 MemberSelectionGroup

MemberSelectionGroup enables the grouping together of semantically-related
MemberSelections.

Superclasses

Class

References

memberSelection

References the Dimension owning a MemberSelection.

class: Dimension

defined by: DimensionOwnsMemberSelections::dimension

multiplicity: exactly one

inverse: Dimension::memberSelection

References the collection of MemberSelectGroups associated with a MemberSelection.

class: MemberSelectionGroup

defined by: MemberSelectionGroupReferencesMemberSelection::
memberSelectionGroup

multiplicity: zero or more

inverse: MemberSelectionGroup::memberSelection

References the collection of MemberSelections associated with a MemberSelectionGroup.

class: MemberSelection

defined by: MemberSelectionGroupReferencesMemberSelections::
memberSelection

multiplicity: one or more

inverse: MemberSelection::memberSelectionGroup
11-26 Common Warehouse Metamodel, v1.1 March 2003

11
cubeRegion

11.4.18 Schema

Schema contains all elements comprising an OLAP model. A Schema may also
contain any number of DeploymentGroups, representing the various physical
deployments of the logical Schema.

Superclasses

Package

Contained Elements

• Cube

• DeploymentGroup

• Dimension

References

cube

deploymentGroup

References the CubeRegion owning a MemberSelectionGroup.

class: CubeRegion

defined by: CubeRegionOwnsMemberSelectionGroups::cubeRegion

multiplicity: exactly one

inverse: CubeRegion::memberSelectionGroup

References the collection of Cubes owned by a Schema.

class: Cube

defined by: SchemaOwnsCubes:cube

multiplicity: zero or more

inverse: Cube::schema

References the collection of DeploymentGroups owned by a Schema.

class: DeploymentGroup

defined by: SchemaOwnsDeploymentGroups::deploymentGroup

multiplicity: zero of more

inverse: DeploymentGroup::schema
March 2003 OMG-CWM, v1.1: OLAP Classes 11-27

11
dimension

11.4.19 StructureMap

StructureMap is a subclass of TransformationMap that maps Dimension attributes to
their physical data sources.

11.4.19.1 Superclasses

TransformationMap

11.4.19.2 References

dimensionDeployment

dimensionDeploymentLV

References the collection of Dimensions owned by a Schema.

class: Dimension

defined by: SchemaOwnsDimensions::dimension

multiplicity: zero or more

inverse: Dimension::schema

References the DimensionDeployment owning this StructureMap.

class: DimensionDeployment

defined by: DimensionDeploymentOwnsStructureMaps::dimensionDeployment

multiplicity: exactly one

inverse: DimensionDeployment::structureMap

References the DimensionDeployment designating this StructureMap as a “list of values”
StructureMap.

class: DimensionDeployment

defined by: DimensionDeploymentHasListOfValues::dimensionDeployment

multiplicity: zero or one

inverse: DimensionDeployment::listOfValues
11-28 Common Warehouse Metamodel, v1.1 March 2003

11
dimensionDeploymentIP

11.4.20 ValueBasedHierarchy

ValueBasedHierarchy is a subclass of Hierarchy that ranks Dimension members
according to their relative distance from the root. Each member of a
ValueBasedHierarchy has a specific “metric” or “value” associated with it.

ValueBasedHierarchy is used to model pure “linked node” hierarchies (for example,
parent-child tables). It is a subclass of Hierarchy that ranks Dimension members
according to their relative distance from a common root member.

Superclasses

Hierarchy

Contained Elements

DimensionDeployment

References

dimensionDeployment

11.5 OLAP Associations

11.5.1 CubeDeploymentOwnsContentMaps

A CubeDeployment owns any number of ContentMaps.

References the DimensionDeployment designating this StructureMap as an “immediate
parent” StructureMap.

class: DimensionDeployment

defined by: DimensionDeploymentHasImmediateParent::dimensionDeployment

multiplicity: zero or one

inverse: DimensionDeployment::immediateParent

References the collection of DimensionDeployments owned by a ValueBasedHierarchy.

class: DimensionDeployment

defined by: ValueBasedHierarchyOwnsDimensionDeployments::
dimensionDeployment

multiplicity: zero or more; ordered

inverse: DimensionDeployment::valueBasedHierarchy
March 2003 OMG-CWM, v1.1: OLAP Associations 11-29

11
Ends

cubeDeployment

contentMap

11.5.2 CubeDimensionAssociationsReferenceCalcHierarchy

A CubeDimAssociation may designate a default Hierarchy for calculation purposes.

Ends

calcHierarchy

cubeDimensionAssociation

11.5.3 CubeDimensionAssociationsReferenceDimension

Each CubeDimensionAssociation references a single Dimension.

The CubeDeployment owning a ContentMap.

class: CubeDeployment

multiplicity: exactly one

aggregation: composite

The collection of ContentMaps owned by a CubeDeployment.

class: ContentMap

multiplicity: zero or more

The Hierarchy designated by a CubeDimensionAssociation as the default Hierarchy to be used
in consolidation calculations performed on the Cube.

class: Hierarchy

multiplicity: zero or one

CubeDimensionAssociations designating the Hierarchy to be used in consolidation
calculations performed on the Cube.

class: CubeDimensionAssociation

multiplicity: zero or more
11-30 Common Warehouse Metamodel, v1.1 March 2003

11
11.5.3.1 Ends

cubeDimensionAssociation

dimension

11.5.4 CubeOwnsCubeDimensionAssociations

The dimensionality of a Cube is defined by a collection of unique Dimensions. Each
Dimension is represented by an instance of CubeDimensionAssociation.

Ends

cube

cubeDimensionAssociation

11.5.5 CubeOwnsCubeRegions

A Cube may own any number of CubeRegions.

CubeDimensionAssociations referencing the Dimension.

type: CubeDimensionAssociation

multiplicity: zero or more

The Dimension referenced by CubeDimensionAssociations.

type: Dimension

multiplicity: exactly one

The Cube owning CubeDimensionAssociations.

class: Cube

multiplicity: exactly one

aggregation: composite

CubeDimensionAssociations owned by the Cube.

class: CubeDimensionAssociation

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: OLAP Associations 11-31

11
Ends

cube

cubeRegion

11.5.6 CubeRegionOwnsCubeDeployments

A CubeRegion may own any number of CubeDeployments.

Ends

cubeRegion

cubeDeployment

11.5.7 CubeRegionOwnsMemberSelectionGroups

A CubeRegion may own any number of MemberSelectionGroups.

The Cube owning CubeRegions.

class: Cube

multiplicity: exactly one

aggregation: composite

CubeRegions owned by the Cube.

class: CubeRegion

multiplicity: zero or more

The CubeRegion owning a CubeDeployment.

class: CubeRegion

multiplicity: exactly one

aggregation: composite

The CubeDeployments owned by a CubeRegion.

class: CubeDeployment

multiplicity: zero or more; ordered
11-32 Common Warehouse Metamodel, v1.1 March 2003

11
Ends

cubeRegion

memberSelectionGroup

11.5.8 DeploymentGroupReferencesCubeDeployments

A DeploymentGroup may reference any number of CubeDeployments.

Ends

deploymentGroup

cubeDeployment

11.5.9 DeploymentGroupReferencesDimensionDeployments

A DeploymentGroup may reference any number of DimensionDeployments.

The CubeRegion owning MemberSelectionGroups.

class: CubeRegion

multiplicity: exactly one

aggregation: composite

MemberSelectionGroups owned by the CubeRegion.

class: MemberSelectionGroup

multiplicity: zero or more

The DeploymentGroups referencing a CubeDeployment.

class: DeploymentGroup

multiplicity: exactly one

The CubeDeployments referenced by a DeploymentGroup.

class: CubeDeployment

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: OLAP Associations 11-33

11
Ends

deploymentGroup

dimensionDeployment

11.5.10 DimensionDeploymentHasImmediateParent

An instance of DimensionDeployment may reference zero or one StructureMaps as its
“immediate parent” StructureMap.

Ends

immediateParent

dimensionDeploymentIP

11.5.11 DimensionDeploymentHasListOfValues

An instance of DimensionDeployment may reference zero or one StructureMaps as its
“list of values” StructureMap.

The DeploymentGroups referencing a DimensionDeployment.

class: DeploymentGroup

multiplicity: exactly one

The DimensionDeployments referenced by a DeploymentGroup.

class: DimensionDeployment

multiplicity: zero or more

The StructureMap referenced by a DimensionDeployment as its “immediate parent.”

class: StructureMap

multiplicity: zero or one

The DimensionDeployment referencing an “immediate parent” StructureMap.

class: DimensionDeployment

multiplicity: zero or one
11-34 Common Warehouse Metamodel, v1.1 March 2003

11
Ends

structureMap

dimensionDeploymentLV

11.5.12 DimensionDeploymentOwnsStructureMaps

A DimensionDeployment may own any number of StructureMaps.

Ends

structureMap

dimensionDeployment

11.5.13 DimensionHasDefaultHierarchy

A Dimension may designate a default Hierarchy for display purposes.

The StructureMap referenced by a DimensionDeployment as its “list of values” StructureMap.

class: StructureMap

multiplicity: zero or one

The DimensionDeployment referencing a “list of values” StructureMap.

class: DimensionDeployment

multiplicity: zero or one

The StructureMaps owned by a DimensionDeployment.

class: StructureMap

multiplicity: zero or more

The DimensionDeployment owning a StructureMap.

class: DimensionDeployment

multiplicity: exactly one

aggregation composite
March 2003 OMG-CWM, v1.1: OLAP Associations 11-35

11
Ends

displayDefault

defaultedDimension

11.5.14 DimensionOwnsHierarchies

A Dimension may own several Hierarchies.

Ends

dimension

hierarchy

11.5.15 DimensionOwnsMemberSelections

A Dimension may own several MemberSelections.

The Hierarchy designated by the Dimension as its default Hierarchy for display purposes.

class: Hierarchy

multiplicity: zero or one

The Dimension designating the Hierarchy as its default Hierarchy for display purposes.

class: Dimension

multiplicity: zero or one

The Dimension owning Hierarchies.

class: Dimension

multiplicity: exactly one

aggregation: composite

Hierarchies owned by the Dimension.

class: Hierarchy

multiplicity: zero or more
11-36 Common Warehouse Metamodel, v1.1 March 2003

11
Ends

dimension

memberSelection

11.5.16 HierarchyLevelAssociationOwnsDimensionDeployments

A HierarchyLevelAssociation may own any number of DimensionDeployments.

Ends

hierarchyLevelAssociation

dimensionDeployment

11.5.17 HierarchyLevelAssociationsReferenceLevel

Each HierarchyLevelAssociation references precisely one Level as its current level.

The Dimension owning MemberSelections.

class: Dimension

multiplicity: exactly one

aggregation: composite

MemberSelections owned by the Dimension.

class: MemberSelection

multiplicity: zero or more

The HierarchyLevelAssociation owning DimensionDeployments.

class: HierarchyLevelAssociation

multiplicity: zero or one

aggregation: composite

The DimensionDeployments owned by a HierarchyLevelAssociation.

class: DimensionDeployment

multiplicity: zero or more; ordered
March 2003 OMG-CWM, v1.1: OLAP Associations 11-37

11
Ends

currentLevel

hierarchyLevelAssociation

11.5.18 LevelBasedHierarchyOwnsHierarchyLevelAssociations

A LevelBasedHierarchy may own any number of HierarchyLevelAssociations.

Ends

levelBasedHierarchy

hierarchyLevelAssociation

11.5.19 HierarchyMemberSelectionGroupReferencesHierarchy

A HierarchyMemberSelectionGroup references one or more Hierarchies.

The Level designated by a HierarchyLevelAssociation as its current level.

class: Level

multiplicity: exactly one

The HierarchyLevelAssociations designating this Level as their current level.

class: HierarchyLevelAssociation

multiplicity: zero or more

The LevelBasedHierarchy owning HierarchyLevelAssociations.

class: LevelBasedHierarchy

multiplicity: exactly one

aggregation: composite

HierarchyLevelAssociations owned by the LevelBasedHierarchy.

class: HierarchyLevelAssociation

multiplicity: zero or more; ordered
11-38 Common Warehouse Metamodel, v1.1 March 2003

11
Ends

hierarchyMemberSelectionGroup

hierarchy

11.5.20 MemberSelectionGroupReferencesMemberSelections

A MemberSelectionGroup references at least one unique MemberSelection.

Ends

memberSelection

memberSelectionGroup

11.5.21 SchemaOwnsCubes

A Schema may own any number of Cubes.

Ends

cube

The HierarchyMemberSelectionGroups referencing one or more Hierarchies.

class: HierarchyMemberSelectionGroup

multiplicity: zero or more

The Hierarchies referenced by one or more HierarchyMemberSelectionGroups.

class: Hierarchy

multiplicity: one or more

MemberSelections referenced by MemberSelectionGroups.

class: memberSelection

multiplicity: one or more

MemberSelectionGroups referencing MemberSelections.

class: memberSelectionGroup

multiplicity: zero or more

The Cubes owned by a Schema.

class: Cube

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: OLAP Associations 11-39

11
schema

11.5.22 SchemaOwnsDeploymentGroups

A Schema may own any number of DeploymentGroups.

Ends

deploymentGroup

schema

11.5.23 SchemaOwnsDimensions

A Schema may own any number of Dimensions.

Ends

dimension

The Schema owning a Cube.

class: Schema

multiplicity: exactly one

aggregation composite

The DeploymentGroups owned by a Schema.

class: DeploymentGroup

multiplicity: zero or more

The Schema owning a DeploymentGroup.

class: Schema

multiplicity: exactly one

aggregation composite

The Dimension owned by a Schema.

class: Dimension

multiplicity: zero or more
11-40 Common Warehouse Metamodel, v1.1 March 2003

11
schema

11.5.24 ValueBasedHierarchyOwnsDimensionDeployments

A ValueBasedHierarchy may own any number of DimensionDeployments.

Ends

valueBasedHierarchy

dimensionDeployment

11.6 OCL Representation of OLAP Constraints

[C-1] Ensure that the Dimensions defining a Cube are unique.

context Cube inv:

self.cubeDimensionAssociation->forAll(c1, c2 | c1 <> c2 implies

c1.dimension <> c2.dimension)

[C-2] A Cube without CubeRegions cannot be mapped to a deployment structure; that
is, physical source of data.

context Cube inv:

self.cubeRegion->isEmpty implies self.isVirtual = true

The Schema owning a Dimension.

class: Schema

multiplicity: exactly one

aggregation composite

The ValueBasedHierarchy owning a DimensionDeployment.

class: ValueBasedHierarchy

multiplicity: zero or one

aggregation: composite

The DimensionDepolyments owned by a ValueBasedHierarchy.

class: DimensionDeployment

multiplicity: zero or more; ordered
March 2003 OMG-CWM, v1.1: OCL Representation of OLAP Constraints 11-41

11
[C-3] If a calcHierarchy is defined, it must be a Hierarchy owned by the Dimension
referenced by the CubeDimensionAssociation.

context CubeDimensionAssociation inv:

self.calcHierarchy->notEmpty implies self.calcHierarchy.dimension = self.dimension

[C-4] A “fully realized” CubeRegion has no MemberSelectionGroups (and hence, no
MemberSelections).

context CubeRegion inv:

self.isFullyRealized implies self.memberSelectionGroup->isEmpty

[C-5] A CubeRegion defined by MemberSelections must have, for each Dimension of
its owning Cube, a corresponding MemberSelection within each of its
MemberSelectionGroups.

context CubeRegion inv

self.memberSelectionGroup->notEmpty implies
self.cube.cubeDimensionAssociation->forAll(d |
self.memberSelectionGroup->forAll(g |
g.memberSelection->exists(m | m.dimension = d.dimension)))

[C-6] A CubeRegion defined by MemberSelections must have, within each
MemberSelectionGroup, a MemberSelection corresponding to each Dimension of its
owning Cube.

context CubeRegion inv:

self.memberSelectionGroup->notEmpty implies
self.memberSelectionGroup->forAll(g |
g.memberSelection->forAll(m |
self.cube.cubeDimensionAssociation->exists(d | d.dimension = m.dimension)))

[C-7] A Dimension may be a Time Dimension, a Measure Dimension, or neither, but
never both types at the same time.

context Dimension inv:

not (self.isTime and self.isMeasure)

[C-8] The default display Hierarchy (if defined) must be one of the Hierarchies owned
by the Dimension.

context Dimension inv:

self.displayDefault->notEmpty implies self.hierarchy->includes(self.displayDefault)
11-42 Common Warehouse Metamodel, v1.1 March 2003

11
[C-9] An instance of DimensionDeployment must be referenced exclusively by either
a HierarchyLevelAssociation or a ValueBasedHierarchy.

context DimensionDeployment inv:

self.hierarchyLevelAssociation->isEmpty xor self.valueBasedHierarchy->isEmpty

[C-10] Within a DimensionDeployment, an “immediate parent” StructureMap must
always have an associated and distinct “list of values” StructureMap.

context DimensionDeployment inv:

self.immediateParent->notEmpty implies
(self.listOfValues->notEmpty and self.listOfValues <> self.immediateParent)

[C-11] A StructureMap referenced as a “list of values” StructureMap must not reside
outside of the DimensionDeployment's collection of StructureMaps.

context DimensionDeployment inv:

self.listOfValues->notEmpty implies self.structureMap->includes(self.listOfValues)

[C-12] A StructureMap referenced as an “immediate parent” StructureMap must not
reside outside of the DimensionDeployment's collection of StructureMaps.

context DimensionDeployment inv:

self.immediateParent->notEmpty implies
self.structureMap->includes(self.immediateParent)

[C-13] The currentLevel of each HierarchyLevelAssociation must refer to a Level
owned by the Dimension of the LevelBasedHierarchy containing the
HierarchyLevelAssociation.

context LevelBasedHierarchy inv:

self.hierarchyLevelAssociation->notEmpty implies
self.hierarchyLevelAssociation->forAll(h |
self.dimension.memberSelection
->select(oclType = Olap::Level)->includes(h.currentLevel))

[C-14] No two HierarchyLevelAssociations may designate the same Level instance as
their “current level.”

context LevelBasedHierarchy inv:

self.hierarchyLevelAssociation->forAll(h1, h2 | h1 <> h2 implies
h1.currentLevel <> h2.currentLevel)
March 2003 OMG-CWM, v1.1: OCL Representation of OLAP Constraints 11-43

11
[C-15] Each Hierarchy referenced by a HierarchyMemberSelectionGroup must have
precisely one corresponding MemberSelection (of the same Dimension) in the
HierarchyMemberSelectionGroup’s collection of MemberSelections.

context HierarchyMemberSelectionGroup

inv: self.hierarchy->forAll(h |

self.memberSelection->exists(m | m.dimension = h.dimension))

inv: self.hierarchy->size = self.memberSelection->size
11-44 Common Warehouse Metamodel, v1.1 March 2003

Data Mining 12
Contents

This chapter contains the following topics.

12.1 Overview

Data mining is the application of mathematical or statistical processes for the purpose
of extracting hidden knowledge from large data sets. This knowledge is subsequently
used for various purposes, including actionable business intelligence and
biotechnology research.

Data mining techniques provide descriptive information that is manifest in inherent
patterns or relations between the data. This can be achieved, for example, with
algorithms for clustering or association rules detection (link analysis).

They also uncover correlations, often due to causal relationships, between the data and
a specific target property. This information is used to make predictions about unknown
data or future behavior. Techniques generating these models are known as supervised
learning algorithms, and include classification and approximation algorithms.

Whereas most analysis tools support the retrospective analysis of data sets by verifying
a user’s hypotheses, data mining attempts to discover trends and behaviors without the
need for guessing about possible relationships.

Topic Page

“Overview” 12-1

“Organization of the Data Mining Metamodel” 12-2

“Data Mining Classes” 12-26

“Data Mining Associations” 12-79
March 2003 Common Warehouse Metamodel, v1.1 12-1

12
Data mining tools are particularly effective in the data warehouse environment,
because data warehouses offer large quantities of cleansed business data for
consumption by data mining tools. Also, the advanced query and analytical capabilities
available in most data warehouses (e.g., relational databases, OLAP servers, and
information visualization tools) can be used to great advantage by data mining tools in
their formulation of models, and in the evaluation of those models by human users.

12.2 Organization of the Data Mining Metamodel

12.2.1 Dependencies

The Data Mining package depends on the following package:

• org.omg:CWM:ObjectModel:Core

12.2.2 Major Classes and Associations

The CWM Data Mining metamodel consists of seven conceptual areas: A core Mining
metamodel (upon which the other areas depend), and metamodels representing the data
mining subdomains of Clustering, Association Rules, Supervised, Classification,
Approximation, and Attribute Importance. Each area is represented by the metamodel
packages shown in the diagram below.
12-2 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-1 CWM Data Mining Metamodel

Collectively, the collection of Data Mining packages provide the necessary abstractions
to model generic representations of data mining models (i.e., mathematical models
produced or generated by the execution of data mining algorithms).

Included are representations of data mining tasks and models, as well as other entities
(such as category matrix) that are common across most data mining applications and
tools, as well as their relationships to each other and their mappings to technical
metadata.

The Mining Core package consists of common Data Mining abstractions that are
fundamental to, and reused by, the major conceptual areas. In particular, this package
contains several basic packages that are required to implement the CWM Data Mining
interfaces. It is required that at least this package and one more Data Mining package
be implemented for compliance. The packages forming the Mining Core are shown in
the next diagram.

DataMining

(from Analysis)

AssociationRules
<<metamodel>>

Clustering
<<metamodel>>

Supervised
<<metamodel>>

AttributeImporta
nce

<<metamodel>>

Classif ication
<<metamodel>>

Approximation
<<metamodel>>

MiningCore
<<metamodel>>
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-3

12
Figure 12-2 CWM Data Mining Metamodel: Mining Core Package

The following subsections describe the content of each component package of the
MiningCore. This is subsequently followed by subsections describing each of the
major conceptual area packages.

12.2.2.1 Mining Function Settings

Figure 12-3 CWM Data Mining Metamodel: Mining Function Settings

This package defines the objects that contain parameters specific to mining functions.
The separation of mining functions from mining algorithms enables the user to specify
the type of the desired result without being concerned with a particular algorithm. The
Mining Function Settings metamodel is illustrated above.

Mining FunctionSettings (MFS) is the superclass of all other function settings classes.
An MFS instance references a set of MiningAttributes, aggregated by a LogicalData
instance. The AttributeUsage set defines how each of the MiningAttributes will be used
by the Mining Algorithm.

MiningFunction
Settings

MiningModel MiningResult MiningData MiningTask EntryPoint

MiningCore
(from DataMining)

<<metamodel>>

MiningAlgorithmSettings

Att ributeUsageSet

(from MiningData)

MiningFunctionSettings

/ algorit hmSet tings : MiningAlgor ithmSett ings
desiredEx ecutionTimeI nMinut es : Integer
/ at tr ibut eUs ageSet : Att ributeUsageSet
/ logicalD ata : Logic alData

0..*

0..1
settings 0..*

algorithmSettings

0..1

1 0..1

settings

1

attributeUsageSet

0..1

Logical Da ta
(fr om MiningData)0..* 1

settings

0..*

logicalData

1

12-4 Common Warehouse Metamodel, v1.1 March 2003

12
12.2.2.2 Mining Model

Figure 12-4 CWM Data Mining Metamodel: Mining Model

This package defines the basic Mining Model from which all model objects inherit as
the result of a mining build task. The Mining Model metamodel is illustrated above.

Each MiningModel has a signature that defines the characteristics of the data required
by the model.

MiningFunction

classification
regression
clustering
associationRules
attributeImportance
sequenceAnalysis

<<enumeration>>

MiningAttribute

(from MiningData)

UsageOption

active
supplementary
target

<<enumeration>>

SignatureAttribute

usageOption : UsageOption

MiningFunctionSettings

(from MiningFunctionSettings)

ModelSignature

1..n

0..1

+/feature 1..n

+/owner 0..1

Class

(from Core)

Attribute
(from Core)

MiningModel

function : MiningFunction
algorithmName : String
/ settings : MiningFunctionSettings
/ modelSignature : ModelSignature
/ modelLocation : Class
/ keyAttribute : Attribute
keyValue : Any

0..1

0..n

+settings
0..1

+model 0..n

0..11

+modelSignature

0..1

+model

1

1

0..n

+modelLocation

1
+model 0..n

1

0..n

+keyAttribute 1

+model 0..n
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-5

12
12.2.2.3 Mining Result

Figure 12-5 CWM Data Mining Metamodel: Mining Result

This package defines the basic MiningResult object from which all result objects
inherit as the result of a specific mining task (other than build).

12.2.2.4 Mining Data

This package defines the objects that describe the input data, the way the input data is
to be treated, and the mapping between the input data and internal representation for
which mining algorithms can understand.

PhysicalData effectively references and instance of a class or subclass (e.g., Table, file,
etc.). This allows JDM to leverage the various row/column format data representation
expressible in CWM.

Mining Data metaclasses representing the concepts of physical data are illustrated in
Figure 12-6. Logical data metaclasses are illustrated in Figure 12-7. Attribute
assignment and attribute usage metaclasses are illustrated in two subsequent diagrams
(Figure 12-8 and Figure 12-9, respectively).

Finally, metaclasses used to model the matrix representation and taxonomy of mining
data are presented in Figure 12-10, Category Matrix, and Figure 12-11, Category
Taxonomy, respectively.

ModelElement
(f rom C ore)

MiningResult
12-6 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-6 CWM Data Mining Metamodel: Physical Data

Figure 12-6 illustrates those elements of the Mining Data metamodel used to model
physical data, whereas the following diagram shows those elements facilitating the
logical modeling of data.

Class
(from Core)

PhysicalData

/ source : Class 10..*

source

1

physicalData

0..*

ModelElement

(from Core)
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-7

12
Figure 12-7 CWM Data Mining Metamodel: Logical Data

Figure 12-7 contains objects that represent how physical data should be interpreted,
logically by the mining algorithm.

A LogicalAttribute can be categorical, numerical, or both, depending on its usage.
Categorical attributes that have ordered category values are created as ordinal
attributes.

OrdinalAttributeProperties

orderType : OrderType
isCyclic : Boolean = false

Class
(from Core)

A ttributeType

categorical
ordinal
numerical
notSpecified

<<enumeratio...

OrderType

asIs
alphabetical
numeric
date

<<enumeratio...

Min ingAttribute

displayName : String
attributeType : AttributeTy..

Attribute
(from Core)

Technical ly, an attribute or AU can be both
categorical and numerical according to the
current model.
However, we put a constraint in release 1 that
an attr ibute or AU can be either categorical or
numerical, not both.
This constraint can be relaxed in the next
release.

NumericalAttributeProperties

lowerBound : double
upperBound : double
isDiscrete : Boolean = false
isCyclic : Boolean = false
anchor : Double
cycleBegin : Double
cycleEnd : Double
discreteStepSize : Double

LogicalData

isCompatible(data : PhysicalData) : boo lean

LogicalAttribute

isSetValued : Boolean = false
/ categoricalProperties : CategoricalAttributeProperties
/ numericalProperties : NumericalAttributeProperties

0..1

1

numericalProperties
0..1

logicalAttribute 1

1..*

1

/feature

1..*

/owner 1

CategoryTaxonomy

Category

CategoricalAttributeProperties

/ ca tegory : Catego ry
/ taxonomy : CategoryTaxonomy

0..1

1

categoricalProperties 0..1

logicalAttribute 1

0..1

0..*

taxonomy 0..1

categoricalPropert ies

0..*

0..*

1

category 0..*

categoricalProperties

1

{ordered}
12-8 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-8 CWM Data Mining Metamodel: Attribute Assignment

• Figure 12-8 illustrates metaclasses that enable mapping physical data attributes to
logical data mining attributes. The following attribute assignments are supported:

• Direct assignment: A direct mapping between a mining attribute and a physical
attribute.

Attribute
(from Core)

DirectAttributeAssignment

/ attribute : Attribute

1

0..*

attri bute1

directAttrAssignment0..*

AttributeSelectionFunction

isNotNul l
isNull
isOne
isZero
isTrue
isFalse

<<enumeration>>

ValueSelectionFunction

value
attribute

<<enumeration>>

Attribute
(from Core)

Pi votAttributeAssi gnment

/ setIdAttribute : Attribute
/ nameAttribute : Attribute
/ valueAttribute : Attribute

1

0..*

setIdAttribute

1

pivotAttrAssignment

0..*

1

0..*

nameAttribute 1

pivotAttrAssignment

0..*

1

0..*

val ueAtt ribute

1

pivotAttrAssignmnet

0..*

At tribute

(from Core)

SetAttri buteAssignment

/ setIdAttribute : Attribute
/ memberAttribute : Attribute

1

0..*

setIdAttribute
1

setAttrAssignment
0..*

1

0..*

memberAttribute

1

setAttrAssignment

0..*

Attribute

(from Core)

ReversePivotAttributeAssignment

/ selectorAttribute : Attribute
attributeSelectionFunction : AttributeSelectionFunction
valueSelectionFunction : ValueSelectionFunction

1..*

0..*

selectorAttribute

1..*

reversePivotAttrAssignment 0..*

At tribute
(from Core)

MiningAttribute

AttributeAssignment

/ orderIdAttribute : Attribute
/ logicalAttribute : MiningAttribute 0..*0..*

orderIdAttribute

0..*

attrAssignmnet

0..*

{ordered}

1..*

0..*

logicalAttribute1..*

attrAssi gnment

0..*

AttributeAssignmentSet

/ assignment : AttributeAssignment

1..*

1

assignment 1..*

set 1

Only Pivot seems
to need more than
one logic...
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-9

12
• Pivot assignment: A mapping where the input data is in transactional format; each
of the logical attributes occurring in a pivoted table is mapped to the three
physical columns, presumably the same ones every time.

• Reverse pivot assignment: A mapping where the input data is in 2D format; the
transformed input data contains set valued attributes; the sets are represented by
enumerating the set elements based on the selection function.

• Set assignment: A mapping between a set valued mining attribute and a set of
attributes in the physical data.

Figure 12-9 CWM Data Mining Metamodel: Attribute Usage

Figure 12-9 illustrates metaclasses that enable specification of how a mining attribute
should be used, interpreted, or preprocessed (e.g., mining value or outlier/invalid value
treatment).

Feature
(from Core)

UsageOption

active
supplementary
target
weightActive
weightSupplementary

<<e nume ra tio n>>

Cl ass

(fro m Core)

LogicalAttribute

AttributeUsage

usage : UsageOption = active
weight : Double = 1.0
suppressDiscretization : Boolean = false
suppressNormal ization : Boolean = false
/ attribute : MiningAttribute

1..*0..*

attribute

1..*

usage

0..*

AttributeUsageSet

*

1

/feature *

/owner 1
12-10 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-10 CWM Data Mining Metamodel: Category Matrix

Figure 12-10 illustrates the metaclasses that generalize a complex object used to
represent a cost matrix (a model build input) or a confusion matrix (a model test
result). Two representations are supported:

• Java objects (CategoryMatrixObject)

• Table based (CategoryMatrixTable)

CategoryProperty

valid
inval id
missing

<<enumeration>>

MatrixProperty

symmetric
diagonal
any

<<enumeration>>

Attribute
(from Core)

Class
(from Core)

CategoryMatrixTable

/ rowAttrib ute : At tribute
/ co lumnAt tri bute : Att ri bute
/ va lue Att ri bute : Att ribu te
/ source : Cla ss

1

0..*

columnAttribute 1

matrixTable 0..*

1

0..*

val ueAt tribute

1

matrixTable

0..*

1

0..*

rowAttribute

1

matrixTable

0..*

10..*

so urce

1

matrixTaable

0..*

Category

value : Any
isNul lCategory : boolean = false
displayName : String
property : CategoryProperty = valid
prior : Double

CategoryMatrixObject

/ entry : CategoryMatrixEntry

validate() : boolean
getValue(rowIndex : Category, columnIndex : Category) : double
addEntry(rowIndex : Category, columnIndex : Category, value : double)
dropEntry(rowIndex : Category, columnIndex : Category)

CategoryMatrixEntry

/ rowIndex : Category
/ columnIndex : Category
value : double

1

0..*

rowIndex 1

categoryEntry 0..*

1

0..*

col umnIndex
1

categoryEntry0..*

1

0..*

categoryMatrix
1

entry0..*

Category

CategoryMatrix

di agona lDefaul t : do uble = 1.0
of fDi agon alDe fau lt : doubl e = 0 .0
ki nd : M at ri xProperty = any
/ ca teg ory : Ca teg ory 2. .*0. .*

catego ry

2. .*

categoryMatrix

0. .*
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-11

12
Figure 12-11 CWM Data Mining Metamodel: Category Taxonomy

Figure 12-11 also illustrates the metaclasses that enable representing a taxonomy as a
directed acyclic graph (DAG). Two representations are supported::

• Java Object (CategoryMapObject)

• table-bound (CategoryMapTable).

Mining Task

This package defines the objects that are related to mining tasks. A MiningTask object
represents a specific mining operation to be performed on a given data set (i.e.,
physical data). Figure 12-12 illustrates the basic Mining Task metamodel.

Attribute
(from Core)

Class
(from Core)

CategoryMapTable

/ childAttribute : Attribute
/ parentAttribute : Attribute
/ graphIdAttribute : Attribute
/ table : Class

1

0..n

parentAttribute

1

mapTable

0..n

1

0..n

childAttribute 1

mapTable 0..n

0..1

0..n

graphIdAttribute

0..1

mapTable

0..n

10..n

table

1

mapTable

0..n

CategoryMapObject

/ entry : CategoryMapObjectEntry

validate() : boolean

CategoryMapObjectEntry

/ child : Category
/ parent : Category
graphId : Any

0..n

1

entry 0..n

mapObject 1

Category

value : Any
isNullCategory : boolean = false
displayName : String
property : CategoryProperty = valid
prior : Double

1..*

0..*

parent 1..*

entry 0..*

1

0..*

child1

entry 0..*

CategoryMap

isMultiLevel : Boolean = false
isItemMap : Boolean = false

CategoryTaxonomy

/ categoryMap : CategoryMap
/ rootCategory : Category

0..*

0..*

rootCategory

0..*

taxonomy 0..*

0..*0..*

categoryMap

0..*

taxonomy

0..*
12-12 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-12 CWM Data Mining Metamodel: Mining Task

Figure 12-12 illustrates Mining Task as referenced by a Mining Transformation. A
Mining Task maps physical data to a model signature (when applicable; for example,
lift, test, etc.) using the Attribute Assignment set.

ModelElement
(from Core)

Transformation

(from Transformation)

PhysicalData
(from MiningData)

MiningTransformation

/ procedure : MiningTask

Mini ngModel

(from MiningModel)

AttributeAssignmentSet
(from MiningData)

MiningTask

/ inputData : PhysicalData
/ modelAssignment : AttributeAssignment...
/ inputModel : MiningModel

1

0..*

inputData 1

miningTask

0..*

1

0..1

procedure

1

transformation 0..1

0..1 0..*

inputModel

0..1

miningTask

0..*

0..1

1

modelAssignment 0..1

miningTask 1
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-13

12
Figure 12-13 CWM Data Mining Metamodel: Mining Build Task

Model elements comprising the Mining Build Task are shown in Figure 12-13. The
modeling of the application of output and the computation of the result of an
application of a data mining model to (new) data are illustrated in Figure 12-14 and
Figure 12-15, respectively.

Min ingTask

MiningFunctionSettings
(from MiningFunctionSettings)

Min ingModel
(from MiningModel)

PhysicalData

(from MiningData)

AttributeAssignmentSet
(from MiningData)

M iningBuildTask

/ m iningSetting s : M i ningFunctio nSetti ngs
/ settingsAssignment : Attrib uteAssignmentSet
/ va l idationData : P hysicalData
/ va l idationA ssignme nt : At tributeA ssignmentSet
/ resultModel : M iningModel

1

0..*

m iningSettings
1

bui ldTask 0..*

0..1

0..*

resultModel0..1

bui ldTask

0..*
0..1

0..*

val idationData 0..1

bui ldTask

0..*

0..1

0..1

settingsAssignment0..1

bui ldTask

0..1

0..1

0..1

val idationAssignmen t

0..1

bui ldTask 0..1
12-14 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-14 CWM Data Mining Metamodel: Apply Output

Figure 12-14 illustrates metaclasses that enable defining the content of an Apply task.
This includes source items; for example, keys, or specific content of apply (data
scoring using a model).

An apply output may contain multiple source and content items.

ApplyContentItem

topNthIndex : int = 1

ApplyOutputItem

Mining Appl yOut put

/ i tem : App lyOu tputItem

1..*

1

item

1..*

applyOutpu t 1

{ordered}

ApplySourc eItem

Mi ningAttribute

(from MiningData)

ApplyScoreItem ApplyRuleIdItemApplyProba bi l i tyItem
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-15

12
Figure 12-15 CWM Data Mining Metamodel: Mining Apply Task

Figure 12-15 illustrates metaclasses that allow specification of an apply task. The apply
task requires a model, physical data, apply output, and an attribute assignment set.

Entry Point

This package defines the top-level objects of DataMining package which can be used
as entry point in application programming. This is illustrated in Figure 12-16.

A p p lyO u tp u tO p ti o n

a p p en dT o E x ist in g
cre at e Ne w

<<e n u me ra tio n >>

Min in g Ta sk

M i n in g A p p lyO u tp u t

M i n in g A p p lyT a sk

/ a p p lyO u tp u t : M i n i n g A p p ly O u t put
/ o u tp u tA ssig n m e n t : Attr i b u t e Ass i g n m ent S et
o u tp u tO p ti o n : A p p lyO u tp u tO p ti o n = cre a te Ne w

0 ..*

1

a p p lyT ask 0 ..*

a p p lyO u tp u t 1

A ttri bu te A ssig n m e n tS e t

(fro m M i n in gDa ta)

1

1

a p p lyT a sk 1

o u tp u tA ssig n m e n t 1
12-16 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-16 CWM Data Mining Metamodel: Entry Point

Clustering

This package contains the metamodel that represents clustering functions, models, and
settings. The Clustering metamodel is illustrated in Figure 12-17. It contains attribute
usage and function settings, subclasses that are specific to the Clustering function.

Package
(from Core)

AttributeAssign mentSet

(from MiningData)

Catalog

/ schema : Schema

MiningFunctionSettings
(from MiningFunctionSettings)

CategoryMatrix
(from Mi ningData)

LogicalData
(from MiningData)

MiningM odel
(from Mi ningModel)

MiningTask

(from MiningTask)
CategoryTaxonomy
(from Mi ningData)

AuxiliaryObject

/ attributeAssignmnetSet : AttributeAssignmentSet

0..*

1

attributeAssignmentSet 0..*

auxiliaryObject 1

Min ingResult
(from Min ingResult)

Schema

/ logicalData : LogicalDa ta
/ ca tegoryMatrix : CategoryMatrix
/ mining Model : MiningM odel
/ mining FunctionSettings : Min ingFunctionSett ings
/ taxonomy : CategoryTaxonom y
/ task : MiningT ask
/ result : MiningResult
/ auxObject : AuxiliaryObject

0..*

1

schema
0..*

catalog 1

0..*

1

miningFunctionSettings 0..*

schema
1

0..*1

categoryMatrix

0..*

schema

1

0..*

1

logicalData 0..*

schema

1

0..*

1

miningModel 0..*

schema

1

0..*

1

task 0..*

schema1

0..*

1

taxonomy 0..*

schema 1

0..1

1

auxOobjects 0..1

schema

1

0..*

1

result

0..*

schema 1
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-17

12
Figure 12-17 CWM Data Mining Metamodel: Clustering

Association Rules

This package contains the metamodel that represents the constructs for frequent
itemset, association rules and sequence algorithms. The Association Rules metamodel
is illustrated in Figure 12-18.

Cl u ste rin g A ttri b u te Usa g e

a ttrib u te Co m p a riso n Fu n ctio n : A ttri b u te Co m p a ri so n Fu n cti o n
sim i l a ri tyS ca le : Do u b le
/ co m p a ri so n M a tri x : Ca te g o ryM a tri x

Ca te g o ryM a tri x
(fro m M in i n g Da ta)

0 ..*

0 ..1

a ttrib u te Usa g e 0 ..*

co m p a ri so n M a tri x 0 ..1

A ttrib u te Usa g e

(fro m M in i n g Da ta)
Mi n i n g Fu n cti o n S e tt in g s

(fro m Mi n in g Fu n cti o n S e tti n g s)

Cl u ste rin g Fu n ct i o n S e tti n g s

m a x Nu m b erO fC lu ste rs : In te g e r
m in Clu ste rS i ze : I n t e ger = 1
a g g re g a ti o nFu n cti o n : Ag g re ga ti o n Fu n c tion

A g g re g a tio n Fu n cti o n

e u c l id e a n
sq u a re d E u cl i d e a n
ch e b ych e v
ci ty B l o ck
m in kovski
sim p le M a tc h i n g
j a cc ard
ta n im o to
b i n a ry Sim i l a ri ty

<<e n u m e ra ti o n >>
A ttrib u te Co m p a riso n Fu n cti o n

a b sDi ff
g a u ssS i m
d e l ta
e q u a l
ta b le

<<e n u m e ra ti o n >>
12-18 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-18 CWM Data Mining Metamodel: Association Rules

12.2.2.5 Supervised

This package contains the metamodel that represents the constructs for supervised
learning algorithms. The Approximation, Attribute Importance, and Classification
packages must implement this package. Figure 12-19 illustrates the Supervised
metamodel. It contains test and lift tasks, test and lift results, and a common superclass
for supervised function settings.

MiningFunctionSettings
(from MiningFunctionSettings)

AssociationRulesFunctionSettings

mi nimumConfidence : Double
maxi mumRul eLength : Integer

SequenceFunctionSettings

windowSize : Integer

FrequentItemSetFunctionSettings

minimumSupport : Double
/ exclusion : Category
maximumSetSize : Integer

Category

(from MiningData)
0..* 0..*

settings

0..*

exclusion

0..*
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-19

12
Figure 12-19 CWM Data Mining Metamodel: Supervised

Classification

This package contains the metamodel that represents classification function, models,
and settings.

Min ingTask
(from Min ingTask)

Supe rv ise dFunc tionSet ti ngs

Min ingFunction Sett ings
(f rom Min in gFuncti onS etti ng s)

L i ftAna lysisPo in t

subse tOfRecords : in t
aggre ga teT arge t : do ub le

M in in gT e stResu l t

num b erOfT estRecord s : in t
/ l i ftAna lysis : L i ftAna lysis

Min ingResu l t

(f ro m Min ing Res ul t)

L i ftAna lysis

/ po in t : L i ft Ana lysisPo in t
ta rg etAt tri bu teNam e : S tring
/ po si ti veT arge tCategory : Ca tegory

1 ..*

1

po in t 1 ..*

l i ftAna lysi s 1

1

0 ..1

testResu l t 1

l i ftAna lysi s 0 ..1

M in in gT e stT ask

co m put eL i ft : Bo o lean = fa lse
<<re fe rence >> / posi ti ve Targ e tC ateg ory : Ca tego ry

Cat egory
(from M in ingData)

0 .. *1 ..*

l i ftAna lysi s

0 .. *

posi ti veT a rge tCategory

1 ..*

0 ..*

1 ..*

testT ask 0 ..*

posi ti veTa rge t Cate gory 1 ..*
12-20 Common Warehouse Metamodel, v1.1 March 2003

12
.

Figure 12-20 CWM Data Mining Metamodel: Classification Function Settings

Figure 12-20 represents the model for Function Settings, while Figure 12-21 illustrates
those model elements used to represent Attribute Usage that can include prior
probability specification. Figure 12-22 shows that portion of the Classification
metamodel modeling Classification Test tasks, results, and apply output.

ClassificationFunctionSettings

/ c ostM atrix : Categ oryMatrix

CategoryMatrix

(from MiningData)

0..1

0..*

costMatrix 0..1

settings
0..*

SupervisedFunctionSettings
(from Supervised)
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-21

12
Figure 12-21 CWM Data Mining Metamodel: Classification Attribute Usage

AttributeUsage
(from MiningData)

PriorProbabilities

/ prior : PriorProbabil itiesEntry

addEntry(targetValue : Category, prior : double)
dropEntry(targetValue : Category)

ClassificationAttributeUsage

/ positiveCategory : Category
/ priors : PriorProbabilities

0..1

1

priors 0..1

usage

1

PriorProbabilitiesEntry

/ targetValue : Category
priorProbability : Double

1

0..*

priors 1

prior 0..*

Category
(from MiningData)

0..*

1..*

usage 0..*

positiveCategory 1..*

0..*

1

priorsEntry

0..*

targetValue 1
12-22 Common Warehouse Metamodel, v1.1 March 2003

12
Figure 12-22 CWM Data Mining Metamodel: Classification Test and Result

Approximation

This package contains the metamodel that represents the constructs for approximation
modeling (also known as regression). The metamodel is shown in Figure 12-23.

M i n in g T e stT a sk

(f ro m S u p e rv i se d)
M i n i n g T e stR e su l t

(f ro m S u p e rv i se d)

A p p l yO u tp u t I te m
(f ro m M i n i n g T a sk)

A p p l yT a rg e tV a l u e I te m

/ ta rg e tV a l u e : C a te g o ry

C a te g o ry

(f ro m M i n i n g D a ta)

0 . . *

1

ta r g et V a lu e I te m 0 . .*

ta rg etV a l u e
1

C l a ssi f i ca t i o n T e stT a sk

/ te stR e sul t : C la ss if ic at io n T e stR e su l t

C l a ssi f i ca t i o n T e stR e su l t

/ c o n fu si o n M a tri x : C a te g o ry M a tri x
a c c u ra c y : d o u b l e1 1

te stT a sk

1

te st Re su lt

1

C a te g o ry M a tri x

(f ro m M i n i n g D a ta)

1

0 . .1

te st R e su l t 1

c o n fu si o n M a tri x 0 . .1
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-23

12
Figure 12-23 CWM Data Mining Metamodel: Approximation

Attribute Importance

This package contains the metamodel that represents the constructs for attribute
importance (also known as feature selection) model. This metamodel is illustrated in
Figure 12-24.

Figure 12-24 CWM Data Mining Metamodel: Attribute Importance

M in in g T e stT a sk
(fro m S u p e rvi se d)

A p p ro xim a ti o n T e stT a sk

/ te stRe su l t : A p p ro x im a ti o n T e stRe su l t

A p p ro xim a ti o n T e stRe su l t

m e a n P re d i cte d V a lu e : Do u b le
m e a n A ctu a lV a lu e : Do u b le
m e a n A b so lu te E rro r : Do u b le
rm sE rro r : Do u b le
rS q u a re d : Do u b le

1 1

te st Ta sk

1

te st Re sul t

1

M in i n g T e stRe su l t
(fro m S u p e rvi se d)

A p p ro xim a ti o n Fu n cti o n S e tti n g s

to l e ra te d E rro r : Do u b le

S u p e rvi se d Fu n cti o n S e tti n g s
(f ro m S u p e rvi se d)

AttributeImportanceSettings

maximumResultSize : Integer
returnTop : boolean = true

Supervi sedFunc ti onS ett ings
(from Supervised)
12-24 Common Warehouse Metamodel, v1.1 March 2003

12
12.2.3 Inheritance from the ObjectModel

The inheritance of the Data Mining metamodel from the CWM ObjectModel is shown
in the three subsequent diagrams.

Figure 12-25 CWM Data Mining Metamodel: Inheritance from UML

Figure 12-26 CWM Data Mining Metamodel: Inheritance from UML (cont.)

ModelElement
(from Core)

Transformation
(from Transformation)

MiningAlgorithmSettings
(from MiningFunctionSettings)

MiningFunctionSettings
(from MiningFunctionSettings)

CategoryMatrix
(from MiningData)

CategoryTaxonomy
(from MiningData)

Entry-level
objects

MiningTransformation

(from MiningTask)

AuxiliaryObject
(from EntryPoint)

MiningTask
(from MiningTask)

AttributeAssignmentSet
(from MiningData)

MiningModel

(from MiningMod...

MiningResult
(from MiningResult)

ModelElement

(from Core)

CategoryMap

(from MiningData)

CategoryMapObjectEntry
(from MiningData)

CategoryMatrixEntry

(from MiningData)

NumericalAttributeProperties
(from MiningData)

CategoricalAttributeProperties
(from MiningData)

PhysicalData
(from MiningData)

Other
objects

AttributeAssignment
(from MiningData)

PriorProbabilities

(from Classificati...

Category

(from MiningData)

PriorProbabilitiesEntry

(from Classification)

MiningApplyOutput
(from MiningTask)
March 2003 OMG-CWM, v1.1: Organization of the Data Mining Metamodel 12-25

12
Figure 12-27 CWM Data Mining Metamodel: Inheritance from UML (cont.)

12.3 Data Mining Classes

12.3.1 ApplyContentItem Abstract

This is an abstract class that describes an item to appear in the output based on the
rank of the prediction.

Superclasses

ApplyOutputItem

Attributes

topNthIndex

This indicates the rank of the prediction whose associated values (score, probability, and rule
id) appear in the output as specified by the subclass. The default value is 1, which means the
top prediction.

type: Integer

multiplicity: exactly one

Fe ature

(f rom Core)

Package

(from Co...

Log ica lData

(from M in ingData)

Cat a lo g
(from En tryPo in t)

Cla ss
(f rom Core)

A ttr ibu teUsageSet

(from M i n ing Data)

M odelSignatu re
(f ro m M in ingM od...

A ttr ibu te
(from Core)

Min ingAttri bu te
(from Min ingData)

Attri bu teUsage
(f ro m M in ingData)
12-26 Common Warehouse Metamodel, v1.1 March 2003

12
12.3.2 ApplyOutputItem Abstract

This object describes an entity of ApplyOutput. It is usually stored in a destination
attribute. The destination attribute is specified by an AttributeAssignment object.

Superclasses

MiningAttribute

Attributes

None

12.3.3 ApplyProbabilityItem

This indicates that the probability value of the prediction (whose rank is specified here)
should appear in the output.

Superclasses

ApplyContentItem

Attributes

None

12.3.4 ApplyRuleIdItem

This indicates that the rule ID of the prediction (whose rank is specified here) should
appear in the output. This applies only to the models with rule IDs (such as decision
tree models).

12.3.4.1 Superclasses

ApplyContentItem

Attributes

None

12.3.5 ApplyScoreItem

This indicates that the score (target value) of the prediction (whose rank is specified
here) should appear in the output.

Superclasses

ApplyContentItem
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-27

12
Attributes

None

12.3.6 ApplySourceItem

This indicates that the source attribute specified here appears in the output as well.

12.3.6.1 Superclasses

ApplyContentItem

Attributes

None

12.3.7 ApplyTargetValueItem

This indicates that the probability value of the given target value is to appear in the
output.

Superclasses

ApplyOutputItem

Attributes

None

References

targetValue

12.3.8 ApproximationFunctionSettings

An ApproximationFunctionSettings is a subclass of SupervisedFunctionSettings that
supports features that are unique to approximation function that finds approximates of
numerical values.

Associates the target value whose probability value is to appear in the apply output with
ApplyTargetValueItem.

class: Category

defined by: TargetValueItemRefCategory

multiplicity: exactly one

inverse: Category::targetValueItem
12-28 Common Warehouse Metamodel, v1.1 March 2003

12
Superclasses

SupervisedFunctionSettings

Attributes

toleratedError

12.3.9 ApproximationTestResult

This represents the result of a test task applied to an approximation model.

Superclasses

MiningTestResult

Attributes

meanPredictedValue

meanActualValue

meanAbsoluteError

The tolerated error is defined in terms of R-squared.

type: Double

multiplicity: exactly one

Mean of the predicted values for test data. Null if not computed

type: Double

multiplicity: exactly one

Mean of the actual values in the target attribute for test data. Null if not computed

type: Double

multiplicity: exactly one

Mean of the absolute values of the prediction error on the test data. Null if not computed.

type: Double

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-29

12
rmsError

rSquared

12.3.10 ApproximationTestTask

This represents a task to check the quality of a regression model. A comparison of
mean predicted values and mean actual values can be done and a number of numerical
error measures can be computed. Null values mean that the model did not compute the
value.

Superclasses

MiningTestTask

Attributes

None

References

testResult

12.3.11 AssociationRulesFunctionSettings

An AssociationRulesFunctionSettings is a subclass of
FrequentItemSetFunctionSettings that supports features that are unique to association
rules algorithms.

Root of the mean squared errors on the test data. Null if not computed.

type: Double

multiplicity: exactly one

The squared Pearson correlation coefficient computed on the test data. Null if not computed.

type: Double

multiplicity: exactly one

Associates the test result with the approximation test task.

class: ApproximationTestResult

defined by: TaskHasApproximationTestResult

multiplicity: exactly one

inverse: ApproximationTestResult::testTask
12-30 Common Warehouse Metamodel, v1.1 March 2003

12
Superclasses

FrequentItemSetFunctionSettings

Attributes

minimumConfidence

maximumRuleLength

12.3.12 AttributeAssignment Abstract

This object provides a mapping between a mining attribute (logical data) and a set of
attributes in the input data (physical data). LogicalAttribute is the mining attribute
being mapped by this object. OrderIdAttribute is used when ordering of attributes is
required. In some cases, ordering of attributes is important (as in sequence analysis). In
other cases, a sequence of an attribute is favored over having a set-valued attribute.

AttributeAssignment can be reused among several tasks, but a MiningAttribute can be
referred to by an AttributeAssignment within a task.

Superclasses

ModelElement

Attributes

None

References

orderIdAttribute

This specifies the minimum confidence value for each association rule to be found.

type: Double

multiplicity: exactly one

This is the maximum length of the antecedent and consequent item set sizes.

type: Integer

multiplicity: exactly one

This reference points to one or more mining attributes that are used to identify the order of
certain sequences.

class: Attribute
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-31

12
logicalAttribute

12.3.13 AttributeAssignmentSet

This object contains a set of AttributeAssignment objects and completes attribute
assignment for a mining operation.

Superclasses

ModelElement

Contained Elements

AttributeAssignment

Attributes

None

References

assignment

defined by: AssignmentRefOrderIdAttribute

multiplicity: zero or more

inverse: Attribute::attrAssignment

This points to one or more mining attributes that are being mapped to by the
AttributeAssignment object.

class: MiningAttribute

defined by: AssignmentRefLogicalAttribute:logicalAttribute

multiplicity: one or more

inverse: MiningAttribute::attrAssignment

This reference points to one or more AttributeAssignment objects contained in the assignment
set.

class: AttributeAssignment

defined by: AssignmentSetHasAssignment

multiplicity: one or more

inverse: AttributeAssignment:set
12-32 Common Warehouse Metamodel, v1.1 March 2003

12
12.3.14 AttributeImportanceSettings

This is a subclass of MiningFunctionSettings that supports features unique to attribute
importance identification, also known as feature selection.

Superclasses

SupervisedFunctionSettings

Attributes

maximumResultSize

returnTop

12.3.15 AttributeUsage

An AttributeUsage object specifies how a MiningAttribute is to be used for mining
operations.

Superclasses

Feature

Attributes

usage

The attribute maximumResultSize indicates to return the top N most important attributes. It
may return fewer if the total number of attributes is less than this number.

type: Integer

multiplicity: exactly one

If true, returns the most important attributes. If false, it returns the least important. The default
value is “true.”

type: boolean

multiplicity: exactly one

The usage attribute indicates if and how the MiningAttribute should be used by the model.

type: UsageOption (active | supplementary | target | weightActive |
weightSupplementary)

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-33

12
weight

suppressDiscretization

suppressNormalization

References

attribute

12.3.16 AttributeUsageSet

An AttributeUsageSet object contains a collection of AttributeUsage objects. This
specifies how MiningAttributes are to be used or manipulated by a model. The
specification may contain at most one AttributeUsage object of each MiningAttribute
in the LogicalDataSpecification. The default usage is “active” for an attribute if no
entry for a MiningAttribute is present.

Superclasses

Class

The attribute weight indicates the weight the algorithm should assign to an attribute. The
default is 1.0, indicating no effect. The particular vendor defines what effect a given weight
greater or less than one has on an attribute for a particular algorithm.

type: Double

multiplicity: exactly one

This suppresses discretization to be performed on the attribute being specified, if true. The
default is “false.”

type: boolean

multiplicity: exactly one

This suppresses normalization to be performed on the attribute being specified, if true. The
default is “false.”

type: boolean

multiplicity: exactly one

This reference specifies the LogicalAttribute to which an instance of AttributeUsage refers.

class: LogicalAttribute

defined by: UsageRefAttribute

multiplicity: one or more

inverse: LogicalAttribute::usage
12-34 Common Warehouse Metamodel, v1.1 March 2003

12
Contained Elements

AttributeUsage

12.3.17 AuxiliaryObject

This contains ancillary objects that exist in the schema.

Superclasses

ModelElement

Contained Elements

AttributeAssignmentSet

References

attributeAssignmentSet

12.3.18 Catalog

This object is the top level entry point for the CWM Data Mining package. It contains
a set of schema.

Superclasses

Package

Contained Elements

Schema

References

schema

This represents a set of AttributeAssignmentSet objects that are contained in the schema.

class: AttributeAssignmentSet

defined by: AuxObjectHasAttrAssignmentSet

multiplicity: zero or more

inverse: AttributeAssignmentSet::auxiliaryObject

This represents a set of schema contained in the catalog.

class: Schema
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-35

12
12.3.19 CatagoricalAttributeProperties

A CategoricalAttributeProperties object is used to describe properties of a categorical
attribute. It lists the specific categories that are recognized in the attribute, as well as a
taxonomy, or CategorizationGraph, that organizes the categories into a hierarchy.

This metadata may or may not be used by the underlying algorithm. It may be
leveraged to determine if data being supplied as input to a mining operation is
sufficiently similar to the data used to build the model.

Superclasses

ModelElement

Contained Elements

Category

References

category

taxonomy

defined by: CatalogHasSchema

multiplicity: zero or more

inverse: CatalogHasSchema:catalog

The set of categories listed for the attribute. If only the ’missing’ categories are listed, all
other categories are considered ’valid.’ If ’valid’ categories are listed, all other non-missing
categories are considered ’invalid.’ If only ’invalid’ categories are listed, all other non-missing
categories are considered ’valid.’ If both ’valid’ and ’invalid’ categories are listed, all other
non-missing categories encountered result in an exception.

class: Category

defined by: CategoricalPropertiesHasCategories

multiplicity: zero or more

inverse: Category::categoricalProperties

The taxonomy describes a hierarchical organization of the valid categories among the attribute
data. There may be zero or more specified for a given attribute. If more than one are specified,
the Data Mining System is supposed to produce one model per taxonomy as a single model
result.

class: CategoryTaxonomy
12-36 Common Warehouse Metamodel, v1.1 March 2003

12
12.3.20 Category

This represents a discrete value. A collection of Category instances defines the values
that may or may not be annotated with a mining attribute.

Superclasses

ModelElement

Attributes

value

isNullCategory

displayName

property

defined by: CategoricalPropertiesRefTaxonomy

multiplicity: zero or one

inverse: CategoryTaxonomy::categoricalProperties

Constraint on value: DataType must define equality operator.

type: Any

multiplicity: exactly one

This optional attribute is set to true if the Category being specified is the null category. This
special category value can be used to represent “unknown” prediction by a model. The default
value is “false.”

type: boolean

multiplicity: exactly one

The displayName is a string that may be used by applications to refer to this category.

type: String

multiplicity: exactly one

This identifies the role of this Category instance.

type: CategoryProperty (valid | invalid | missing)

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-37

12
prior

12.3.21 CategoryMap

This is the common superclass of CategoryMapObject and CategoryMapTable
supporting the CategorizationGraph class.

Superclasses

ModelElement

Attributes

isMultiLevel

isItemMap

12.3.22 CategoryMapObject

This is the object representation of the taxonomy. Each object references a set of
CategoryMapObjectEntries.

Superclasses

ModelElement

CategoryMap

Contained Elements

CategoryMapObjectEntry

This contains the prior probability associated with this Category, if any.

type: Double

multiplicity: exactly one

This indicates that this table or object represents multiple levels of the categorization graph, if
true. The default value is “false.”

type: boolean

multiplicity: exactly one

This indicates that this is a grouping of items to categories, if true. The default value is
“false.”

type: Boolean

multiplicity: exactly one
12-38 Common Warehouse Metamodel, v1.1 March 2003

12
References

entry

12.3.23 CategoryMapObjectEntry

Object representation of an edge in the taxonomy graph. This is analogous to a record
in the CategoryMapTable. Each entry consists of child, parent, level and graphId
attributes. If isItemMap is true, then the child attribute corresponds to item values.

Superclasses

ModelElement

Attributes

graphId

References

child

This represents a set of object entries in the CategoryMap.

class: CategoryMapObjectEntry

defined by: CategoryMapObjectHasEntry

multiplicity: zero or more

inverse: CategoryMapObjectEntry::mapObject

The graphId attribute identifies the graph to which this entry belongs and enables representing
multiple categorization graphs in the same table.

type: Any

multiplicity: exactly one

This represents the child Category being pointed to by this graph entry.

class: Category

defined by: MapEntryRefChildCategory:child

multiplicity: exactly one

inverse: Category::entry
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-39

12
parent

12.3.24 CategoryMapTable

Tabular representation of a taxonomy graph. A taxonomy graph consists of zero or
more tables. Each table can store the portion of the graph corresponding to a single
level or multiple levels. The table has three attributes: Child, parent, and graphid.

Superclasses

ModelElement

CategoryMap

References

childAttribute

parentAttribute

This represents the parent Category being pointed to by this graph entry.

class: Category

defined by: MapEntryRefParentCategory

multiplicity: one or more

inverse: Category::entry

This represents the child attribute in the graph to appear in the table.

class: Attribute

defined by: MapTableRefChildAttribute

multiplicity: exactly one

inverse: Attribute::mapTable

This represents the parent attribute in the graph to appear in the table.

class: Attribute

defined by: MapTableRefParentAttribute

multiplicity: exactly one

inverse: Attribute::mapTable
12-40 Common Warehouse Metamodel, v1.1 March 2003

12
graphIdAttribute

table

12.3.25 CategoryMatrix

A CategoryMatrix assigns numeric values to pairs of categories. It is either represented
as a set of CategoryMatrixEntry objects or as a table.

Superclasses

ModelElement

Attributes

diagonalDefault

offDiagonalDefault

The graphId attribute identifies the graph to which the graph entry belongs and enables
representing multiple taxonomy graphs in the same table.

class: Attribute

defined by: MapTableRefGraphIdAttribute

multiplicity: zero or one

inverse: Attribute::mapTable

This represents the metadata description of the table where the category map is stored.

class: Class

defined by: CategoryMapRefClass

multiplicity: exactly one

inverse: Class:mapTable

If a matrix cell in the diagonal is not specified, then this value is used. The default value is
1.0.

type: double

multiplicity: exactly one

If a matrix cell not in the diagonal is not specified, then this value is used. The default value
is 0.

type: double

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-41

12
kind

References

category

12.3.26 CategoryMatrixEntry

This object defines the value of a single cell in a CategoryMatrix.

Superclasses

ModelElement

Attributes

value

This specifies the type of matrix: ’Diagonal’, ’symmetric’, or ’any’. If diagonal, then all
values outside the diagonal are 0. If symmetric, then value(i,j)=value(j,i).

type: MatrixProperty (symmetric | diagonal | any)

multiplicity: exactly one

This enumerates the categories spanning the matrix.

class: Category

defined by: MatrixRefIndexLabels

multiplicity: two or more

inverse: Category::categoryMatrix

The value of a cell. It overwrites any default value in CategoryMatrix. For cost matrix, value
is intended to be a double. For confusion matrix, the value can be either a “count” which is an
integer value, or a “percentage,” which is a double value. This is left up to the
implementation.

type: double

multiplicity: exactly one
12-42 Common Warehouse Metamodel, v1.1 March 2003

12
References

rowIndex

columnIndex

12.3.27 CategoryMatrixObject

The object representation of CategoryMatrix. Each object references a set of
CategoryMatrixEntry objects.

Superclasses

CategoryMatrix

Contained Elements

CategoryMatrixEntry

References

entry

This points to the row of the cell.

class: Category

defined by: MatrixEntryRefRowValue

multiplicity: exactly one

inverse: Category::categoryEntry

This points to the column of the cell.

class: Category

defined by: MatrixEntryRefColumnValue

multiplicity: exactly one

inverse: Category::categoryEntry

This represents a set of object entries in the CategoryMatrix.

class: CategoryMatrixEntry

defined by: MatrixObjectHasEntry

multiplicity: zero or more

inverse: CategoryMatrixEntry::categoryMatrix

aggregation: Composite
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-43

12
12.3.28 CategoryMatrixTable

This is a table representation of CategoryMatrix that contains three columns holding
the definition of a category matrix. A category matrix consists of exactly one table.
The table has three attributes: The row, column, and value of the entry.

Superclasses

CategoryMatrix

Attributes

rowAttribute

columnAttribute

valueAttribute

This represents the column in the table holding the rows of entries.

class: Attribute

defined by: MatrixTableRefRowAttr

multiplicity: exactly one

inverse: Attribute::matrixTable

This represents the column in the table holding the columns of entries.

class: Attribute

defined by: MatrixTableRefColumnAttr

multiplicity: exactly one

inverse: Attribute::matrixTable

This represents the column in the table holding the values of the entries.

class: Attribute

defined by: MatrixTableRefValueAttr

multiplicity: exactly one

inverse: Attribute::matrixTable
12-44 Common Warehouse Metamodel, v1.1 March 2003

12
source

12.3.29 CategoryTaxonomy

A CategoryTaxonomy supports the specification of taxonomy or category hierarchy as
required by data mining in the form of a directed acyclic graph. It enables two
representations: 1) Explicit specification of the graph through the referenced node
class, and 2) referencing a table with specific attributes (columns) that store the data in
tabular form.

A CategoryTaxonomy can contain multiple "root" nodes, in a sense being a single
representation for several possibly strict hierarchies.

Superclasses

ModelElement

Contained Elements

CategoryMap

References

categoryMap

This represents the metadata description of the table where the category matrix is stored.

class: Class

defined by: MatrixTableRefSource

multiplicity: exactly one

inverse: Class::matrixTable

This references to the CategoryMap which can be either an object or table representation of
the CategoryTaxonomy.

class: CategoryMap

defined by: TaxonomyHasCategoryMap

multiplicity: zero or more

inverse: CategoryMap::taxonomy

aggregation: Composite
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-45

12
rootCategory

12.3.30 ClassificationAttributeUsage

As a subclass of AttributeUsage, ClassificationAttributeUsage provides additional
specification for categorical attributes only, in particular, a set of the positive attributes.

Superclasses

AttributeUsage

Contained Elements

PriorProbabilities

References

positiveCategory

priors

A CategoryTaxonomy can have multiple roots. The root nodes references the corresponding
Category objects.

class: Category

defined by: TaxonomyRefRootCategory

multiplicity: zero or more

inverse: Category::taxonomy

This represents a list of categories to be treated as “positive” values for model building or
usage.

class: Category

defined by: ClassificationAttrUsageRefCategory

multiplicity: one or more

inverse: Category::usage

This represents the prior probabilities for the target values.

class: PriorProbabilities

defined by: ClassificationAttrUsageHasPriors

multiplicity: zero or one

inverse: PriorProbabilities::usage

aggregation: Composite
12-46 Common Warehouse Metamodel, v1.1 March 2003

12
12.3.31 ClassificationFunctionSettings

A ClassificationFunctionSettings object is a subclass of SupervisedFunctionSettings
that supports features unique to the classification mining function and corresponding
algorithms, specifically CostMatrix. The CostMatrix must be associated with the target
LogicalAttribute.

Superclasses

SupervisedFunctionSettings

References

costMatrix

12.3.32 ClassificationTestResult

This represents the result of a test task applied to a classification model.

Superclasses

MiningTestResult

Attributes

accuracy

The optional CostMatrix attribute specifies a two-dimensional, NxN matrix that defines the
cost associated with a prediction versus the actual value. A cost matrix is typically used in
classification models, where N is the number of classes in the target, and the columns and
rows are labeled with class values.

class: CategoryMatrix

defined by: ClassificationSettingsRefCostMatrix

multiplicity: zero or one

inverse: CategoryMatrix::settings

This represents the absolute number or the percentage (between 0 and 100) of correct
predictions on the test data applied to a classification model.

type: double

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-47

12
References

confusionMatrix

12.3.33 ClassificationTestTask

This represents a task to check the quality of a classification model. An overall
accuracy and a ’class by class’ confusion matrix can be computed.

Superclasses

MiningTestTask

Contained Elements

ClassificationTestResult

References

testResult

12.3.34 ClusteringAttributeUsage

A ClusteringAttributeUsage is a subclass of AttributeUsage to support attribute usages
that are specific to clustering algorithms.

This references to a matrix holding the absolute numbers of wrong predictions. A cell entry
c(A,B)=n indicates that n test records had class label A in the target field, but class B was
predicted by the model.

class: CategoryMatrix

defined by: TestResultRefConfusionMatrix

multiplicity: zero or one

inverse: CategoryMatrix::testResult

This references to a matrix holding the absolute numbers of wrong predictions. A cell entry
c(A,B)=n indicates that n test records had class label A in the target field, but class B was
predicted by the model.

class: ClassificationTestResult

defined by: TaskHasClassificationTestResult

multiplicity: exactly one

inverse: ClassificationTestResult::testTask

aggregation: Composite
12-48 Common Warehouse Metamodel, v1.1 March 2003

12
Superclasses

AttributeUsage

Attributes

attributeComparisonFunction

similarityScale

References

comparisonMatrix

12.3.35 ClusteringFunctionSettings

A ClusteringFunctionSettings object is a subclass of MiningFunctionSettings that
supports features unique to clustering algorithms, such as self-organizing map and k-
means.

Superclasses

MiningFunctionSettings

When two records are compared then either the distance of similarity is of interest. In both
cases, the measures can be computed by a combination of ’inner’ function and an ’outer’
function. The inner function compares two single field values and the outer function computes
an aggregation over all fields.

type: AttributeComparisonFunction (absDiff | gaussSim | delta |
equal | table)

multiplicity: exactly one

If the attributeComparisonFunction admits a value, then similarityScale is that value. Only
valid for numerical attributes. Null otherwise.

type: Double

multiplicity: exactly one

The ComparisonMatrix attribute specifies a matrix used by a clustering algorithm. There are
several kinds of matrices used within clustering models; for example, to describe covariances
and similarities.

class: CategoryMatrix

defined by: ClusteringAttrUsageRefComparisonMatrix

multiplicity: zero or one

inverse: CategoryMatrix::attributeUsage
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-49

12
Attributes

maxNumberOfClusters

minClusterSize

aggregationFunction

12.3.36 DirectAttributeAssignment

This object maps a pair of attributes from two different sources, for example, a table
column and a LogicalAttribute, which is an internal representation of the column to be
used in a mining operation.

Superclasses

AttributeAssignment

References

attribute

This attribute specifies the maximum number of clusters the clustering algorithm should
generate.

type: Integer

multiplicity: exactly one

This attribute specifies the minimum number of records (cases) that must be present in a
cluster to establish a cluster. The default value is 1.

type: Integer

multiplicity: exactly one

This specifies the type of the aggregation function.

type: AggregationFunction (euclidian | squaredEuclidian | chebychev |
cityBlock | minkovski | simpleMatching | jaccard | tanimoto |
binarySimilarity)

multiplicity: exactly one

This points to a physical attribute being assigned to a logical attribute.

class: Attribute

defined by: DirectAssignmentRefAttribute

multiplicity: exactly one

inverse: Attribute::directAttrAssignment
12-50 Common Warehouse Metamodel, v1.1 March 2003

12
12.3.37 FrequentItemSetFunctionSettings

This is a subclass of MiningFunctionSettings that specifies the parameters specific to
frequent itemset algorithms.

Superclasses

MiningFunctionSettings

Attributes

minimumSupport

maximumSetSize

References

exclusion

12.3.38 LiftAnalysis

This represents the result of lift computation applied to a supervised model.

Superclasses

ModelElement

Contained Elements

LiftAnalysisPoint

This specifies the minimum support of each frequent itemset to be found.

type: Double

multiplicity: exactly one

This specifies the maximum number of items to be included in any frequent itemset to be
found.

type: Integer

multiplicity: exactly one

This represents a set of items to be excluded from consideration during the execution of
frequent itemset algorithm.

class: Category

defined by: SettingsRefExcludedCategories

multiplicity: zero or more

inverse: Category::settings
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-51

12
Attributes

targetAttributeName

References

point

positiveTargetCategory

12.3.39 LiftAnalysisPoint

This represents the lift result for a quantile of the input data specified in this object.

Superclasses

ModelElement

This represents the name of the target attribute.

type: String

multiplicity: exactly one

This represents a set of quantiles for which the lift values are computed.

class: LiftAnalysisPoint

defined by: ListHasAnalysisPoint

multiplicity: one or more

inverse: LiftAnalysisPoint::liftAnalysis

aggregation: composite

This represents a set of positive target values for which this lift result is computed.

class: Category

defined by: LiftRefPositiveTargetCategory

multiplicity: one or more

inverse: Category::liftAnaysis
12-52 Common Warehouse Metamodel, v1.1 March 2003

12
Attributes

subsetOfRecords

aggregateTarget

12.3.40 LogicalAttribute

A LogicalAttribute object is a logical concept that describes a domain of data to be
used as input to data mining operations. Logical mining attributes are typically either
categorical, ordinal, or numerical. As such, a mining attribute references additional
metadata that characterizes the attribute as either catagorical (e.g., a list of the
categories) or numerical (e.g., the bounds of the data).

Superclasses

MiningAttribute

Contained Elements

CategoricalAttributeProperties

NumericalAttributeProperties

Attributes

isSetValued

The number of records for which this lift (sum of target predictions or actual target values) is
specifying.

type: Integer

multiplicity: exactly one

The lift (i.e., the sum of actual positive targets for classification or the sum of the actual
values for approximation) for the specified subset of records.

type: double

multiplicity: exactly one

This indicates that the values of the attribute being specified here are sets, if true. The default
is “false.”

type: boolean

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-53

12
References

categoricalProperties

numericalProperties

12.3.41 LogicalData

A LogicalData object contains the set of LogicalAttributes that describe the logical
nature of the data used as input to data mining. The LogicalAttributes within a
LogicalData object are uniquely named.

Superclasses

Class

Contained Elements

LogicalAttribute

12.3.42 MiningAlgorithmSettings Abstract

A mining algorithm settings object captures the parameters associated with a particular
algorithm. It allows a knowledgeable user to fine tune algorithm parameters. Generally,
not all parameters must be specified, however, those specified are taken into account by
the underlying data mining system.

The optional categoricalProperties attribute provides details for categorical values of a
LogicalAttribute.

class: CategoricalAttributeProperties

defined by: LogicalAttrHasCategoricalProperties

multiplicity: zero or one

inverse: CategoricalAttributeProperties::logicalAttribute

aggregation: Composite

The optional numericalProperties attribute provides details for numerical values of a
LogicalAttribute.

class: NumericalAttributeProperties

defined by: LogicalAttrHasNumericalProperties

multiplicity: zero or one

inverse: NumericalAttributeProperties::logicalAttribute

aggregation: Composite
12-54 Common Warehouse Metamodel, v1.1 March 2003

12
Separating mining algorithm from mining function provides a natural and convenient
separation for those users experienced with data mining algorithms and those only
familiar with mining functions.

Superclasses

ModelElement

Attributes

None

References

None

12.3.43 MiningApplyOutput

This describes the output Specification for a MiningApplyTask.

It contains a set of attributes (represented as ApplyOutputItem objects) holding the
output information. These attributes can hold the score or other computed information,
or else be copied from input columns for reference.

Superclasses

MiningTask

Attributes

None

References

item

This represents a set of ApplyContentItem objects contained in this specification of apply
output.

type: ApplyOutputItem

defined by: ApplyOutputHasContentItems

multiplicity: one or more; ordered

inverse: ApplyOutputItem::applyOutput

aggregation: composite
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-55

12
12.3.44 MiningApplyTask

This describes a task that computes the result of an application of a data mining model
to (new) data.

Superclasses

MiningTask

Attributes

outputOption

References

applyOutput

outputAssignment

12.3.45 MiningAttribute Abstract

This is an abstract class that describes the generic attribute to be used in mining
operations

Superclasses

Attribute

This specifies how the apply output is created. The default is “createNew,” which means the
output is created as a new file/table.

type: ApplyOutputOption (appendToExisting | createNew)

multiplicity: exactly one

This contains the specification of the apply output as the result of MiningApplyTask.

class: MiningApplyOutput

defined by: ApplyTaskRefOutputSpec

multiplicity: exactly one

inverse: MiningApplyTask::applyTask

This maps the apply output items to the destination attributes.

class: AttributeAssignmentSet

defined by: ApplyTaskRefOutputAssignment

multiplicity: exactly one

inverse: AttributeAssignmentSet::applyTask
12-56 Common Warehouse Metamodel, v1.1 March 2003

12
Attributes

displayName

attributeType

12.3.46 MiningBuildTask

This describes a task that builds a mining model, sometimes also called training task.

Superclasses

MiningTask

Attributes

None

References

miningSettings

The optional displayName of an attribute indicates a name that an application may use as a
substitute for the actual MiningAttribute name, which may be cryptic.

type: String

multiplicity: exactly one

The attribute type indicates if the attribute is categorical, ordinal, numerical, or not specified.
If either categoricalProperties or numericalProperties are specified, a constraint exists to
ensure the attributeType value is consistent with these attributes. This attribute allows a
MiningAttribute to be identified with a particular type even if no additional properties are
specified. If ordinal, then the OrdinalAttributeProperties must be specified to indicate the
ordering of the categories.

type: AttributeType (categorical | numerical | ordinal | notSpecified)

multiplicity: exactly one

This specifies the logical data specification and specific parameters for the mining task.

class: MiningFunctionSettings

defined by: BuildTaskRefSettings

multiplicity: exactly one

inverse: MiningFunctionSettings::buildTask
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-57

12
resultModel

settingsAssignment

settingsValidationAssignment

validationData

12.3.47 MiningFunctionSettings Abstract

A MiningFunctionSettings object captures the high level specification input for
building a data mining model. The intent of mining function settings is to allow a user
to specify the type of the desired result without having to specify a particular
algorithm.

Although mining function settings allow for the specification of algorithm, if this is
omitted, the underlying data mining system is responsible for selecting the algorithm
based on basic user-provided parameters.

This is a description (metadata) of the mining model generated by the task.

class: MiningModel

defined by: BuildTaskProducesModel

multiplicity: zero or one

inverse: MiningModel::buildTask

This maps the source attributes to the mining attributes contained in the settings.

class: AttributeAssignmentSet

defined by: BuildTaskRefInputSettings

multiplicity: zero or one

inverse: AttributeAssignmentSet::buildTask

This maps the source attributes of the validation data to the mining attributes contained in the
settings.

class: AttributeAssignmentSet

defined by: BuildTaskRefValidationAssignment

multiplicity: zero or one

inverse: AttributeAssignmentSet::buildTask

This specifies an optional data set to be used for validation when the model is built.

class: PhysicalData

defined by: BuildTaskRefValidationData

multiplicity: zero or one

inverse: PhysicalData::buildTask
12-58 Common Warehouse Metamodel, v1.1 March 2003

12
Subclasses throw exceptions if invalid algorithm-function pairs are supplied.

Superclasses

ModelElement

Contained Elements

AttributeUsageSet

Attributes

desiredExecutionTimeInMinutes

References

algorithmSettings

attributeUsageSet

This attribute indicates the maximum execution time (in minutes) allowed for model building.
If NULL, the algorithm determines for how long the model will build. This is to serve as a
hint to the algorithm to adjust model building to meet time constraint. Vendor
implementations map support this to varying degrees, e.g., terminate model build if exceeds
this limit, intelligently adjust algorithm parameters to meet this constaints, or dynamically
distribute or parallelize the operation.

type: Integer

multiplicity: exactly one

The optional algorithm settings attribute provides information on the algorithm to be used as
well as specific values for the parameters used by the algorithm.

class: MiningAlgorithmSettings

defined by: SettingsRefAlgorithmSettings

multiplicity: zero or one

inverse: MiningAlgorithmSettings::settings

This specifies how each attribute as input should be treated by the algorithm. The
LogicalAttribute referenced by AttributeUsage objects must be those in the LogicalData
objects used in the same settings.

class: AttributeUsageSet

defined by: SettingsHasAttributeUsageSet

multiplicity: zero or one

inverse: AttributeUsageSet::settings
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-59

12
logicalData

12.3.48 MiningModel

A MiningModel holds the metadata of the result of a mining (training) task. This
information is sufficient to determine whether a model can be applied to a given data.

Superclasses

ModelElement

Contained Elements

ModelSignature

Attributes

function

algorithmName

This reference indicates the logical nature of the data to be used for model building with the
function. The information provided by this attribute can be used to validate that the algorithm
is correct for the function.

class: LogicalData

defined by: SettingsRefLogicalData

multiplicity: exactly one

inverse: LogicalData::settings

Data mining function (as opposed to algorithm); for example, classification or clustering,
attributeImportance, associationRules, classification, approximation, clustering

type: MiningFunction (attributeImportance | associationRules |
classification | approximation | clustering)

multiplicity: exactly one

Specific implementation of the data mining function (e.g., CART decision tree or SOM
clustering). The following algorithm names are predefined (their functions in parentheses):
• decisionTree (classification, approximation)
• neuralNetwork (classification, approximation)
• naiveBayes (classification)
• selfOrganizingMap (clustering)
• kMeans (clustering)
• competitiveLearning

type: String

multiplicity: exactly one
12-60 Common Warehouse Metamodel, v1.1 March 2003

12
keyValue

References

settings

modelSignature

modelLocation

keyAttribute

This optionally represents the key value when the model is to be located.

type: Any

multiplicity: exactly one

The settings that were used to generate the model.

class: MiningFunctionSettings

defined by: ModelRefSettings

multiplicity: zero or one

inverse: MiningFunctionSettings::model

The set of attributes (SignatureAttributes) that were used to build the model.

class: ModelSignature

defined by: ModelHasSignature

multiplicity: zero or one

inverse: ModelSignature::model

aggregation: composite

This optionally provides a way to locate the model in the metadata repository.

class: Class

defined by: MiningModelRefLocation

multiplicity: exactly one

inverse: Class::model

This optionally identifies the key attribute when the model is located via modelLocation.

class: Attribute

defined by: ModelRefKeyAttribute

multiplicity: exactly one

inverse: Attribute::model
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-61

12
12.3.49 MiningResult

A MiningResult holds the metadata of the result of a mining run other than training
that results in a model.

It includes apply, test, and compute lift operations.

Superclasses

ModelElement

Attributes

None

12.3.50 MiningTask Abstract

This is an abstract class that describes an executable data mining task operating on
data.

Superclasses

ModelElement

Attributes

None

References

inputModel

A description (metadata) of the mining model used (not generated) by the task. For example,
this model could be refined by the task. The usage of this model is defined by the task using
it.

class: MiningModel

defined by: TaskRefInputModel

multiplicity: zero or one

inverse: MiningModel::miningTask
12-62 Common Warehouse Metamodel, v1.1 March 2003

12
inputData

modelAssignment

12.3.51 MiningTestResult

This represents the result of a test task applied to a supervised model.

Superclasses

MiningResult

Contained Elements

MiningLiftResult

Attributes

numberOfTestRecords

A description (metadata) of the physical data used as input for the task.

class: PhysicalData

defined by: TaskRefPhysicalData

multiplicity: exactly one

inverse: PhysicalData::miningTask

A mapping between the attributes of the inputData and those of the inputModel.

class: AttributeAssignmentSet

defined by: TaskRefAttRAssignmentSet

multiplicity: zero or one

inverse: AttributeAssignmentSet::miningTask

This represents the number of records applied to the test task.

type: int

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-63

12
References

liftAnalysis

12.3.52 MiningTestTask

This represents a mining task that is used to check some aspect of the quality of a
classification or approximation model.

Superclasses

MiningTask

Attributes

computeLift

References

positiveTargetCategory

12.3.53 MiningTransformation

This defines a mining task as a form of transformation.

This represents the lift result if the test task is specified to perform lift computation as part of
the task.

class: LiftAnalysis

derived from: TestHasLiftAnalysis

multiplicity: zero or more

inverse: LiftAnalysis::testResult

aggregation: composite

This indicates to perform lift computation as part of test task, if true. The default is false.

type: boolean

multiplicity: exactly one

Positive category for which the lift computation is performed. Not applicable for
approximation model lift computation.

class: Category

defined by: TestTaskHasPositiveTarget

multiplicity: one or more

inverse: Category::testTask
12-64 Common Warehouse Metamodel, v1.1 March 2003

12
Superclasses

Transformation

Attributes

None

References

procedure

12.3.54 ModelSignature

The model signature is a description of the input that captures the signature of the
input mining data and can be used to apply a data mining model.

Superclasses

Class

Contained Elements

SignatureAttribute

Attributes

None

References

None

12.3.55 NumericalAttributeProperties

A NumericalAttributeProperties object is used to describe properties of the numerical
attribute.

This metadata may or may not be used by the underlying algorithm. It may be
leveraged to determine if data being supplied as input to a mining operation is
sufficiently similar to the data used to build the model.

This represents the mining task to be performed as a form of transformation.

class: MiningTask

defined by: TransformationRefMiningTask

multiplicity: exactly one

inverse: MiningTask::transformation
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-65

12
Superclasses

ModelElement

Attributes

lowerBound

upperBound

isDiscrete

isCyclic

anchor

cycleBegin

This indicates the lower bound (the smallest) of the values in the attribute.

type: double

multiplicity: exactly one

This indicates the upper bound (the largest) of the values in the attribute.

type: double

multiplicity: exactly one

This indicates whether the values are discrete. The default is “false.”

type: boolean

multiplicity: exactly one

This indicates whether the values of the attributes are cyclic (i.e., the next value of the ending
value is the starting value). The default is “false.”

type: boolean

multiplicity: exactly one

This specifies the value of the anchor.

type: double

multiplicity: exactly one

This specifies the starting value of the cycle.

type: double

multiplicity: exactly one
12-66 Common Warehouse Metamodel, v1.1 March 2003

12
cycleEnd

discreteStepSize

12.3.56 OrdinalAttributeProperties

An OrdinalAttributeProperties object is used to describe properties of the ordinal
attribute. Ordinal attributes can use the “ordered” constraint on the MiningCategory
class to use the “asIs” OrderType. The “asIs” allows the list ordering to imply a “less
than” relationship between categories N and N+1. In addition, ordinals may be cyclic
(e.g., days of the week).

Superclasses

CategoricalAttributeProperties

Attributes

orderType

isCyclic

This specifies the ending value of the cycle.

type: double

multiplicity: exactly one

This specifies the interval value between two adjacent discrete values when the attribute is
discrete.

type: double

multiplicity: exactly one

This indicates how the sequences of categories should be interpreted as ordinal (potentially
mapped to integers).

type: OrderType (asIs | alphabetic | numeric | date)

multiplicity: exactly one

This indicates whether the values of the attributes are cyclic (i.e., the next value of the ending
value is the starting value). The default is “false.”

type: boolean

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-67

12
12.3.57 PhysicalData

A PhysicalData object specifies the layout of the physical data to be used for mining,
and if appropriate, the roles the various data columns play, via subclassing. The data
referenced by a physical data object can be used in many capacities: model building,
scoring, lift computation, statistical analysis, etc.

PhysicalData supports specification of any data definable through a Class or set of
Attributes (e.g., files, tables, and star schema).

Superclasses

ModelElement

Attributes

None

References

source

12.3.58 PivotAttributeAssignment

This object provides a mapping where the input data is in transactional format. Each of
the logical attributes occurring in a pivoted table is mapped to three physical columns,
presumably the same ones every time. If the data types don't match, the value column
may be different in that case.

Superclasses

AttributeAssignment

Attributes

None

The source attribute identifies the specific data to be used for data mining. It typically consists
of a Table (from the Relational Package) or a File. Unless a specific subset of attributes is
listed, all source attributes are taken as the usable physical data. If source is NULL, the
attributes may be associated with one or more Class instances.

class: Class

defined by: PhysicalDataRefSource

multiplicity: exactly one

inverse: Class::physicallData
12-68 Common Warehouse Metamodel, v1.1 March 2003

12
References

setIdAttribute

nameAttribute

valueAttribute

12.3.59 PriorProbabilities

This represents a set of prior probabilities of the categories in a mining attribute.
Mostly applies to a target LogicalAttribute used for classification.

The sum of the probabilities in all priorsEntries must not exceed 1.

Superclasses

ModelElement

Contained Elements

PriorProbabilitiesEntry

Attributes

None

This is a source attribute to be used to identify input records.

class: Attribute

defined by: PivotRefSetIdAttribute

multiplicity: exactly one

inverse: Attribute::pivotAttrAssignment

This is a source attribute that contains the names of the items in the input data.

class: Attribute

defined by: PivotRefNameAttribute

multiplicity: exactly one

inverse: Attribute::pivotAttrAssignment

This is a source attribute that contains the values of the items specified in the name attribute.

class: Attribute

defined by: PivotRefValueAttribute

multiplicity: exactly one

inverse: Attribute::pivotAttrAssignment
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-69

12
References

prior

12.3.60 PriorProbabilitiesEntry

This represents the probability of a category in the original data (i.e., before
performing biases sampling to enrich individual values).

Superclasses

ModelElement

Attributes

priorProbability

References

targetValue

12.3.61 ReversePivotAttributeAssignment

This object is used when the input data is in tabular (2-D) form. The sets are
represented by enumerating their elements based on the selection functions. For
example, if the attribute selection function is “isOne” and the value selection function
is “attribute,” then we get:

This represents a set of priors for the target values.

class: PriorProbabilitiesEntry

defined by: PriorProbabilitiesHasPriorsEntry

multiplicity: zero or more

inverse: PriorProbabilitiesEntry::priors

aggregation: composite

This represents the probability of the targetValue in the original data.

type: double

multiplicity: exactly one

This indicates a target value as a category, for which the probability is provided.

type: Category

defined by: PriorRefCategory

multiplicity: exactly one

inverse: Category::priorsEntry
12-70 Common Warehouse Metamodel, v1.1 March 2003

12
A B C D E F
1 0 0 1 0 0 = {A, D}
0 0 0 0 0 1 = {F}
0 0 0 0 0 0 = {}

Each of the input attributes (A, B, C, D, E, and F) is a selector attribute in this object.
It works best for a small number of members known a priori. In some cases, when the
potential number of values is large, but it is also known that the set sizes are all small,
e.g., less than 6, then we get the following:

A B C D F
X Y NULL NULL NULL = {X, Y}
Z NULL NULL NULL NULL = {Z}
NULL NULL NULL NULL NULL = {}

In the example above, the attribute selection function is "IsNotNull" and the value
selection function is "value".

Constraint: The logicalAttribute must be set valued.

Superclasses

AttributeAssignment

Attributes

attributeSelectionFunction

valueSelectionFunction

This describes how the selector attributes are selected based on their values.

type: AttributeSelectionFunction (isNotNull | isNull | isOne | isZero
| isTrue | isFalse)

multiplicity: exactly one

This describes whether the value or the name of a selector attribute to appear in the
destination logical attribute when the selector attribute satisfies the specified
AttributeSelectionFunction.

type: ValueSelectionFunction (value | attribute)

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-71

12
References

selectorAttribute

12.3.62 Schema

The Schema is a container for all data mining top-level objects.

Superclasses

Package

Contained Elements

LogicalData
CategoryMatrix
AuxiliaryObject
CategoryTaxonomy
MiningFunctionSettings
MiningModel
MiningTask
MiningResult

Attributes

None

References

logicalData

This represents a non-empty set of attributes to be selected in the destination logical attribute
based on the selection functions.

class: Attribute

defined by: ReversePivotRefAttribue

multiplicity: one or more

inverse: Attribute::reversePivotAttrAssignment

This represents a set of LogicalData objects contained in the schema.

class: LogicalData

defined by: SchemaHasLogicalData

multiplicity: zero or more

inverse: LogicalData::schema

aggregation: composite
12-72 Common Warehouse Metamodel, v1.1 March 2003

12
categoryMatrix

auxObject

taxonomy

miningFunctionSettings

This represents a set of CategoryMatrix objects contained in the schema.

class: CategoryMatrix

defined by: SchemaHasCategoryMatrix

multiplicity: zero or more

inverse: CategoryMatrix::schema

aggregation: composite

This represents a set of AuxiliaryObject objects contained in the schema.

class: AuxiliaryObject

defined by: SchemaHasAuxObjects

multiplicity: zero or more

inverse: AuxiliaryObject::schema

aggregation: composite

This represents a set of CategoryTaxonomy objects contained in the schema.

class: CategoryTaxonomy

defined by: SchemaHasCategoryTaxonomy

multiplicity: zero or more

inverse: CategoryTaxonomy::schema

aggregation: composite

This represents a set of MiningFunctionSettings objects contained in the schema.

class: MiningFunctionSettings

defined by: SchemaHasFunctionSettings

multiplicity: zero or more

inverse: MiningFunctionSettings::schema

aggregation: composite
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-73

12
miningModel

task

result

12.3.63 SequenceFunctionSettings

A SequenceFunctionSettings is a subclass of FrequentItemSetFunctionSettings that
supports features that are unique to sequence algorithms.

Superclasses

FrequentItemSetFunctionSettings

This represents a set of MiningModel objects contained in the schema.

class: MiningModel

defined by: SchemaHasMiningModel

multiplicity: zero or more

inverse: MiningModel::schema

aggregation: composite

This represents a set of MiningTask objects contained in the schema.

class: MiningTask

defined by: SchemaHasMiningTask

multiplicity: zero or more

inverse: MiningTask::schema

aggregation: composite

This represents a set of MiningResult objects contained in the schema.

class: MiningResult

defined by: SchemaHasMiningResult

multiplicity: zero or more

inverse: MiningResult::schema

aggregation: composite
12-74 Common Warehouse Metamodel, v1.1 March 2003

12
Attributes

windowSize

12.3.64 SetAttributeAssignment

Constraint: The logicalAttribute must be set valued.

This object provides a mapping between a set-valued logical attribute and a set of
attributes in the physical data. setIdAttribute is the set identifier of the set being
mapped, and memberAttribute represents a set of attributes being mapped to the set-
valued logical attribute.

Superclasses

AttributeAssignment

Attributes

None

References

setIdAttribute

memberAttribute

This specifies the size of the window to be considered when executing sequence algorithm in
terms of the number of items.

type: Integer

multiplicity: exactly one

This is a source attribute to be used to identify input records.

class: Attribute

defined by: SetAssignmentRefSetIdAttr

multiplicity: exactly one

inverse: Attribute::setAttrAssignment

This specifies the member attribute for the set being described.

class: Attribute

defined by: SetAssignmentRefMemberAttr

multiplicity: exactly one

inverse: Attribute::setAttrAssignment
March 2003 OMG-CWM, v1.1: Data Mining Classes 12-75

12
12.3.65 SignatureAttribute

A SignatureAttribute object describes the input expected to a model. This is
automatically produced as part of the model. It indicates not only the basic Attribute
properties, but also how outliers and missing values were handled for model build. This
is potentially duplicate information from the MiningFunctionSettings, but must be
provided since MiningFunctionSettings are optional.

If an attribute was normalized or discretized automatically by the Data Mining System,
the specific details are provided in the SignatureAttribute object. The user is not
expected to use this information to preprocess the data in any way. The Data Mining
System uses this information to automatically preprocess data, if required.

Superclasses

MiningAttribute

Attributes

usageOption

12.3.66 SupervisedFunctionSettings

A SupervisedFunctionSettings is a subclass of MiningFunctionSettings that supports
features that are unique and shared by supervised functions (e.g., classification and
approximation, as well as algorithms (e.g., decision trees and neural networks).

Superclasses

MiningFunctionSettings

Attributes

None.

12.4Data Mining Associations

12.4.1 ApplyOutputHasContentItems

MiningApplyOutput owns one or more ApplyOutputItems for the specification of
output.

The usage intended for this attribute. A model signature consists only of “active” and
“supplemental” attributes. “Inactive” attributes are filtered out as they do not contribute to the
model. Note that “supplemental” attributes do not contribute to model apply.

type: UsageOption (active | supplementary | target)

multiplicity: exactly one
12-76 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

applyOutput

item

12.4.2 ApplyTaskRefOutputAssignment

A MiningApplyTask references AttributeAssignmentSet that maps between
MiningApplyOutput and output attributes.

Ends

applyTask

outputAssignment

12.4.3 ApplyTaskRefOutputSpec

A MiningApplyTask references the specification of the output to be generated as the
result of the task.

MiningApplyOutput owning a non-empty set of ApplyOutputItem objects.

class: MiningApplyOutput

multiplicity: exactly one

ApplyOutputItem owned by an instance of MiningApplyOutput.

class: ApplyOutputItem

multiplicity: one or more; ordered

The MiningApplyTask references AttributeAssignmentSet for apply output specification.

class: MiningApplyTask

multiplicity: exactly one

An AttributeAssignmentSet is contained by MiningApplyTask.

class: AttributeAssignmentSet

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-77

12
Ends

applyTask

applyOutput

12.4.4 ApproximationTestTaskHasResult

An ApproximationTestTask contains ApproximationTestResult.

Ends

testTask

testResult

12.4.5 AssignmentRefLogicalAttribute

An AttributeAssignment references a LogicalAttribute that is to be mapped to a set of
attributes in physical data.

MiningApplyTask referencing MiningApplyOutput for specification of output.

class: MiningApplyTask

multiplicity: zero or more

MiningApplyOutput referenced by MiningApplyTasks.

class: MiningApplyOutput

multiplicity: exactly one

The ApproximationTestTask contains a set of ApproximationTestResult.

class: ApproximationTestTask

multiplicity: exactly one

aggregation: composite

An ApproximationTestResult is contained by ApproximationTestTask.

class: ApproximationTestResult

multiplicity: exactly one
12-78 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

attrAssignment

logicalAttribute

12.4.6 AssignmentRefOrderIdAttribute

An AttributeAssignment references a set of Attribute objects that are used to identify
certain sequences.

Ends

attrAssignment

orderIdAttribute

12.4.7 AssignmentSetHasAssignment

An AttributeAssignmentSet contains a set of AttributeAssignment.

The AttributeAssignment references a LogicalAttribute to be mapped.

class: AttributeAssignment

multiplicity: zero or more

A LogicalAttribute represents is mapped to physical attributes.

class: LogicalAttribute

multiplicity: one or more

The AttributeAssignment reference a set of Attribute for order identifier.

class: AttributeAssignment

multiplicity: zero or more

A set of Attribute represents an order identifier for AttributeAssignment.

class: Attribute

multiplicity: zero or more; ordered
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-79

12
Ends

set

assignment

12.4.8 AuxObjectHasAttrAssignmentSet

An AuxiliaryObject contains a set of AttributeAssignmentSet.

Ends

auxiliaryObject

attributeAssignmentSet

12.4.9 BuildTaskProducesModel

A MiningBuildTask produces a MiningModel.

The AttributeAssignmentSet contains a set of AttributeAssignment.

class: AttributeAssignmentSet

multiplicity: exactly one

aggregation: composite

A set of AttributeAssignment is contained by AttributeAssignmentSet.

class: Attribute

multiplicity: one or more

The AuxiliaryObject contains a set of AttributeAssignmentSet.

class: AuxiliaryObject

multiplicity: exactly one

aggregation: composite

A set of AttributeAssignmentSet is contained in AuxiliaryObject.

class: AttributeAssignmentSet

multiplicity: zero or more
12-80 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

buildTask

resultModel

12.4.10 BuildTaskRefInputAssignment

A MiningBuildTask references a AttributeAssignmentSet that maps the input data to
the logical attributes defined in the input mining function settings.

Ends

buildTask

settingsAssignment

12.4.11 BuildTaskRefSettings

A MiningBuildTask references a MiningFunctionSettings to build a MiningModel.

The MiningBuildTask references MiningModel as the result of operation.

class: MiningBuildTask

multiplicity: zero or more

A MiningModel is referenced by MiningBuildTask.

class: AttributeAssignmentSet

multiplicity: zero or one

The MiningBuildTask references AttributeAssignmentSet that maps the input data to the
logical attributes.

class: MiningBuildTask

multiplicity: zero or one

A AttributeAssignmentSet is referenced by MiningBuildTask for the input mapping.

class: AttributeAssignmentSet

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-81

12
Ends

buildTask

miningSettings

12.4.12 BuildTaskRefValidationAssignment

A MiningBuildTask references an AttributeAssignmentSet that maps the validation
data to the logical attributes defined in the input mining function settings.

Ends

buildTask

validationAssignment

12.4.13 BuildTaskRefValidationData

A MiningBuildTask references a PhysicalData to validate the MiningModel built as the
result of build task.

The MiningBuildTask references MiningFunctionSettings to build a MiningModel.

class: MiningBuildTask

multiplicity: zero or one

A MiningFunctionSettings is referenced by MiningBuildTask.

class: MiningFunctionSettings

multiplicity: exactly one

The MiningBuildTask references AttributeAssignmentSet that maps the validation data to the
logical attributes.

class: MiningBuildTask

multiplicity: zero or one

An AttributeAssignmentSet is referenced by MiningBuildTask for mapping of the validation
data.

class: AttributeAssignmentSet

multiplicity: zero or one
12-82 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

buildTask

validationData

12.4.14 CatalogHasSchema

A Catalog may own a set of Schemas.

Ends

catalog

schema

12.4.15 CategoricalPropertiesHasCategories

A CategoricalAttributeProperties may own a set of Category objects as the values in
the attributes.

The MiningBuildTask references PhysicalData to validate a built MiningModel.

class: MiningBuildTask

multiplicity: zero or more

A PhysicalData is referenced by MiningBuildTask.

class: PhysicalData

multiplicity: zero or one

The Catalog owning Schemas.

class: Catalog

multiplicity: exactly one

aggregation: composite

Schemas owned by a Catalog.

class: Schema

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-83

12
Ends

categoricalProperties

category

12.4.16 CategoricalPropertiesRefTaxonomy

A CategorixalAttributeProperties references CategoryTaxonomy that represents the
internal hierarchy of the data being specified.

Ends

categoricalProperties

taxonomy

12.4.17 CategoryMapObjectHasEntry

A CategoryMapObject may have a set of CategoryMapObjectEnty objects.

CategoricalAttributeProperties owning Categories for the values in the attribute foe which the
properties specify.

class: CategoricalAttributeProperties

multiplicity: exactly one

aggregation: composite

Category owned by CategoricalAttributeProperties as a value in the attributes being specified
by it.

class: Category

multiplicity: zero or more; ordered

The CategorixalAttributeProperties references CategoryTaxonomy for internal hierarchy of the
data.

class: CategorixalAttributeProperties

multiplicity: zero or one

A CategoryTaxonomy represents an internal hierarchy of a data.

class: CategoryTaxonomy

multiplicity: zero or one
12-84 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

mapObject

entry

12.4.18 CategoryMapRefClass

A CategoryMapTable references Class where it is persisted.

Ends

mapTable

table

12.4.19 ClassificationAttrUsageHasPriors

A ClassificationAttributeUsage may reference a PriorProbabilities for prior values.

The CategoryMapObject owning CategoryMapObjectEntry objects.

class: CategoryMapObject

multiplicity: exactly one

aggregation: composite

CategoryMapObjectEntry owned by a CategoryMapObject.

class: CategoryMapObjectEntry

multiplicity: zero or more

The CategoryMapTable references a Class for its persistence.

class: CategoryMapTable

multiplicity: zero or more

The Class represents a CategoryMatrixTable.

class: Class

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-85

12
Ends

usage

priors

12.4.20 ClassificationAttrUsageRefCategory

A ClassificationAttributeUsage references a non-empty set of Category objects to be
treated as positive values.

Ends

usage

positiveCategory

12.4.21 ClassificationSettingsRefCostMatrix

A ClassificationFunctionSettings references CategoryMatrix that represents the cost
matrix of the classifier model to be built.

The ClassificationAttributeUsage references a PriorProbabilities that contains priors.

class: ClassificationAttributeUsage

multiplicity: exactly one

aggregation: composite

A PriorProbabilities is referenced by ClassificationAttributeUsage for priors.

class: PriorProbabilities

multiplicity: zero or one

The ClassificationAttributeUsage references a non-empty set of Category objects that
represent positive values for the attribute.

class: ClassificationAttributeUsage

multiplicity: zero or more

A Category is referenced by ClassificationAttributeUsage for a positive value.

class: Category

multiplicity: one or more
12-86 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

attributeUsage

comparisonMatrix

12.4.22 ClassificationTestTaskHasResult

A ClassificationTestTask contains ClassificationTestResult.

Ends

testTask

testResult

12.4.23 ClusteringAttrUsageRefComparisonMatrix

A ClusteringAttributeUsage references CategoryMatrix that is used as comparison
matrix for clustering operation.

The ClassificationFunctionSettings references a CategoryMatrix as cost matrix.

class: ClassificationFunctionSettings

multiplicity: zero or more

A CategoryMatrix is referenced by ClassificationFunctionSettings for cost matrix.

class: CategoryMatrix

multiplicity: zero or one

The ClassificationTestTask contains a set of ClassificationTestResult.

class: ClassificationTestTask

multiplicity: exactly one

aggregation: composite

A ClassificationTestResult is contained by ClassificationTestTask.

class: ClassificationTestResult

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-87

12
Ends

attributeUsage

comparisonMatrix

12.4.24 DirectAssignmentRefAttribute

DirectAttributeAssignment maps an Attribute to a LogicalAttribute.

Ends

directAttributeAssignment

attribute

12.4.25 LiftHasAnalysisPoint

A LiftAnalysis contains a non-empty set of LiftAnalysisPoint.

The ClusteringAttributeUsage references a CategoryMatrix for comparison matrix.

class: ClusteringAttributeUsage

multiplicity: zero or more

A CategoryMatrix is referenced by ClusteringAttributeUsage for comparison matrix.

class: CategoryMatrix

multiplicity: zero or one

The DirectAttributeAssignment objects referencing an Attribute.

class: DirectAttributeAssignment

multiplicity: zero or more

The Attribute mapped by DirectAttributeAssignment objects to a LogicalAttribute.

class: Attribute

multiplicity: exactly one
12-88 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

liftAnalysis

point

12.4.26 LiftRefPositiveTargetCategory

A LiftAnalysis references a non-empty set of Category objects that represent its
positive target values.

Ends

liftAnalysis

positiveTargetCategory

12.4.27 LogicalAttrHasCategoricalProperties

A LogicalAttribute may contain CategoricalAttributeProperties that describes the
attribute as a categorical.

The LiftAnalysis contains a non-empty set of LiftAnalysisPoint.

class: LiftAnalysis

multiplicity: exactly one

aggregation: composite

A LiftAnalysisPoint is contained in LiftAnalysis.

class: LiftAnalysisPoint

multiplicity: one or more

The LiftAnalysis contains a non-empty set of Category for positive target values.

class: LiftAnalysis

multiplicity: zero or more

A Category is referenced by MiningTestResult for its positive target category.

class: Category

multiplicity: one or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-89

12
Ends

logicalAttribute

categoricalProperties

12.4.28 LogicalAttrHasNumericalProperties

A LogicalAttribute may contain NumericalAttributeProperties that describes the
attribute as a numerical.

Ends

logicalAttribute

numericalProperties

12.4.29 MapEntryRefChildCategory

A CategoryMapObjectEntry references a set of Category objects that represent the
children of the category map entry.

The LogicalAttribute owning CategoricalAttributeProperties.

class: LogicalAttribute

multiplicity: exactly one

aggregation: composite

A CategoricalAttributeProperties is referenced by a LogicalAttribute.

class: CategoricalAttributeProperties

multiplicity: zero or one

The LogicalAttribute owning NumericalAttributeProperties.

class: LogicalAttribute

multiplicity: exactly one

aggregation: composite

A NumericalAttributeProperties is referenced by a LogicalAttribute.

class: NumericalAttributeProperties

multiplicity: zero or one
12-90 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

entry

child

12.4.30 MapEntryRefParentCategory

A CategoryMapObjectEntry references Category that represents the parent of the
category map entry.

Ends

entry

parent

12.4.31 MapTableRefChildAttribute

A CategoryMapTable references Attribute for the child column of the table
representation of the CategoryMap.

The CategoryMapObjectEntry references a Category.

class: CategoryMapObjectEntry

multiplicity: zero or more

A Category is referenced by CategoryMapObjectEntry for its child category.

class: Category

multiplicity: one or more

The CategoryMapObjectEntry references a Category.

class: CategoryMapObjectEntry

multiplicity: zero or more

A Category is referenced by CategoryMapObjectEntry for its parent category.

class: Category

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-91

12
Ends

map

childAttribute

12.4.32 MapTableRefGraphIdAttribute

A CategoryMapTable references Attribute for the graph identifier column of the table
representation of the CategoryMap.

Ends

map

graphIdAttribute

12.4.33 MapTableRefParentAttribute

A CategoryMapTable references Attribute for the parent column of the table
representation of the CategoryMap.

The CategoryMapTable references an Attribute.

class: CategoryMapTable

multiplicity: zero or more

An Attribute is referenced by CategoryMapTable for its child column.

class: Attribute

multiplicity: exactly one

The CategoryMapTable references an Attribute.

class: CategoryMapTable

multiplicity: zero or more

An Attribute is referenced by CategoryMapTable for its graph identifier column.

class: Attribute

multiplicity: zero or one
12-92 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

map

parentAttribute

12.4.34 MatrixEntryRefColumnIndex

A CategoryMatrixEntry references a Category as column index of the entry.

Ends

categoryEntry

columnIndex

12.4.35 MatrixEntryRefRowIndex

A CategoryMatrixEntry references a Category as column index of the entry.

Ends

categoryEntry

The CategoryMapTable references an Attribute.

class: CategoryMapTable

multiplicity: zero or more

An Attribute is referenced by CategoryMapTable for its parent column.

class: Attribute

multiplicity: exactly one

The CategoryMatrixEntry references a Category for its column index.

class: CategoryMatrixEntry

multiplicity: zero or more

A Category is referenced by CategoryMatrixEntry as its column index.

class: Category

multiplicity: exactly one

The CategoryMatrixEntry references a Category for its column index.

class: CategoryMatrixObject

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-93

12
rowIndex

12.4.36 MatrixObjectHasEntry

A CategoryMatrixObject references a set of CategoryMatrixEntry objects for its
entries.

Ends

categoryMatrix

entry

12.4.37 MatrixRefIndexLabels

A CategoryMatrix references a set of Category as index labels of the matrix .

Ends

categoryMatrix

category

A Category is referenced by CategoryMatrixEntry as its column index.

class: Category

multiplicity: exactly one

The CategoryMatrixObject references a set of CategoryMatrixEntry.

class: CategoryMatrixObject

multiplicity: exactly one

aggregation: composite

A CategoryMatrixEntry is referenced by CategoryMatrixObject as its entry.

class: CategoryMatrixEntry

multiplicity: zero or more

The CategoryMatrix references a non-empty set of Category for matrix index labels.

class: CategoryMatrix

multiplicity: zero or more

A non-empty set of Category is referenced by CategoryMatrix as its index labels.

class: Category

multiplicity: two or more
12-94 Common Warehouse Metamodel, v1.1 March 2003

12
12.4.38 MatrixTableRefColumnAttr

A CategoryMatrixTable references Attribute for the column attribute of the table
representation of the CategoryMatrix.

Ends

matrixTable

columnAttribute

12.4.39 MatrixTableRefRowAttr

A CategoryMatrixTable references Attribute for the row attribute of the table
representation of the CategoryMatrix.

Ends

matrixTable

rowAttribute

12.4.40 MatrixTableRefSource

A CategoryMatrixTable references a table that is represented as Class and contains the
matrix.

The CategoryMatrixTable references an Attribute for column.

class: CategoryMapTable

multiplicity: zero or more

An Attribute is referenced by CategoryMapTable for its column attribute.

class: Attribute

multiplicity: exactly one

The CategoryMatrixTable references an Attribute for row.

class: CategoryMapTable

multiplicity: zero or more

An Attribute is referenced by CategoryMapTable for its row attribute.

class: Attribute

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-95

12
Ends

matrixTable

source

12.4.41 MatrixTableRefValueAttr

A CategoryMatrixTable references Attribute for the value entry attribute of the table
representation of the CategoryMatrix.

Ends

matrixTable

valueAttribute

12.4.42 ModelHasSignature

A MiningModel contains ModelSignature to preserve the usage of the mining
attributes used for the model.

The CategoryMatrixTable references a Class that contains the table.

class: CategoryMapTable

multiplicity: zero or more

A Class is referenced by CategoryMapTable for its content.

class: Class

multiplicity: exactly one

The CategoryMatrixTable references an Attribute for value entry.

class: CategoryMapTable

multiplicity: zero or more

An Attribute is referenced by CategoryMapTable for its value entry attribute.

class: Attribute

multiplicity: exactly one
12-96 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

model

modelSignature

12.4.43 ModelRefKeyAttribute

MiningModel references an Attribute that is to be used as the key when locating the
model.

Ends

model

keyAttribute

12.4.44 ModelRefLocation

MiningModel references a Class as its location.

The MiningModel contains ModelSignature.

class: MiningModel

multiplicity: exactly one

aggregation: composite

A ModelSignature is contained by MiningModel.

class: ModelSignature

multiplicity: zero or one

The MiningModel has a key attribute.

class: MiningModel

multiplicity: zero or one

An Attribute is used as the key when locating a MiningModel.

class: Attribute

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-97

12
Ends

model

modelLocation

12.4.45 ModelRefSettings

MiningModel may reference a MiningFunctionSettings by which the model was built.

Ends

settings

model

12.4.46 PhysicalDataRefSource

A PhysicalData references a source data of type Class.

Ends

physicalData

The MiningModel references a Class for its location.

class: MiningModel

multiplicity: zero or more

A Class is used to locate a MiningModel.

class: Class

multiplicity: exactly one

The MiningFunctionSettings referenced by MiningModel.

class: MiningFunctionSettings

multiplicity: zero or one

The MiningModels referencing a MiningFunctionSettings object.

class: MiningModel

multiplicity: zero or more

The PhysicalData referencing Class.

class: PhysicalData

multiplicity: zero or more
12-98 Common Warehouse Metamodel, v1.1 March 2003

12
source

12.4.47 PivotRefNameAttribute

A PivotAttributeAssignment references to the name attribute of the input transactional
data.

Ends

pivotAttrAssignment

nameAttribute

12.4.48 PivotRefSetIdAttribute

A PivotAttributeAssignment references to the set identifier attribute of the input
transactional data.

Ends

pivotAttrAssignment

The Class referenced by PhysicalData

class: Class

multiplicity: exactly one

The PivotAttributeAssignment references Attribute for the name attribute.

class: PivotAttributeAssignment

multiplicity: zero or more

The Attribute that represents the name attribute of the transactional input data is referenced by
PivotAttributeAssignment.

class: Attribute

multiplicity: exactly one

The PivotAttributeAssignment references Attribute for the set identifier attribute.

class: PivotAttributeAssignment

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-99

12
setIdAattribute

12.4.49 PivotRefValueAttribute

A PivotAttributeAssignment references to the value attribute of the input transactional
data.

Ends

pivotAttrAssignment

valueAattribute

12.4.50 PriorProbabilitiesHasEntries

A PriorProbabilities references to a set of PriorProbabilitiesEntry objects that
represents prior of each target value.

Ends

priors

The Attribute that represents the set identifier attribute of the transactional input data is
referenced by PivotAttributeAssignment.

class: Attribute

multiplicity: exactly one

The PivotAttributeAssignment references Attribute for the value attribute.

class: PivotAttributeAssignment

multiplicity: zero or more

The Attribute that represents the value attribute of the transactional input data is referenced by
PivotAttributeAssignment.

class: Attribute

multiplicity: exactly one

The PriorProbabilitie references PriorProbabilitieEntry that represents prior for a target value.

class: PriorProbabilities

multiplicity: exactly one

aggregation: composite
12-100 Common Warehouse Metamodel, v1.1 March 2003

12
prior

12.4.51 PriorRefCategory

A PriorProbabilitiesEntry references to Category that represents a target value.

Ends

priorsEntry

targetValue

12.4.52 ReversePivotRefAttribute

A ReversePivotAttributeAssignment references to the input attributes whose values are
to be chosen based on the selection functions.

Ends

reversePivotAttrAssignment

selectorAattribute

A PriorProbabilitieEntry is referenced by aPriorProbabilities.

class: PriorProbabilitiesEntry

multiplicity: zero or more

The PriorProbabilitiesEntry references Category that represents a target value.

class: PriorProbabilitiesEntry

multiplicity: zero or more

A Category represents a target value.

class: Category

multiplicity: exactly one

The ReversePivotAttributeAssignment references Attribute for the input attributes.

class: ReversePivotAttributeAssignment

multiplicity: zero or more

A set of Attribute whose values are chosen based on the specified selection functions.

class: Attribute

multiplicity: one or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-101

12
12.4.53 SchemaHasAuxObjects

A Schema contains AuxiliaryObject that contains a set of AttributeAssignmentSet.

Ends

schema

auxObjects

12.4.54 SchemaHasCategoryMatrix

A Schema contains a set of CategoryMatrix.

Ends

schema

categoryMatrix

12.4.55 SchemaHasCategoryTaxonomy

A Schema contains a set of CategoryTaxonomy.

A Schema contains AuxiliaryObject.

class: Schema

multiplicity: exactly one

aggregation: composite

The AuxiliaryObject is contained by Schema.

class: AuxiliaryObject

multiplicity: zero or one

The Schema contains a set of CategoryMatrix.

class: Schema

multiplicity: exactly one

aggregation: composite

A set of CategoryMatrix is contained in Schema.

class: CategoryMatrix

multiplicity: zero or more
12-102 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

schema

taxonomy

12.4.56 SchemaHasLogicalData

A Schema contains a set of LogicalData.

Ends

schema

logicalData

12.4.57 SchemaHasFunctionSettings

A Schema contains a set of MiningFunctionSettings.

The Schema contains a set of CategoryTaxonomy.

class: Schema

multiplicity: exactly one

aggregation: composite

A set of CategoryTaxonomy is contained in Schema.

class: CategoryTaxonomy

multiplicity: zero or more

The Schema contains a set of LogicalData.

class: Schema

multiplicity: exactly one

aggregation: composite

A set of LogicalData is contained in Schema.

class: LogicalData

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-103

12
Ends

schema

miningFunctionSettings

12.4.58 SchemaHasMiningModel

A Schema contains a set of MiningModel.

Ends

schema

miningModel

12.4.59 SchemaHasMiningResult

A Schema contains a set of MiningResult.

The Schema contains a set of MiningFunctionSettings.

class: Schema

multiplicity: exactly one

aggregation: composite

A set of MiningFunctionSettings is contained in Schema.

class: MiningFunctionSettings

multiplicity: zero or more

The Schema contains a set of MiningModel.

class: Schema

multiplicity: exactly one

aggregation: composite

A set of MiningModel is contained in Schema.

class: MiningModel

multiplicity: zero or more
12-104 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

schema

miningResult

12.4.60 SchemaHasMiningTask

A Schema contains a set of MiningTask.

Ends

schema

miningTask

12.4.61 SetAssignmentRefMemberAttr

A SetAttributeAssignment references to one of the value attributes of the set-valued
input data.

The Schema contains a set of MiningResult.

class: Schema

multiplicity: exactly one

aggregation: composite

A set of MiningResult is contained in Schema.

class: MiningResult

multiplicity: zero or more

The Schema contains a set of MiningTask.

class: Schema

multiplicity: exactly one

aggregation: composite

A set of MiningTask is contained in Schema.

class: MiningTask

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-105

12
Ends

setAttrAssignment

memberAttribute

12.4.62 SetAssignmentRefSetIdAttr

A SetAttributeAssignment references to the attribute that represents the set identifier of
the input data.

Ends

setAttrAssignment

setIdAattribute

12.4.63 SettingsHasAttributeUsageSet

A MiningFunctionSetting contains a AttributeUsageSet that specifies the usage of the
mining attributes in the function settings.

The SetAttributeAssignment references Attribute for one of the value attributes.

class: SetAttributeAssignment

multiplicity: zero or more

A set of Attribute that represents one of the value attributes is referenced by
SetAttributeAssignment.

class: Attribute

multiplicity: one or more

The SetAttributeAssignment references Attribute for the set identifier attribute.

class: SetAttributeAssignment

multiplicity: zero or more

A set of Attribute that represents the set identifier attribute is referenced by
SetAttributeAssignment.

class: Attribute

multiplicity: one or more
12-106 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

settings

attributeUsageSet

12.4.64 SettingsRefAlgorithmSettings

A MiningFunctionSettings references the MiningAlgorithmSettings that specifies the
kind of algorithm to be executed for the function being specified by the
MiningFunctionSettings.

Ends

settings

algorithmSettings

12.4.65 SettingsRefExcludedCategories

A FrequentItemSetFunctionSettings may exclude a set of Category (items) from
consideration when building a FrequentItemSet model.

The MiningFunctionSetting contains an AttributeUsageSet.

class: MiningFunctionSetting

multiplicity: exactly one

aggregation: composite

An AttributeUsageSet is contained in MiningFunctionSetting.

class: AttributeUsageSet

multiplicity: zero or one

The MiningFunctionSettings references MiningAlgorithmSettings for a specific algorithm to
be executed.

class: MiningFunctionSettings

multiplicity: zero or more

A MiningAlgorithmSettings is referenced by MiningFunctionSettings.

class: MiningAlgorithmSettings

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-107

12
Ends

settings

exclusion

12.4.66 SettingsRefLogicalData

A MiningFunctionSettings references the LogicalData that is a logical representation
of the input data.

Ends

settings

logicalData

12.4.67 TargetValueItemRefCategory

An ApplyTargetValueItem references Category for the target value.

FrequentItemSetFunctionSettings referencing excluded Category objects.

class: FrequentItemSetFunctionSettings

multiplicity: zero or more

Excluded Categories referenced by FrequentItemSetFunctionSettings.

class: Category

multiplicity: zero or more

The MiningFunctionSettings references LogicalData as the logical representation of the input
data.

class: MiningFunctionSettings

multiplicity: zero or more

A LogicalData is referenced by MiningFunctionSettings for logical representation of the input
data.

class: LogicalData

multiplicity: exactly one
12-108 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

targetValueItem

targetValue

12.4.68 TaskRefAttrAssignmentSet

A MiningTask may reference an AttributeAssignmentSet that maps the signature
attributes of the input model to the input data.

Ends

miningTask

modelAssignment

12.4.69 TaskRefInputModel

A MiningTask references MiningModel to be used as a reference model to build
another MiningModel.

The ApplyTargetValueItem references a Category.

class: ApplyTargetValueItem

multiplicity: zero or more

An Category is referenced by ApplyTargetValueItem for its target value.

class: Category

multiplicity: exactly one

The MiningTask referencing an AttributeAssignmentSet

class: MiningTask

multiplicity: exactly one

An AttributeAssignmentSet referenced by a MiningTask for mapping between the input data
and the signature attributes of the input model.

class: AttributeAssignmentSet

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-109

12
Ends

miningTask

inputModel

12.4.70 TaskRefPhysicalData

A MiningTask references PhysicalData that represents the input data for the task.

Ends

miningTask

inputData

12.4.71 TaxonomyHasCategoryMap

A taxonomy graph can be represented by multiple CategoryMap objects.

The MiningTask references MiningModel as a reference model.

class: MiningTask

multiplicity: zero or more

A MiningModel is used as a reference model by MiningTask.

class: MiningModel

multiplicity: zero or one

The MiningTask references PhysicalData for the input data of the task.

class: MiningTask

multiplicity: zero or more

A PhysicalData is referenced by MiningTask for its input data.

class: PhysicalData

multiplicity: exactly one
12-110 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

taxonomy

categoryMap

12.4.72 TaxonomyRefRootCategory

A taxonomy graph has a set of root categories.

Ends

taxonomy

rootCategory

12.4.73 TestResultHasConfusionMatrix

A ClassificationTestResult may contain a CategoryMatrix that contains the confusion
matrix as the result of test.

The CategoryTaxonomy is represented by a set of CategoryMap.

class: CategoryTaxonomy

multiplicity: zero or more

aggregation: composite

A set of CategoryMap represents a CategoryTaxonomy.

class: CategoryMap

multiplicity: zero or more

The CategoryTaxonomy references a set of Category as the root categories.

class: CategoryTaxonomy

multiplicity: zero or more

A set of Category is referenced by CategoryTaxonomy for its root categories.

class: Category

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-111

12
Ends

testResult

confusionMatrix

12.4.74 TestResultHasLiftAnalysis

A MiningTestResult may reference a LiftAnalysis object that contains the lift
computation for a given set of positive target values.

Ends

testResult

liftAnalysis

12.4.75 TestTaskRefPositiveTarget

A MiningTestTask references a non-empty set of positive targets for which lift
computation is done.

The ClassificationTestResult references a CategoryMatrix for the confusion matrix as the
result of the test task.

class: ClassificationTestResult

multiplicity: exactly one

aggregation: composite

A CategoryMatrix represents the confusion matrix of a ClassificationTestResult.

class: CategoryMatrix

multiplicity: zero or one

The MiningTestResult references a LiftAnalysis for result of lift computation.

class: MiningTestResult

multiplicity: exactly one

aggregation: composite

A LiftAnalysis represents lift result for a MiningTestResult.

class: LiftAnalysis

multiplicity: zero or one
12-112 Common Warehouse Metamodel, v1.1 March 2003

12
Ends

testTask

positiveTargetCategory

12.4.76 TransformationRefMiningTask

A MiningTransformation references MiningTask as a procedure.

Ends

transformation

procedure

12.4.77 UsageRefAttribute

An AttributeUsage is defined on one or more LogicalAttribute objects.

Ends

usage

The MiningTestTask references a non-empty set of Category objects for positive target values.

class: MiningLiftTask

multiplicity: zero or more

A set of Category represents positive target values for a MiningTestTask.

class: Category

multiplicity: one or more

The MiningTransformation references MiningTask as a procedure.

class: MiningTransformation

multiplicity: zero or one

A MiningTask is referenced by MiningTransformation to represent a procedure.

class: MiningTask

multiplicity: exactly one

The AttributeUsage is defined on a non-empty set of LogicalAttribute.

class: AttributeUsage

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Data Mining Associations 12-113

12
attribute

A set of LogicalAttribute is referenced by AttributeUsage.

class: LogicalAttribute

multiplicity: one or more
12-114 Common Warehouse Metamodel, v1.1 March 2003

Information Visualization 13
Contents

This chapter contains the following topics.

13.1 Overview

The CWM Information Visualization metamodel defines metadata supporting the
problem domain of “information publishing” or, more generally, “information
visualization.”

Within the data warehousing environment, data is collected from numerous, diverse
sources and transformed into a unified representation that facilitates the analysis of
data for purposes of gaining business insight. Robust and flexible information
visualization tools are key to the effective analysis of this information. Information
visualization tools must be capable of understanding and preserving the “logical
structure” of data warehouse information, while enabling the user to perform any

Topic Page

“Overview” 13-1

“Organization of the Information Visualization
Metamodel”

13-2

“Inheritance from the Object Model” 13-3

“Information Visualization Classes” 13-4

“Information Visualization Associations” 13-10

“OCL Representation of Information Visualization
Constraints”

13-14
March 2003 Common Warehouse Metamodel, v1.1 13-1

13
number of “rendering transformations” on information content (for example,
displaying the same query result set in several different formats, such as a printed
report, Web page, pie chart, bar graph, etc.).

Since information visualization is a very broad problem domain, with a diverse set of
possible solutions and many evolving standards, the CWM Information Visualization
metamodel defines very generic, container-like metadata constructs that either contain
or reference more complex visualization mechanisms at the M1-level. These metadata
structures are intended to support the minimal metadata required to interchange more
complex M1 models of visualization mechanisms.

13.2 Organization of the Information Visualization Metamodel

13.2.1 Dependencies

The Information Visualization package depends on the following packages:

• org.omg.cwm.objectmodel.core

• org.omg.cwm.foundation.expressions

13.2.2 Major Classes and Associations

The major classes and associations of the Information Visualization metamodel are
shown in Figure 13-1.

Figure 13-1 CWM Information Visualization Metamodel

XSLRendering

ModelElement
(from Core)

RenderedObject
formula : ExpressionNode
action : String
fileName : String
type : String
url : String
/ rendering : Rendering
/ defaultRendering : Rendering
/ component : RenderedObject
/ composite : RenderedObject
/ neighbor : RenderedObject
/ referencingNeighbor : RenderedObject
/ modelElement : ModelElement
/ renderedObjectSet : RenderedObjectSet

*

*

composite
*

component
*

*

0..1

*

0..1

**
neighbor

*

referencingNeighbor

*

Rendering
formula : ExpressionNode
action : String
fileName : String
type : String
url : String
/ renderedObject : RenderedObject
/ defaultedRenderedObject : RenderedObject
/ renderedObjectSet : RenderedObjectSet

** **

0..1
*

defaultRendering

0..1
*

RenderedObjectSet
/ renderedObject : RenderedObject
/ rendering : Rendering

*

1

*

1

*

1

*

1

defaultedRenderedObject
13-2 Common Warehouse Metamodel, v1.1 March 2003

13
RenderedObject is the logical proxy for an arbitrary ModelElement that is to be
rendered via some rendering transformation or process.

A RenderedObject may be composed of an arbitrary number of other RenderedObjects;
that is, components, and may have topological relationships to still other
RenderedObjects. The formula attribute allows for the specification of any
implementation-dependent expression that completes the definition of a
RenderedObject. For example, the formula might specify the position of the
RenderedObject within a two-dimensional grid, or in relation to one of its neighbors;
for example, formula = “neighbor(x, y) + (delta-x, delta-y)”.

A RenderedObject generally references one or more Renderings that specify how the
RenderedObject is actually presented. One of these associated Renderings may
optionally be designated as a default Rendering.

A Rendering is semantically equivalent to a transformation, in that it transforms a
source RenderedObject to some target “displayed” (or otherwise “presented” object --
for example, a displayed image or an audio clip). An instance of Rendering is fully
specified via its formula attribute, which, like RenderedObject, contains an
implementation-dependent expression.

Thus, a RenderedObject may be viewed as the “logical description” of an object to be
rendered, independently of how it is actually presented by any of its associated
Renderings, and Renderings may be viewed as transformations that control the
presentation of the RenderedObject while preserving its logical structure.

Note that a RenderedObject may be the target of a complex transformation; that is,
utilizing the CWM Transformation package. For example, an N-dimensional OLAP
cube might be transformed into an equivalent, two-dimensional, composite
RenderedObject, with several dimensions mapped to row and column edges,
respectively, and all other dimensions constrained to single member values. Several
Renderings may then be defined and associated with the resultant RenderedObject,
mapping the two-dimensional logical structure to the surface of a display screen in
various different formats (for example, spreadsheet, pie chart, bar graph, etc.).

Possible types of Renderings include: Screen, paper, voice, Web, HTML documents,
XML/XSL, languages based on extensions to XML, SVG, visual objects, responses to
keying (e.g., keying interception plus rules), etc.

XSLRendering represents a useful subtype of Rendering that's based on XSL (for
example, this subtype’s formula might contain a procedure that uses XSL to create an
HTML document).

Finally, RenderedObjectSet represents a simple container of both logical
RenderedObjects and available Renderings.

13.3 Inheritance from the Object Model

The inheritance of the Information Visualization metamodel from the Object Model is
shown in Figure 13-2 on page 13-4.
March 2003 OMG-CWM, v1.1: Inheritance from the Object Model 13-3

13
Figure 13-2 CWM Information Visualization Metamodel: Inheritance

13.4Information Visualization Classes

13.4.1 RenderedObject

RenderedObject serves as a logical “proxy” for an arbitrary ModelElement that is to be
rendered.

Superclasses

Classifier

Attributes

formula

action

fileName

Allows for the specification of any implementation-dependent expression that completes the
definition of a RenderedObject.

type: ExpressionNode

multiplicity: exactly one

Specifies some implementation-dependent action associated with a RenderedObject.

type: String

multiplicity: exactly one

Specifies the name of a file persisting an instance of RenderedObject.

type: String

multiplicity: exactly one

Re nderi ngRenderedO bjec tS et Rend eredO bjec t

P ac k age
(fro m Co re)

Clas s if ier
(f ro m C or e)

Feature
(f rom Core)
13-4 Common Warehouse Metamodel, v1.1 March 2003

13
type

url

References

rendering

defaultRendering

component

Specifies some implementation-dependent type associated with a RenderedObject.

type: String

multiplicity: exactly one

Specifies a URL identifying some instance of RenderedObject.

type: String

multiplicity: exactly one

References the collection of Renderings associated with a RenderedObject.

class: Rendering

defined by: RenderedObjectsReferenceRenderings::rendering

multiplicity: zero or more

inverse: Rendering::renderedObject

References the default Rendering within the collection of Renderings associated with a
RenderedObject.

class: Rendering

defined by: RenderedObjectsReferenceDefaultRendering::defaultRendering

multiplicity: zero or one

References the collection of “component” RenderedObjects comprising this “composite”
RenderedObject.

class: RenderedObject

defined by: CompositesReferenceComponents::component

multiplicity: zero or more

inverse: RenderedObject::composite
March 2003 OMG-CWM, v1.1: Information Visualization Classes 13-5

13
composite

neighbor

referencingNeighbor

modelElement

renderedObjectSet

Constraints

The set of Renderings includes the default Rendering. [C-1]

A RenderedObject may not reference itself as a Neighbor nor as a Component. [C-2]

References the collection of “composite” RenderedObjects of which this RenderedObject is a
“component.”

class: RenderedObject

defined by: CompositesReferenceComponents::composite

multiplicity: zero or more

inverse: RenderedObject::component

References the collection of RenderedObjects that are “neighbors” to this RenderedObject.

class: RenderedObject

defined by: NeighborsReferenceNeighbors::neighbor

multiplicity: zero or more

References the collection of RenderedObjects that reference this RenderedObject as a
“neighbor.”

class: RenderedObject

defined by: NeighborsReferenceNeighbors::referencingNeighbor

multiplicity: zero or more

References the ModelElement that a RenderedObject represents.

class: ModelElement

defined by: RenderedObjectsReferenceModelElement::modelElement

multiplicity: zero or one

References the RenderedObjectSet owning a RenderedObject.

class: RenderedObjectSet

defined by: RenderedObjectSetOwnsRenderedObjects::renderedObjectSet

multiplicity: exactly one
13-6 Common Warehouse Metamodel, v1.1 March 2003

13
The transitive closure of Neighbors of an instance of RenderedObject must not include
the RenderedObject instance.

The transitive closure of Components of an instance of RenderedObject must not
include the RenderedObject instance.

A RenderedObject may not reference one of its Neighbors as a Component (and vice
versa). [C-3]

13.4.2 RenderedObjectSet

RenderedObjectSet is a container of RenderedObjects and available Renderings.

Superclasses

Package

Contained Elements

• RenderedObject

• Rendering

References

renderedObject

rendering

13.4.3 Rendering

Rendering is a specification of how an associated RenderedObject is to be “rendered”
in some medium. This usually consists of a projection of an object of arbitrary
dimensionality onto a two-dimensional surface, but it may also include non-physical
representations as well (such as audio).

References the collection of RenderedObjects owned by a RenderedObjectSet.

class: RenderedObject

defined by: RenderedObjectSetOwnsRenderedObjects::renderedObject

multiplicity: zero or more

inverse: RenderedObject::renderedObjectSet

References the collection of Renderings owned by a RenderedObjectSet.

class: Rendering

defined by: RenderedObjectSetOwnsRenderings::rendering

multiplicity: zero or more

inverse: Rendering::renderedObjectSet
March 2003 OMG-CWM, v1.1: Information Visualization Classes 13-7

13
Superclasses

Feature

Attributes

formula

action

fileName

type

url

Implementation-dependent procedure for generating the Rendering (for example, a usage of
XSL to generate an HTML document). Tracks the transformation lineage of the Rendering.

type: ExpressionNode

multiplicity: exactly one

Specifies some implementation-dependent action associated with a Rendering.

type: String

multiplicity: exactly one

Specifies the name of a file persisting an instance of Rendering.

type: String

multiplicity: exactly one

Specifies some implementation-dependent type associated with a Rendering.

type: String

multiplicity: exactly one

Specifies a URL identifying some instance of Rendering.

type: String

multiplicity: exactly one
13-8 Common Warehouse Metamodel, v1.1 March 2003

13
13.4.3.1 References

renderedObject

defaultedRenderedObject

renderedObjectSet

13.4.4 XSLRendering

XSLRendering represents a useful subclass of Rendering based on XSL; that is, the
formula of this subclass might contain a procedure that uses XSL to create an HTML
document.

Superclasses

Rendering

13.5 Information Visualization Associations

13.5.1 CompositesReferenceComponents

A RenderedObject may reference one or more “component” RenderedObjects, from
which it is logically composed.

References the collection of RenderedObjects that are associated with this Rendering.

class: RenderedObject

defined by: RenderedObjectsReferenceRenderings::renderedObject

multiplicity: zero or more

inverse: RenderedObject::rendering

References the collection of RenderedObjects whose default Renderings are represented by
this Rendering.

class: RenderedObject

defined by: RenderedObjectsReferenceRenderings::defaultedRenderedObject

multiplicity: zero or more

inverse: RenderedObject::rendering

References the RenderedObjectSet owning a Rendering.

class: RenderedObjectSet

defined by: RenderedObjectSetOwnsRenderings::renderedObjectSet

multiplicity: exactly one

inverse: RenderedObjectSet::rendering
March 2003 OMG-CWM, v1.1: Information Visualization Associations 13-9

13
Ends

components

composites

13.5.2 NeighborsReferenceNeighbors

A RenderedObject may reference one or more “neighboring” RenderedObjects.

Ends

neighbor

referencingNeighbor

13.5.3 RenderedObjectSetOwnsRenderedObjects

A RenderedObjectSet may own any number of RenderedObjects.

Ends

renderedObject

“Component” RenderedObjects referenced by “composite” RenderedObjects.

class: RenderedObject

multiplicity: zero or more

“Composite” RenderedObjects referencing “component” RenderedObjects.

class: RenderedObject

multiplicity: zero or more

RenderedObjects referenced by this RenderedObject as its “neighbor” (or neighboring object).

class: RenderedObject

multiplicity: zero or more

RenderedObjects referencing this RenderedObject as its “neighbor.”

class: RenderedObject

multiplicity: zero or more

RenderedObjects owned by a RenderedObjectSet.

class: RenderedObject

multiplicity: zero or more
13-10 Common Warehouse Metamodel, v1.1 March 2003

13
renderedObjectSet

13.5.4 RenderedObjectSetOwnsRenderings

A RenderedObjectSet may own any number of Renderings.

Ends

rendering

renderedObjectSet

13.5.5 RenderedObjectsReferenceDefaultRendering

A RenderedObject may reference a default Rendering.

Ends

defaultRendering

defaultedRenderedObject

RenderedObjectSet owning RenderedObjects.

class: RenderedObjectSet

multiplicity: exactly one

Renderings owned by a RenderedObjectSet.

class: Rendering

multiplicity: zero or more

RenderedObjectSet owning Renderings.

class: RenderedObjectSet

multiplicity: exactly one

The Rendering referenced by one or more RenderedObjects as the default Rendering.

class: Rendering

multiplicity: zero or one

RenderedObjects referencing this Rendering as the default Rendering.

class: RenderedObject

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Information Visualization Associations 13-11

13
13.5.6 RenderedObjectsReferenceModelElement

One or more RenderedObjects may reference an arbitrary ModelElement.

Ends

renderedObject

modelElement

13.5.7 RenderedObjectsReferenceRenderings

A RenderedObject may reference any number of Renderings. A Rendering may be
referenced by any number of RenderedObjects.

Ends

rendering

renderedObject

13.6 OCL Representation of Information Visualization Constraints

[C-1] The set of Renderings includes the default Rendering.

context RenderedObject

inv: self.defaultRendering->notEmpty implies

self.rendering->includes(self.defaultRendering)

RenderedObjects referencing the ModelElement.

class: RenderedObject

multiplicity: zero or more

The ModelElement referenced by the RenderedObjects.

class: ModelElement

multiplicity: zero or one

Renderings referenced by RenderedObjects.

class: Rendering

multiplicity: zero or more

RenderedObjects referencing Renderings.

class: RenderedObject

multiplicity: zero or more
13-12 Common Warehouse Metamodel, v1.1 March 2003

13
[C-2] A RenderedObject may not reference itself as a Neighbor nor as a Component.

context RenderedObject

inv: self.neighbor->excludes(self)

inv: self.component->excludes(self)

[C-3] A RenderedObject may not reference one of its Neighbors as a Component (and
vice versa).

context RenderedObject

inv: (self.neighbor->notEmpty and self.component->notEmpty) implies

self.neighbor->intersection(self.component)->isEmpty
March 2003 OMG-CWM, v1.1: OCL Representation of Information Visualization Constraints 13-13

13
13-14 Common Warehouse Metamodel, v1.1 March 2003

Business Nomenclature 14
Contents

This chapter contains the following topics.

14.1 Overview

Business users of data warehouses need to have a good understanding of what
information and tools exist in a data warehouse. They need to understand what the
information means from a business perspective, how it is derived, from what data
resources it is derived, and what analysis and reporting tools exist for manipulating and
reporting the information. They may also need to subscribe to analysis and reporting
tools, and have them run with results delivered to them on a regular basis.

The BusinessNomenclature package contains classes and associations that can be used
to represent business metadata. Easy access to this business metadata enables business
users to exploit the value of the information in a data warehouse. It can also aid
technical users in certain tasks. An example is the use of common business terms and
concepts for discussing information requirements with business users. Another
example is accessing business intelligence tools for analyzing the impact of warehouse
design changes.

Topic Page

“Overview” 14-1

“Organization of the Business Nomenclature Package” 14-2

“Business Nomenclature Classes” 14-4

“Business Nomenclature Associations” 14-11

“OCL Representation of Business Nomenclature
Constraints”

14-15
March 2003 Common Warehouse Metamodel, v1.1 14-1

14
The scope of the BusinessNomenclature package is restricted to the domain of data
warehousing and business intelligence.

14.1.1 Semantics

This section provides a description of the main features of the BusinessNomenclature
package.

The BusinessNomenclature package provides two main constructs to represent
business terms and concepts and related semantics:

• Taxonomy is a collection of concepts that provide the context for the meaning of a
particular term.

• Glossary is a collection of terms and various related forms of the term.

A taxonomy is a collection of concepts. Concepts represent semantic information and
relationships. Concepts are identified by terms, which in turn are manifested by a word
or phrase. More than one term may describe the same concept and a given term may
describe more than one concept.

A glossary is a collection of terms that are related through explicit or implicit
relationships. Terms may be preferred (the term best representing its concept) and thus
represent the vocabulary of a business domain or user. Terms may be synonyms and
point at the preferred term. A preferred term and its synonyms represent the fact that
several terms describe the same concept although with different shades of meaning.
Terms may be arranged into a hierarchy of more generic and more specific elements.
This relationship allows substituting a narrower term, such as “USA,” for a wider
term, such as “country.”

14.2 Organization of the Business Nomenclature Package

The BusinessNomenclature package depends on the following packages:

omg.org::CWM::ObjectModel::Core

The metamodel diagram for the BusinessNomenclature package is split into two parts.
The first diagram shows the BusinessNomenclature classes and associations, while the
second shows the inheritance hierarchy.
14-2 Common Warehouse Metamodel, v1.1 March 2003

14
Figure 14-1 BusinessNomenclature Package: Relationships

Term

/ g los s ary : Na mes p ace
/ c on c ept : Conc ept
/ r ela tedTe rm : Term
/ preferr edTerm : Term
/ narro we rTerm : Term

0..1

*

preferredTerm

0..1

s y nony m

*

*

*

w iderTerm*

narrowerTerm

*

Mod elE l em ent
(from Core)

V oc abulary E lem ent

definit ion : S tring
ex am ple : S tring
us age : S tring
/ m odelE lem ent : M odelE lem ent

*

*

relatedE lem ent

*

elem ent

*

*

*

m odelE lem ent *

voc abulary E lem ent
*

Nomen c lat ure

0..1

arent

0..1

c hild

0.. 1 /ownedE lem ent

/nam es pac e

0.. 1

B us in es s Dom ain

/ tax onom y : M odelE lem ent

Conc ept

/ tax onom y : Nam es pac e
/ relatedConc ept : Conc ept

*

*

relatedConc ept

*

c onc ept

*
Ta x onom y

/ dom ain : Nam es pac e
/ c onc ept : M odelE lem ent
/ s ubtax onom y : Nom enc lature

*

0.. 1

/ownedE lem ent*

/nam es pac e0.. 1

*

0.. 1 /ow ned El em ent

*/nam es pac e

0.. 1

Term

/ g los s ary : Nam es pac e
/ c onc ept : Conc ept
/ relatedTerm : Term
/ preferredTerm : Term
/ narrowerTerm : Term

*

*

c onc ept *

term *

*

*

relatedTerm

*

term

*

G los s ary

language : S tring
/ tax onom y : Tax onom y
/ term : M odelE lem ent
/ s ubglos s ary : Nom enc lature

*

*

glos s ary *

tax onom y *

*

0..1 /ownedE lem ent

*/nam es pac e

0..1
March 2003 OMG-CWM, v1.1: Organization of the Business Nomenclature Package 14-3

14
Figure 14-2 BusinessNomenclature Package: Hierarchy

14.3Business Nomenclature Classes

The BusinessNomenclature package contains the following classes, in alphabetical
order:

• BusinessDomain

ModelElement
(from Core)

Concept

/ taxonomy : Namespace
/ relatedConcept : Concept

Term

/ glossary : Namespace
/ concept : Concept
/ relatedTerm : Term
/ preferredTerm : Term
/ narrowerTerm : Term

VocabularyElement

definition : String
example : String
usage : String
/ modelElement : ModelElement

Taxonomy

/ domain : Namespace
/ concept : ModelElement
/ subtaxonomy : Nomenclature

Glossary

language : String
/ taxonomy : Taxonomy
/ term : ModelElement
/ subglossary : Nomenclature

Nomenclature

Package
(from Core)

BusinessDomain

/ taxonomy : ModelElement
14-4 Common Warehouse Metamodel, v1.1 March 2003

14
• Concept

• Glossary

• Nomenclature

• Taxonomy

• Term

• VocabularyElement

14.3.1 BusinessDomain

This represents a business domain.

Superclasses

Package

Contained Elements

Taxonomy

References

taxonomy

14.3.2 Concept

This represents a business idea or notion.

Concepts are represented by Terms. Users use Terms that are familiar to them in their
business environment to refer to Concepts.

Superclasses

VocabularyElement

Identifies the Taxonomies owned by the BusinessDomain.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: Taxonomy::domain
March 2003 OMG-CWM, v1.1: Business Nomenclature Classes 14-5

14
References

taxonomy

relatedConcept

Constraints

A Concept may not relate to itself. [C-1]

14.3.3 Glossary

This represents a collection of Terms.

Superclasses

Nomenclature

Contained Elements

Term

Attributes

language

Identifies the Taxonomy that owns the Concept.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: Taxonomy::concept

Identifies the related Concepts.

class: Concept

defined by: RelatedConcepts::relatedConcept

multiplicity: zero or more

Identifies the language that the Glossary is represented in.

type: String

multiplicity: exactly one
14-6 Common Warehouse Metamodel, v1.1 March 2003

14
References

taxonomy

term

subglossary

Constraints

The parent [C-2] or child [C-3] of a Glossary must be a Glossary.

14.3.4 Nomenclature

This represents a common superclass for Taxonomy and Glossary.

Superclasses

Package

Contained Elements

Nomenclature, VocabularyElement

Constraints

A Nomenclature may not be its own parent or child, transitive closure.

Identifies the Taxonomies that the Glossary is derived from.

class: Taxonomy

defined by: GlossaryToTaxonomy::taxonomy

multiplicity: zero or more

Identifies the Terms that are owned by the Glossary.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: Term::glossary

Identifies the child Glossaries.

class: Nomenclature

defined by: NomenclatureHierarchy::child

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Business Nomenclature Classes 14-7

14
14.3.5 Taxonomy

This represents a collection of Concepts that form an ontology.

Superclasses

Nomenclature

Contained Elements

Concept

References

domain

concept

subtaxonomy

Constraints

The parent [C-4] or child [C-5] of a Taxonomy must be a Taxonomy.

14.3.6 Term

This represents words or phrases used by business users to refer to Concepts.

Identifies the BusinessDomain that owns the Taxonomy.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: BusinessDomain::taxonomy

Identifies the Concepts that are owned by the Taxonomy.

class: ModelElement

defined by: Namespace-ModelElement::ownedElement

multiplicity: zero or more

inverse: Concept::taxonomy

Identifies the child Taxonomies.

class: Nomenclature

defined by: NomenclatureHierarchy::child

multiplicity: zero or more
14-8 Common Warehouse Metamodel, v1.1 March 2003

14
A Term has a definition in a specific context. The context is provided by the referenced
Concept that describes the underlying semantics.

Superclasses

VocabularyElement

References

glossary

concept

relatedTerm

preferredTerm

Identifies the Glossary that owns the Term.

class: Namespace

defined by: Namespace-ModelElement::namespace

multiplicity: zero or one

inverse: Glossary::term

Identifies the Concepts from which the Term is derived.

class: Concept

defined by: TermToConcept::concept

multiplicity: zero or more

Identifies the related Terms.

class: Term

defined by: RelatedTerms::relatedTerm

multiplicity: zero or more

Identifies the preferred Term.

class: Term

defined by: SynonymToPreferredTerm::preferredTerm

multiplicity: zero or one
March 2003 OMG-CWM, v1.1: Business Nomenclature Classes 14-9

14
narrowerTerm

Constraints

A Term may not relate to itself. [C-6]

A Term may not be its own preferred term or synonym, transitive closure.

A Term may not be its own narrower term or wider term, transitive closure.

14.3.7 VocabularyElement

This represents a common superclass for Concepts and Terms.

Superclasses

ModelElement

Attributes

definition

example

usage

Identifies the narrower Terms.

class: Term

defined by: WiderToNarrowerTerm::narrowerTerm

multiplicity: zero or more

Provides the definition of the VocabularyElement.

type: String

multiplicity: exactly one

Provides examples of the VocabularyElement.

type: String

multiplicity: exactly one

Identifies typical usage of the VocabularyElement.

type: String

multiplicity: exactly one
14-10 Common Warehouse Metamodel, v1.1 March 2003

14
References

modelElement

Constraints

A VocabularyElement may not relate to itself. [C-7]

14.4 Business Nomenclature Associations

The BusinessNomenclature package contains the following associations, in
alphabetical order:

• GlossaryToTaxonomy

• NomenclatureHierarchy

• RelatedConcepts

• RelatedTerms

• RelatedVocabularyElements

• SynonymToPreferredTerm

• TermToConcept

• VocabularyElementToModelElement

• WiderToNarrowerTerm

14.4.1 GlossaryToTaxonomy

This association relates a Glossary to its Taxonomies.

Ends

glossary

Identifies the ModelElement (the physical metadata) that represents this VocabularyElement
(the business metadata).

class: ModelElement

defined by: VocabularyElementToModelElement::modelElement

multiplicity: zero or more

Identifies a Glossary.

class: Glossary

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Business Nomenclature Associations 14-11

14
taxonomy

14.4.2 NomenclatureHierarchy

This aggregation relates a parent Nomenclature to its child Nomenclatures.

Ends

parent

child

14.4.3 RelatedConcepts derived

This association relates a Concept to its related Concepts.

Ends

concept

relatedConcept

Identifies the Taxonomies from which the Glossary is derived.

class: Taxonomy

multiplicity: zero or more

Identifies the parent Nomenclature.

class: Nomenclature

multiplicity: zero or one

aggregation: composite

Identifies the child Nomenclatures.

class: Nomenclature

multiplicity: zero or more

Identifies a Concept.

class: Concept

multiplicity: zero or more

Identifies the related Concepts.

class: Concept

multiplicity: zero or more
14-12 Common Warehouse Metamodel, v1.1 March 2003

14
Derivation

This association is derived from the RelatedVocabularyElements association. All ends
of the association must be Concepts. [C-8]

14.4.4 RelatedTerms derived

This association relates a Term to its related Terms.

Ends

term

relatedTerm

Derivation

This association is derived from the RelatedVocabularyElements association. All ends
of the association must be Terms.[C-9]

14.4.5 RelatedVocabularyElements

This association relates a VocabularyElement to its related VocabularyElements.

Ends

element

relatedElement

Identifies a Term.

class: Term

multiplicity: zero or more

Identifies the related Terms.

class: Term

multiplicity: zero or more

Identifies a VocabularyElement.

class: VocabularyElement

multiplicity: zero or more

Identifies the related VocabularyElements.

class: VocabularyElement

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Business Nomenclature Associations 14-13

14
14.4.6 SynonymToPreferredTerm

This association relates a synonym to its preferred terms.

Ends

synonym

preferredTerm

14.4.7 TermToConcept

This association relates a Term to its Concepts.

Ends

term

concept

14.4.8 VocabularyElementToModelElement

This association relates a VocabularyElement to the ModelElements for which the
VocabularyElement provides business meaning.

Identifies a Term.

class: Term

multiplicity: zero or more

Identifies the preferred term for the synonym.

class: Term

multiplicity: zero or one

Identifies a Term.

class: Term

multiplicity: zero or more

Identifies the Concepts from which the Term is derived.

class: Concept

multiplicity: zero or more
14-14 Common Warehouse Metamodel, v1.1 March 2003

14
Ends

vocabularyElement

modelElement

14.4.9 WiderToNarrowerTerm

This association relates a wider term to its narrower terms.

Ends

widerTerm

narrowerTerm

14.5OCL Representation of Business Nomenclature Constraints

[C-1] A Concept may not relate to itself.

context Concept

inv: self.relatedConcept->forAll (p | p <> self)

[C-2] The parent of a Glossary must be a Glossary.

context Glossary

inv: self.parent.oclIsKindOf(Glossary)

Identifies a VocabularyElement.

class: VocabularyElement

multiplicity: zero or more

Identifies the ModelElements for which the VocabularyElement provides business meaning.

class: ModelElement

multiplicity: zero or more

Identifies a Term.

class: Term

multiplicity: zero or more

Identifies the narrower terms for the wider term.

class: Term

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: OCL Representation of Business Nomenclature Constraints 14-15

14
[C-3] The child of a Glossary must be a Glossary.

context Glossary

inv: self.child->forAll(p | p.oclIsKindOf(Glossary))

[C-4] The parent of a Taxonomy must be a Taxonomy.

context Taxonomy

inv: self.parent.oclIsKindOf(Taxonomy)

[C-5] The child of a Taxonomy must be a Taxonomy.

context Taxonomy

inv: self.child->forAll(p | p.oclIsKindOf(Taxonomy))

[C-6] A Term may not relate to itself.

context Term

inv: self.relatedTerm->forAll (p | p <> self)

[C-7] A VocabularyElement may not relate to itself.

context Vocabulary

inv: self.relatedElement->forAll (p | p <> self)

[C-8] The RelatedConcepts association is derived from the RelatedVocabularyElements
association. All ends of the RelatedConcepts association must be Concepts.

context RelatedConcepts

inv: RelatedVocabularyElements.allInstances.select(element.oclIsKindOf(Concept)
and relatedElement.oclIsKindOf(Concept))

[C-9] The RelatedTerms association is derived from the RelatedVocabularyElements
association. All ends of the RelatedTerms association must beTerms.

context RelatedTerms

inv: RelatedVocabularyElements.allInstances.select(element.oclIsKindOf(Term) and
relatedElement.oclIsKindOf(Term))
14-16 Common Warehouse Metamodel, v1.1 March 2003

Warehouse Process 15
Contents

This chapter contains the following topics.

15.1 Overview

The Warehouse Process package documents the process flows used to execute
transformations. These process flows may be documented at the level of a complete
TransformationActivity or its individual TransformationSteps. A WarehouseProcess
object associates a transformation with a set of events, which will be used to trigger the
execution of the transformation.

15.2 Organization of the Warehouse Process Package

The Warehouse Process package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Behavioral

• org.omg::CWM::Analysis::Transformation

Topic Page

“Overview” 15-1

“Organization of the Warehouse Process Package” 15-1

“Warehouse Process Classes” 15-5

“Warehouse Process Associations” 15-16

“OCL Representation of Warehouse Process Constraints” 15-20
March 2003 Common Warehouse Metamodel, v1.1 15-1

15
A WarehouseProcess object represents the processing of a transformation. It is
instantiated as one of its subtypes WarehouseActivity or WarehouseStep, depending on
whether it represents the processing of a TransformationActivity or a Transformation
Step.

A WarehouseProcess may be associated with one or more WarehouseEvents, each
identifying events that cause the processing to be initiated. It may also be associated
with one or more internal events that will be triggered when processing terminates.

A ProcessPackage may be used to group together related WarehouseActivities.

Figure 15-1 Warehouse Process package overview.

WarehouseEvents are divided into three categories: scheduled, external, and internal.

Scheduled events can either be defined as a point in time (each Wednesday at 2 pm) or
be defined by intervals (every five minutes). A point in time event can be defined as a
custom calendar that contains a set of calendar dates. This allows a series of dates to be
reused across several WarehouseProcesses.

External events are triggered by something happening outside the data warehouse, for
example by a batch process that is not described as a WarehouseProcess.

/namespace

TransformationStep
(from T ransformation)

WarehouseEvent

/ warehouseProcess : WarehouseProcess

InternalEvent

conditio n : B oo leanExpression
/ trigg eringWP : WarehouseProcess

TransformationActivity

(from T ransforma tio n)

WarehouseStep

/ transformationStep : T ransformationStep
/ warehouseActivity : WarehouseActivi ty

1

*

1

*

WarehouseProcess

stat icDefin ition : Boolean
isSeque nti al : Boolean
/ warehouseEvent : Ware houseEvent
/ internalE ve nt : Intern alEven t

*1 *1

*

1..*

*

triggeringWP1..*

ProcessPackage

WarehouseActivity

/ transformationActivi ty : TransformationActivity
/ warehouseStep : WarehouseStep

1

*

1

*

1 *1 * orde red}

*

0..1

/ownedElement*

0..1
15-2 Common Warehouse Metamodel, v1.1 March 2003

15
Internal events are triggered by the termination of a WarehouseProcess. They can be
either retry events or cascade events. Retry events normally trigger a rerun of the same
WarehouseProcess, whereas cascade events normally trigger a different
WarehouseProcess. An internal event may define a condition that determines whether
or not the event is triggered. This condition can use details of the execution of the
triggering WarehouseProcess recorded in the relevant ActivityExecution and
StepExecution objects.

Figure 15-2 Warehouse Events and Custom Calendars

InternalEvent

condition : BooleanExpression
/ triggeringWP : WarehouseProcess

ScheduleEvent

PointInTimeEvent IntervalEvent

duration : Float

ExternalEvent

description : String

CascadeEvent

waitRule : WaitRuleType

RetryEvent

waitDuration : Float
maxCount : Integer

RecurringPointInTimeEvent

recurringType : RecurringType
frequencyFactor : Integer
month : Integer
dayOfMonth : Integer
dayOfWeek : DayOfWeek
hour : Integer
minute : Integer
second : Integer

WarehouseEvent

/ warehouseProcess : WarehouseProcess

WarehouseProcess

staticDefinition : Boolean
isSequential : Boolean
/ warehouseEvent : WarehouseEvent
/ internalEvent : InternalEvent

*1 *1

*

1..*

*

triggeringWP1..*

CustomCalendarEvent

/ customCalendar : CustomCalendar

CalendarDate

specificDate : Time

CustomCalendar

/ customCalendarEvent : CustomCalendarEvent

*

1

*

1

* 0..1

/ownedElement

*

/namespace

0..1
March 2003 OMG-CWM, v1.1: Organization of the Warehouse Process Package 15-3

15
Figure 15-3 Warehouse Process package inheritance structure

Figure 15-4 shows how the scheduled (every Wednesday at 2 pm) unload process
cascades with the load process.

ProcessPackage

ScheduleEvent

PointInTimeEvent IntervalEvent

ExternalEvent

CascadeEvent RetryEvent

CalendarDate

CustomCalendarEvent

CustomCalendar

WarehouseEvent

InternalEvent

WarehouseProcess

Package
(from Core)

ModelElement
(from Core)

Event
(from Behavioral)

WarehouseStepWarehouseActivity
15-4 Common Warehouse Metamodel, v1.1 March 2003

15
Figure 15-4 Instance diagram of cascade event.

15.3Warehouse Process Classes

The Warehouse Process package contains the following classes, in alphabetical order:

• CalendarDate

• CascadeEvent

• CustomCalendar

• CustomCalendarEvent

• ExternalEvent

• InternalEvent

• IntervalEvent

• PointInTimeEvent

• ProcessPackage

• RecurringPointInTimeEvent

• RetryEvent

• ScheduleEvent

• WarehouseActivity

• WarehouseEvent

• WarehouseProcess

• WarehouseStep

15.3.1 CalendarDate

An entry in a CustomCalendar representing a specific date and time.

Superclasses

ModelElement

RecurringPointInTimeEvent
recurringType=everyWeek
dayOfWeek=Wednesday

hour=14

WarehouseProcess
Name=Unload

warehouseEvent

WarehouseProcess
Name=Reload

CascadeEvent
condition=“Unload succeeds”

warehouseEvent

internalEvent

triggeringWP
March 2003 OMG-CWM, v1.1: Warehouse Process Classes 15-5

15
Attributes

specificDate

15.3.2 CascadeEvent

A CascadeEvent indicates that completion of one or more triggering
WarehouseProcesses triggers another WarehouseProcess.

Superclasses

InternalEvent

Attributes

waitRule

15.3.3 CustomCalendar

A named list of dates and times.

Superclasses

 Package

Contained Elements

CalendarDate

The value of the date.

type: Time; that is, a date and time.

multiplicity: exactly one

Indicates if the event should be triggered as soon as any of the triggering WarehouseProcesses
has completed that satisfies the condition (inherited from InternalEvent) or only when all the
triggering WarehouseProcesses have completed (provided the condition is satisfied).

type: WaitRuleType (waitForAll | waitForAny)

multiplicity: exactly one
15-6 Common Warehouse Metamodel, v1.1 March 2003

15
References

customCalendarEvent

15.3.4 CustomCalendarEvent

This event is controlled by a list of dates and times. To make the list easily shareable
between multiple WarehouseProcesses the calendar itself is in a separate class.

Superclasses

PointInTimeEvent

References

customCalendar

15.3.5 ExternalEvent

An ExternalEvent allows the description of the triggering of a WarehouseProcess by a
task that is not described in the model. This is merely a place holder. The actual
behavior and the connection with the external trigger is left to the implementation of
the scheduler.

Superclasses

WarehouseEvent

Indicates which events use this custom calendar.

class: CustomCalendarEvent

defined by: EventUsesCustomCalendar::customCalendarEvent

multiplicity: zero or more

inverse: CustomCalendarEvent::customCalendar

Indicates which custom calendar is used for this schedule.

class: CustomCalendar

defined by: EventUsesCustomCalendar::customCalendar

multiplicity: exactly one

inverse: CustomCalendar::customCalendarEvent
March 2003 OMG-CWM, v1.1: Warehouse Process Classes 15-7

15
Attributes

description

15.3.6 InternalEvent

An event that may be triggered, depending on whether or not a condition is satisfied,
by the conclusion of one or more WarehouseProcess runs.

There are two types of InternalEvents, depending whether the event triggers a series of
different WarehouseProcesses, or whether the event triggers the same
WarehouseProcess in an attempt to retry a failed run.

Superclasses

WarehouseEvent

Attributes

condition

References

triggeringWP

15.3.7 IntervalEvent

An IntervalEvent controls a continuous run of a WarehouseProcess. The Warehouse
Process will run, then wait for the duration specified in the event, then run again.

A free text description of where the external triggering signal comes from.

type: String

multiplicity: exactly one

Indicates what condition the triggering WarehouseProcess run must meet to be considered
(success, failure, warnings, etc.). How the condition is expressed, and how the result of a
Transform is generated is left to the implementation of the scheduler and the transformation,
respectively.

type: BooleanExpression

multiplicity: exactly one

Associates an internal event with the triggering WarehouseProcess.

class: WarehouseProcess

defined by: TriggeringProcess::triggeringWP

multiplicity: one or more

inverse: WarehouseProcess::internalEvent
15-8 Common Warehouse Metamodel, v1.1 March 2003

15
An IntervalEvent is not affected by the result of the WarehouseProcess.

Superclasses

ScheduleEvent

Attributes

duration

15.3.8 PointInTimeEvent

A PointInTime event is triggered at a fixed time, independently of any external context.

The triggering time can be either defined functionally (as in the
RecurringPointInTimeEvent extension of this class), or by an explicit list of times
(CustomCalendarEvent).

Superclasses

 ScheduleEvent

15.3.9 ProcessPackage

A group of related WarehouseActivities.

Superclasses

 Package

Contained Elements

WarehouseActivity

15.3.10 RecurringPointInTimeEvent

This event triggers a WarehouseProcess on a regular basis such as a specific date or
time (for example, the Wednesday of every other week, at 2:30 pm).

Superclasses

PointInTimeEvent

Indicates the length of time (in seconds) to wait after a run of the WarehouseProcess before
triggering the next one.

type: Float

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Warehouse Process Classes 15-9

15
Attributes

recurringType

 frequencyFactor

month

dayOfMonth

dayOfWeek

hour

Indicates how often the event should be triggered (weekly, daily, etc.).

type: RecurringType (everyYear | everyMonth | everyWeek |
everyDay | everyHour | everyMinute)

multiplicity: exactly one

Indicates the repetition of the event. For example, for a weekly recurringType, a value of 1
will mean that it is to be triggered every week, a value of 2 will mean that it is to be triggered
every other week, etc.

type: Integer

multiplicity: exactly one

Indicates which month of the year (from 1 to 12) an annual event is to be triggered.

type: Integer

multiplicity: zero or one

Indicates which day of the month (from 1 to 31) a monthly or annual event is to be triggered.
For a monthly event, if the day of the month is greater than the number of days in the month,
it is assumed that the scheduler will run the WarehouseProcess on the last day of the month.

type: Integer

multiplicity: zero or one

Indicates which day of the week a weekly schedule is running.

type: DayOfWeek (monday | tuesday | wednesday | thursday |
friday | saturday | sunday | workingDay | nonworkingDay)

multiplicity: zero or one

Indicates at what hour (from 0 to 23) an annual, monthly, weekly, or daily event is being
triggered.

type: Integer

multiplicity: zero or one
15-10 Common Warehouse Metamodel, v1.1 March 2003

15
minute

second

Constraints

month must be specified when recurringType is everyYear. [C-1]

month must be between 1 and 12 (inclusive) when specified. [C-2]

dayOfMonth must be specified when recurringType is everyYear or everyMonth.
[C-3]

dayOfMonth must be between 1 and 31 (inclusive) when specified. [C-4]

dayOfWeek must be specified when recurringType is everyWeek. [C-5]

hour must be specified when recurringType is everyYear or everyMonth or everyWeek
or everyDay. [C-6]

hour must be between 0 and 23 (inclusive) when specified. [C-7]

minute must be specified when recurringType is not everyMinute. [C-8]

minute must be between 0 and 59 (inclusive) when specified. [C-9]

second must be between 0 and 59 (inclusive). [C-10]

15.3.11 RetryEvent

Indicates that a WarehouseProcess should be retried upon failure. This type of event is
used for example when a WarehouseProcess relies on sources with uncertain
availability (connection or uptime).

In general, the triggering WarehouseProcess and the triggered WarehouseProcess are
the same, and only one WarehouseProcess is involved. But this is not an imposed
limitation. It is left to the schedulers to decide on the implementation behavior for
complex cases.

Superclasses

InternalEvent

Indicates at what minute (from 0 to 59) an event is triggered. Applies to all events except the
“everyMinute” ones.

type: Integer

multiplicity: zero or one

Indicates at what second (from 0 to 59) an event must be run. Applies to all events.

type: Integer

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Warehouse Process Classes 15-11

15
Attributes

waitDuration

maxCount

15.3.12 ScheduleEvent abstract

A ScheduleEvent is an abstract class that covers all the clock based events.

Superclasses

WarehouseEvent

15.3.13 WarehouseActivity

A WarehouseActivity is a subtype of WarehouseProcess that represents the processing
of a TransformationActivity. It may identify WarehouseEvents that trigger the
processing of the TransformationActivity and InternalEvents that are triggered by the
conclusion of this processing. It may contain a set of WarehouseSteps that define in
more detail the processing of the individual TransformationSteps of the
TransformationActivity.

Superclasses

WarehouseProcess

Contained Elements

WarehouseEvent
WarehouseStep

Indicates the length of time (in seconds) to wait before retrying the triggered
WarehouseProcess.

type: Float

multiplicity: exactly one

Indicates how many times the triggered WarehouseProcess should be retried
before being declared failed.

type: Integer

multiplicity: exactly one
15-12 Common Warehouse Metamodel, v1.1 March 2003

15
References

transformationActivity

warehouseStep

15.3.14 WarehouseEvent abstract

A virtual class to refer to any Event.

A WarehouseEvent (or its derivations) represents what triggers the running of a
WarehouseProcess. An event can be initiated by a clock, by an external trigger, or by
an internal trigger (the conclusion of some WarehouseProcess).

Superclasses

Event

References

warehouseProcess

15.3.15 WarehouseProcess abstract

A WarehouseProcess represents the processing of a transformation. It is instantiated as
one of its subtypes WarehouseActivity or WarehouseStep, depending on whether it
represents the processing of a TransformationActivity or a Transformation Step.

Associates a WarehouseActivity with the TransformationActivity it performs.

class: TransformationActivity

defined by: WarehouseActivityRunsTransformationActivity::
transformationActivity

multiplicity: exactly one

Identifies WarehouseSteps that are components of the WarehouseActivity.

class: WarehouseStep

defined by: WarehouseActivityStep::warehouseStep

multiplicity: zero or more; ordered

inverse: WarehouseStep::warehouseActivity

Identifies the WarehouseProcess that is triggered by the WarehouseEvent.

class: WarehouseProcess

defined by: Event::warehouseProcess

multiplicity: exactly one

inverse: WarehouseProcess::warehouseEvent
March 2003 OMG-CWM, v1.1: Warehouse Process Classes 15-13

15
A WarehouseProcess may be associated with one or more WarehouseEvents, each
identifying events that cause the processing to be initiated. It may also be associated
with one or more internal events that will be triggered when processing terminates.

Superclasses

ModelElement

Attributes

staticDefinition

 isSequential

References

warehouseEvent

internalEvent

When a WarehouseProcess is a constant mapping (such as a Relational View of legacy data or
a continuous data propagation process), this flag indicates that the mapping does not require
to be run for the target to be up-to-date and in sync with the source.

type: Boolean

multiplicity: exactly one

This flag indicates if more than one instance of this WarehouseProcess may run at a time. If
this flag is true, the scheduler should fail any attempt to trigger this WarehouseProcess while
an instance is already in progress.

type: Boolean

multiplicity: exactly one

Associates a WarehouseProcess with a set of events of various types, which will be used to
trigger the execution of the WarehouseProcess and its associated transformation.

class: WarehouseEvent

defined by: Event::warehouseEvent

multiplicity: zero or more

inverse: WarehouseEvent::warehouseProcess

Associates a WarehouseProcess with the internal events it may trigger.

class: InternalEvent

defined by: TriggeringProcess::internalEvent

multiplicity: zero or more

inverse: InternalEvent::triggeringWP
15-14 Common Warehouse Metamodel, v1.1 March 2003

15
15.3.16 WarehouseStep

A WarehouseStep is a component of a WarehouseActivity. It represents the processing
of an individual TransformationStep. It may be used to identify WarehouseEvents that
trigger the processing of the TransformationStep and/or InternalEvents that are
triggered by the conclusion of the processing of the TransformationStep.

For example, a WarehouseStep may be used to document how a specific
TransformationStep should be retried upon failure.

Superclasses

WarehouseProcess

Contained Elements

WarehouseEvent

References

transformationStep

warehouseActivity

15.4Warehouse Process Associations

The Warehouse Process package contains the following associations, in alphabetical
order:

• Event

• EventUsesCustomCalendar

• TriggeringProcess

• WarehouseActivityRunsTransformationActivity

• WarehouseActivityStep

• WarehouseStepRunsTransformationStep

Associates a WarehouseStep with the TransformationStep it performs.

class: TransformationStep

defined by: WarehouseStepRunsTransformationStep ::transformationStep

multiplicity: exactly one

Identifies the WarehouseActivity that includes this WarehouseStep.

class: WarehouseActivity

defined by: WarehouseActivityStep::warehouseActivity

multiplicity: exactly one

inverse: WarehouseActivity::warehouseStep
March 2003 OMG-CWM, v1.1: Warehouse Process Associations 15-15

15
15.4.1 Event protected

Associates a WarehouseProcess with a set of events of various types, which will be
used to trigger the execution of the WarehouseProcess and its associated
transformation.

Ends

warehouseProcess

 warehouseEvent

15.4.2 EventUsesCustomCalendar protected

Indicates which custom calendar is used for this schedule.

Ends

customCalendar

customCalendarEvent

15.4.3 TriggeringProcess protected

Associates an internal event with the WarehouseProcess that triggers it when
processing of that WarehouseProcess terminates.

Identifies the WarehouseProcess, which will be triggered by the event.

class: WarehouseProcess

multiplicity: exactly one

aggregation: composite

Identifies a set of events of various types, which will be used to trigger the execution of the
WarehouseProcess and its associated transformations.

class: WarehouseEvent

multiplicity: zero or more

Indicates which custom calendar is used for this event.

class: CustomCalendar

multiplicity: exactly one

Indicates which event uses this custom calendar.

class: CustomCalendarEvent

multiplicity: zero or more
15-16 Common Warehouse Metamodel, v1.1 March 2003

15
Ends

triggeringWP

internalEvent

15.4.4 WarehouseActivityRunsTransformationActivity

Indicates which TransformationActivity is run by the WarehouseActivity.

Ends

transformationActivity

warehouseActivity

15.4.5 WarehouseActivityStep protected

Associates a WarehouseActivity with its constituent WarehouseSteps.

Identifies the triggering WarehouseProcess.

class: WarehouseProcess

multiplicity: one or more

Identifies an internal event triggered by the termination of the WarehouseProcess.

class: InternalEvent

multiplicity: zero or more

Associates a WarehouseActivity with the TransformationActivity it performs.

class: TransformationActivity

multiplicity: exactly one

Identifies WarehouseActivities that perform a TransformationActivity.

class: WarehouseActivity

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: Warehouse Process Associations 15-17

15
Ends

warehouseActivity

warehouseStep

15.4.6 WarehouseStepRunsTransformationStep

Identifies a TransformationStep that is run by a WarehouseStep.

Ends

transformationStep

warehouseStep

Identifies the WarehouseActivity of which a WarehouseStep is a component.

class: WarehouseActivity

multiplicity: exactly one

aggregation: composite

Identifies a WarehouseStep that is a component of the WarehouseActivity.

class: WarehouseStep

multiplicity: zero or more; ordered

Associates a WarehouseStep with the TransformationStep it performs.

class: TransformationStep

multiplicity: exactly one

Identifies WarehouseSteps that perform a TransformationStep.

class: WarehouseStep

multiplicity: zero or more
15-18 Common Warehouse Metamodel, v1.1 March 2003

15
15.5 OCL Representation of Warehouse Process Constraints

[C-1] month must be specified when recurringType is everyYear.

context RecurringPointInTimeEvent

inv: self.recurringType=everyYear implies self.month->notEmpty

[C-2] month must be between 1 and 12 (inclusive) when specified.

context RecurringPointInTimeEvent

inv: self.month->notEmpty implies 1 <= self.month <= 12

[C-3] dayOfMonth must be specified when recurringType is everyYear or
everyMonth.

context RecurringPointInTimeEvent

inv: self.recurringType=everyYear or self.recurringType=everyMonth
implies self.dayOfMonth->notEmpty

[C-4] dayOfMonth must be between 1 and 31 (inclusive) when specified.

context RecurringPointInTimeEvent

inv: self.dayOfMonth->notEmpty implies 1 <= self.dayOfMonth <= 31

[C-5] dayOfWeek must be specified when recurringType is everyWeek.

context RecurringPointInTimeEvent

inv: self.recurringType=everyWeek implies self.dayOfWeek->notEmpty

[C-6] hour must be specified when recurringType is everyYear or everyMonth or
everyWeek or everyDay.

context RecurringPointInTimeEvent

inv: self.recurringType=everyYear or self.recurringType=everyMonth or
self.recurringType=everyWeek or self.recurringType=everyDay
implies self.hour->notEmpty
March 2003 OMG-CWM, v1.1: OCL Representation of Warehouse Process Constraints 15-19

15
[C-7] hour must be between 0 and 23 (inclusive) when specified.

context RecurringPointInTimeEvent

inv: self.hour->notEmpty implies 0 <= hour <= 23

[C-8] minute must be specified when recurringType is not everyMinute.

context RecurringPointInTimeEvent

inv: self.recurringType<>everyMinute implies self.minute->notEmpty

[C-9] minute must be between 0 and 59 (inclusive) when specified.

context RecurringPointInTimeEvent

inv: self.minute->notEmpty implies 0 <= self.minute <= 59

[C-10] second must be between 0 and 59 (inclusive).

context RecurringPointInTimeEvent

inv: 0 <= self.second <= 59
15-20 Common Warehouse Metamodel, v1.1 March 2003

Warehouse Operation 16
Contents

This chapter contains the following topics.

16.1 Overview

The Warehouse Operation package contains classes recording the day-to-day operation
of the warehouse processes.

The package covers three separate areas:

• Transformation Executions

• Measurements

• Change Requests

16.1.1 Transformation Executions

Details of the most recent executions of transformations can be recorded, identifying
when they ran and whether they completed successfully. This can be used to determine
how complete and up-to-date specific information in the data warehouse is.

Topic Page

“Overview” 16-1

“Organization of the Warehouse Operation Package” 16-2

“Warehouse Operation Classes” 16-4

“Warehouse Operation Associations” 16-10
March 2003 Common Warehouse Metamodel, v1.1 16-1

16
An ActivityExecution represents an execution of a whole TransformationActivity, and
a StepExecution object represents an execution of an individual TransformationStep. If
a TransformationStep involves the use of an Operation, an associated StepExecution
may reference a CallAction that records the actual arguments passed to the Operation.

These classes allow the lineage of data in a data warehouse to be preserved, by
recording when and how it was derived, and where it came from.

16.1.2 Measurements

Measurement objects allow metrics to be held for any ModelElement. For example,
they may be used to hold actual, estimated, or planned values for the size of a table.

16.1.3 Change Requests

ChangeRequests allow details of proposed changes affecting any ModelElement to be
recorded. They may also be used to keep a historical record of changes implemented or
rejected.

16.2 Organization of the Warehouse Operation Package

The Warehouse Operation package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::ObjectModel::Behavioral

• org.omg::CWM::Analysis::Transformation

Separate model diagrams are shown below for each of the three main areas supported
by the package.
16-2 Common Warehouse Metamodel, v1.1 March 2003

16
Figure 16-1 Transformation Executions

Figure 16-2 Measurements

M ode lE le m en t
(fr om C ore)

Tran s fo rm a t ionA c t ivit y
(from Tra ns fo rm a t ion)

Tran s fo rm a t ionS te p
(from Tra ns fo rm a t ion)

A c t ivity Ex ec u ti on

/ t ra ns fo rm a t ion A c t ivit y : Trans fo rm a t ionA c t ivity
/ s tepE x ec u t ion : S tepE x ec u t ion

1

*

1

ex e c u t io n

*

S tep E x ec u t ion

/ t ra ns fo rm a t ion S tep : Trans fo rm a t ionS tep
/ ac t ivit y E x ec u t ion : A c t ivit y E x ec u t ion
/ c a l lA c t ion : C a llA c t ion

*

1

ex e c u t io n

*

1

0 . .1 *0 . .1 *

Tran s fo rm a t ionE x ec u t ion

s ta rtDa te : Tim e
end D a te : Ti m e
in Pr og res s : Boo lean
s uc c es s ful : Boo lean
s ta tus : E x p re s s io n

C a llA c t ion
(f ro m B e h a v i o ra l)

0 . .1

*

0 . .1

*

M ode lE lem ent
(f rom C ore)

M eas urem e nt

va lue : F l oa t
un it : S t rin g
type : S t ring
c rea t ionD ate : Tim e
e ffe c t iveD ate : Tim e
/ m ode l E lem ent : M ode lE lem ent

1

*

1

* { orde red}
March 2003 OMG-CWM, v1.1: Organization of the Warehouse Operation Package 16-3

16
Figure 16-3 Change Requests

16.3 Warehouse Operation Classes

The Warehouse Operation package contains the following classes, in alphabetical
order:

• ActivityExecution

• ChangeRequest

• Measurement

• StepExecution

• TransformationExecution

16.3.1 ActivityExecution

An ActivityExecution is used to record details of a specific execution of a
TransformationActivity.

Superclasses

TransformationExecution

Contained Elements

StepExecution

Mode lE lement
fr om C ore)

ChangeReques t

c hangeD esc r ipt ion : S tr ing
c hangeR eas on : S tring
s tat us : S t ri ng
c omp let ed : B ool ean
reque s tDate : Time
c omp let ionDat e : Ti m e
/ model E lem ent : M odelEl em ent

1. .*

*

1. .*

* { orde red}
16-4 Common Warehouse Metamodel, v1.1 March 2003

16
References

transformationActivity

stepExecution

16.3.2 ChangeRequest

This represents a request for change affecting one or more ModelElements. The change
request may represent a proposed change or one that has been implemented or rejected.

Superclasses

ModelElement

Attributes

changeDescription

changeReason

Identifies the TransformationActivity of which this is an execution.

class: TransformationActivity

defined by: TransformationActivityExecutions::transformationActivity

multiplicity: exactly one

Identifies the StepExecutions that record the results of executing the individual
TransformationSteps of the TransformationActivity.

class: StepExecution

defined by: ActivityStepExecutions::stepExecution

multiplicity: zero or more

inverse: StepExecution::activityExecution

A description of the change.

type: String

multiplicity: exactly one

The reason or justification for the ChangeRequest.

type: String

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Warehouse Operation Classes 16-5

16
status

completed

requestDate

completionDate

References

modelElement

Constraints

A ChangeRequest instance must not apply to itself. [C-1]

A completionDate may only be provided for a completed ChangeRequest. [C-2]

The status of the ChangeRequest. This would normally contain a string such as proposed,
agreed, implemented, or rejected.

type: String

multiplicity: exactly one

Indicates that no further action is required for this change request; that is, it has either been
implemented or been rejected.

type: Boolean

multiplicity: exactly one

When the change request was raised.

type: Time

multiplicity: exactly one

The date when all action on the change request was completed; that is, when implementation
was completed or it was rejected.

type: Time

multiplicity: zero or one

Identifies the ModelElement(s) to which the ChangeRequest applies.

class: ModelElement

defined by: ModelElementChangeRequest::modelElement

multiplicity: one or more
16-6 Common Warehouse Metamodel, v1.1 March 2003

16
16.3.3 Measurement

A Measurement object indicates the value of some attribute of an object. It can be the
number of rows in a table, the number of pages in an index, the number of different
values in a column, etc.

The flexibility of this class allows for product specific extensions, without changing
the model.

Superclasses

ModelElement

Attributes

value

unit

type

creationDate

The value of this Measurement.

type: Float

multiplicity: exactly one

The unit of measurement.

type: String

multiplicity: exactly one

Identifies how the value was computed. The following values have specific meanings:

measure
estimate
plan
minimum
maximum
average

(measured value)
(estimated value)
(planned value)
(minimum value)
(maximum value)
(average value)

type: String

multiplicity: exactly one

When the value has been computed (see also effectiveDate).

type: Time

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Warehouse Operation Classes 16-7

16
effectiveDate

References

modelElement

Constraints

A Measurement instance must not apply to itself. [C-3]

16.3.4 StepExecution

A StepExecution is used to record details of a specific execution of a
TransformationStep.

Superclasses

TransformationExecution

References

transformationStep

When the value is effective. For measured values, effective and creation dates should be the
same. For estimated actual values, the creation date may be later than the effective date. For
plan values, the effective date is normally later than the creation date.

type: Time

multiplicity: exactly one

Identifies the ModelElement to which the Measurement applies.

class: ModelElement

defined by: ModelElementMeasurement::modelElement

multiplicity: exactly one

Identifies the TransformationStep of which this is an execution.

class: TransformationStep

defined by: TransformationStepExecutions::transformationStep

multiplicity: exactly one
16-8 Common Warehouse Metamodel, v1.1 March 2003

16
activityExecution

callAction

16.3.5 TransformationExecution

A TransformationExecution is used to record details of a specific execution.

Superclasses

ModelElement

Attributes

startDate

endDate

inProgress

Identifies an ActivityExecution of which this StepExecution is a part.

class: ActivityExecution

defined by: ActivityStepExecutions::activityExecution

multiplicity: zero or one

inverse: ActivityExecution::stepExecution

Where a TransformationStep involves the use of an Operation, a CallAction may be used to
record details of the actual parameters used in the StepExecution.

class: CallAction

defined by: StepExecutionCallAction::callAction

multiplicity: zero or one

The date and time when the execution started.

type: Time

multiplicity: exactly one

The date and time when the execution ended.

type: Time

multiplicity: zero or one

A boolean indicating whether or not the execution is in progress.

type: Boolean

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: Warehouse Operation Classes 16-9

16
successful

 status

16.3.5.1 Constraints

If the TransformationExecution is not inProgress, the successful status and endDate
attributes must be present, and endDate must not be earlier than startDate. [C-4]

16.4 Warehouse Operation Associations

The Warehouse Operation package contains the following associations, in alphabetical
order:

• ActivityStepExecutions

• ModelElementChangeRequest

• ModelElementMeasurement

• StepExecutionCallAction

• TransformationActivityExecutions

• TransformationStepExecutions

16.4.1 ActivityStepExecutions protected

Identifies all the StepExecutions associated with an ActivityExecution.

Ends

activityExecution

A boolean indicating whether or not the execution completed successfully.

type: Boolean

multiplicity: zero or one

An expression that may be used to provide status details of the execution. For example it
could provide comments for a successful execution, or details of errors for an unsuccessful
execution.

type: Expression

multiplicity: zero or one

Identifies the ActivityExecution of which the StepExecution is a part.

class: ActivityExecution

multiplicity: zero or one

aggregation: composite
16-10 Common Warehouse Metamodel, v1.1 March 2003

16
stepExecution

16.4.2 ModelElementChangeRequest

Associates ChangeRequests with the ModelElement(s) that they affect.

Ends

modelElement

changeRequest

16.4.3 ModelElementMeasurement

Associates a Measurement object to any ModelElement.

Ends

modelElement

measurement

Identifies the StepExecutions recording the results of executing the individual
TransformationSteps.

class: StepExecution

multiplicity: zero or more

Identifies a ModelElement affected by a ChangeRequest.

class: ModelElement

multiplicity: one or more

Identifies a ChangeRequest for a ModelElement.

class: ChangeRequest

multiplicity: zero or more; ordered

Identifies the ModelElement to which a Measurement relates.

class: ModelElement

multiplicity: exactly one

Identifies a Measurement for a ModelElement.

class: Measurement

multiplicity: zero or more; ordered
March 2003 OMG-CWM, v1.1: Warehouse Operation Associations 16-11

16
16.4.4 StepExecutionCallAction

Where a TransformationStep involves the use of an Operation, this association between
StepExecution and CallAction allows the actual parameters used in a specific execution
of the TransformationStep to be recorded.

Ends

stepExecution

callAction

16.4.5 TransformationActivityExecutions

Identifies the ActivityExecutions that record details of each execution of a
TransformationActivity.

Ends

transformationActivity

execution

16.4.6 TransformationStepExecutions

Identifies the StepExecutions that record details of each execution of a
TransformationStep.

Identifies the StepExecution to which the CallAction applies.

class: StepExecution

multiplicity: zero or more

Identifies the CallAction for a StepExecution.

class: CallAction

multiplicity: zero or one

Identifies the TransformationActivity.

class: TransformationActivity

multiplicity: exactly one

Identifies an ActivityExecution recording details of a specific execution of a
TransformationActivity.

class: ActivityExecution

multiplicity: zero or more
16-12 Common Warehouse Metamodel, v1.1 March 2003

16
Ends

transformationStep

execution

16.5 OCL Representation of Warehouse Operation Constraints

[C-1] A ChangeRequest instance must not apply to itself.

context ChangeRequest

inv: self.modelElement -> forAll (element | element <> self)

[C-2] A completionDate may only be provided for a completed ChangeRequest.

context ChangeRequest

inv: self.completionDate->notEmpty implies self.completed

[C-3] A Measurement instance must not apply to itself.

context Measurement

inv: self.modelElement <> self

[C-4] If the TransformationExecution is not inProgress, the successful status and
endDate attributes must be present, and endDate must not be earlier than startDate.

context TransformationExecution

inv: self.inProgress=false implies (self.successful->notEmpty and self.status-
>notEmpty and self.endDate->notEmpty and self.endDate >= self.startDate)

Identifies the TransformationStep.

class: TransformationStep

multiplicity: exactly one

Identifies a StepExecution recording details of a specific execution of a TransformationStep.

class: StepExecution

multiplicity: zero or more
March 2003 OMG-CWM, v1.1: OCL Representation of Warehouse Operation Constraints 16-13

16
16-14 Common Warehouse Metamodel, v1.1 March 2003

Compatibility with Other Standards 17
Contents

This chapter contains the following topics.

17.1 Introduction

This section identifies, at a very high level, points of both commonality and divergence
between CWM and the following, existing metadata standards:

• The MetaData Coalition’s MetaData Interchange Specification (MDIS), Version 1.1.

• The Meta Data Coalition’s Open Information Model, Version 1.0.

• The OLAP Council’s Multidimensional API (MDAPI), Version 2.0.

Only major commonalities or differences are emphasized. This section can serve as the
starting point for any alignment effort one may want to undertake between CWM and
any one of the other standards. However, it is not intended to be detailed enough to
specify all possible requirements for alignment.

Topic Page

“Introduction” 17-1

“Background: Components of the OMG Metamodeling
Architecture”

17-2

“CWM and MDC Meta Data Interchange Specification” 17-2

“CWM and MDC Open Information Model” 17-5

“CWM and OLAP Council/MDAPI” 17-9
March 2003 Common Warehouse Metamodel, v1.1 17-1

17
17.2 Background: Components of the OMG Metamodeling Architecture

The CWM specification addresses the metadata interchange requirement of the OMG
repository architecture specific to the data warehousing domain. The CWM
specification leverages the following standards:

• MOF, the Meta Object Facility, is an OMG metadata interface standard that can be
used to define and manipulate a set of interoperable metamodels and their instances
(models). The MOF also defines a simple meta-metamodel (based on the OMG
UML - Unified Modeling Language) with sufficient semantics to describe
metamodels in various domains starting with the domain of object analysis and
design. CWM uses MOF as its meta-metamodel.

• UML, the Unified Modeling Language, is an OMG standard modeling language for
specification, construction, visualization, and documentation of the artifacts of a
software system. CWM uses UML as its graphical notation, and defines a base
metamodel; that is, the CWM Object Model that is consistent with the core UML
metamodel.

• XMI, or XML Metadata Interchange, is an OMG standard mechanism for the
stream-based interchange of MOF-compliant metamodels. XMI is essentially a
mapping of the W3C’s eXtensible Markup Language (XML) to the MOF. By being
implicitly MOF-compliant, any CWM model instance can be interchanged by
enabled tools using the facilities of XMI.

In summary, CWM is a domain-specific extension of the OMG’s Metamodeling
Architecture, and as such, implicitly supports the MOF, UML, and XMI standards.
Although CWM has certain “compatibilities” with various other standards (as outlined
in subsequent sections), these compatibilities should be regarded as touch points for
mapping or integration; they do not represent dependencies of any kind. CWM is not
dependent upon any standards outside of those of the OMG Metamodeling
Architecture.

17.3 CWM and MDC Meta Data Interchange Specification

17.3.1 Overview

The Meta Data Coalition’s MetaData Interchange Specification (MDIS) is a non-
proprietary and extensible mechanism for the interchange of meta data between MDIS-
aware tools.

MDIS Version 1.1 consists of a metamodel, which defines the syntax and semantics of
the metadata to be exchanged, as well as the specification of a framework for
supporting an actual MDIS implementation. The MDIS Metamodel is a hierarchically-
structured, semantic database model that’s defined by a tag language. The metamodel
consists of a number of generic, semantic constructs, such as Element, Record, View,
Dimension, Level, and Subschema, plus a Relationship entity that can be used in the
specification of associations between arbitrary source and target constructs. The MDIS
metamodel may be extended through the use of named properties that are understood
17-2 Common Warehouse Metamodel, v1.1 March 2003

17
to be tool-specific and not defined within MDIS. Interchange is accomplished via an
ASCII file representation of an instance of this metamodel. Although support for an
API is mentioned in the specification, no API definition is provided.

The MDIS Access Framework specifies several fairly general mechanisms that support
the interchange of metamodel instances. The Tool and Configuration Profiles define
semaphores that ensure consistent, bidirectional metadata exchange between tools. The
MDIS Profile defines a number of system parameters (environment variables) that
would be necessary in the definition of an MDIS deployment. Finally, Import and
Export functions are exposed by the framework as the primary file interchange
mechanisms for use by tools.

17.3.2 Comparison with CWM

Each of the following bullet items identifies a relevant comparison point between
MDIS and CWM, and describes the degree to which the two standards either converge
or diverge.

Scope

In general, the overall scope of the MDIS specification is considerably narrower than
that of the CWM. Whereas the CWM defines a metamodel of a complete data
warehouse (including various types of databases and data sources, specification of
warehouse processes and deployment structures, and transformations between data
sources and targets), MDIS is restricted to the specification and interchange of
database schema concepts only. While MDIS is sufficiently general to specify just
about any conceivable database schema, there is no explicit support for any process-
oriented semantics. For example, an MDIS metamodel could define a mapping
(association) between a relational source and OLAP target, but can not specify the
transformation logic at the meta-level (this would have to be done within tool-specific
content areas of the interchange structure).

Separation of Metamodels and Instances

MDIS is rather monolithic in that there is no crisp separation between the MDIS
metamodel and its instances. Both are interchanged in a single ASCII file, with
instances realized by values associated with metamodel tags. There is no provision for
a separate definition of the metamodel itself, apart from an instance. It is not possible
for two or more instances to refer to a single metamodel definition. Instead, the
metamodel definition must be copied into each instance. In comparison, the CWM
metamodel, by virtue of XMI, has a normative expression that’s completely
independent of any of its instances. This normative expression is in the form of an
XML Document Type Definition (DTD), and instances, which are streamed via XML
Documents, can simply contain references to their defining DTDs.
March 2003 OMG-CWM, v1.1: CWM and MDC Meta Data Interchange Specification 17-3

17
Visual Modeling Support

The MDIS metamodel has a “text-oriented” definition, with no obvious support for
graphically-oriented expressions. The CWM metamodel, on the other hand, is an
extension of the UML metamodel. This means that any graphical tool (CASE tool,
Web browser, etc.) that understands the UML metamodel can also be easily enabled to
render the CWM metamodel and, therefore, CWM model instances.

Tag Language

The tag language used to define the MDIS metamodel is specific to MDIS only. While
non-proprietary in the sense of tool-specific implementations, it does not enjoy the
same level of broad, industry acceptance that XML does today.

API Support

Since CWM is MOF-compliant, the CWM metamodel has inherent API support in
terms of CORBA IDL. Furthermore, this API support can be mapped to almost any
programming language for which an IDL (or straight MOF) mapping exists. MDIS, on
the other hand, does not appear to support an API. This is a disadvantage because there
is no way to acquire “fine-grained,” programmatic access to the MDIS metamodel.

Relative Cost of Entry

Implementing MDIS requires the writing of interpreters of the ASCII-based, MDIS
metamodel to function according to the MDIS specification. On the other hand, an
XMI rendering of CWM can be consumed and validated by any (relatively inexpensive
or free) XML parser. The consuming XML application can then easily make use of
other XML standard facilities (such as DOM) for browsing or manipulating the
metamodel and its instance data.

In conclusion, CWM is more comprehensive in scope than MDIS 1.1. CWM is more
powerful, more flexible, and easier to adopt and use than MDIS, mainly because it
leverages facilities already defined by the OMG Metamodeling Architecture; that is,
MOF, UML and XMI, and because there is widespread industry support for these
standards and their attendant implementation technologies (such as XML parsers).
Although CWM is oriented to the data warehousing environment, the degree of
package separation in the CWM metamodel means that submodels can easily be co-
opted for other purposes. Anything that can be accomplished using MDIS can be
accomplished using CWM.

However, in all fairness, it should be noted that MDIS is a relatively older standard that
was crafted prior to the widespread acceptance of technologies such as UML and
XML, and that it could not have possibly leveraged such technologies at the time it
was drafted. MDIS represents a noble early attempt at defining a metadata interchange
standard and is a baseline against which subsequent standards must be compared. At
the time of this writing, the MDC has decided that MDIS will be superseded by Open
Information Model (OIM), which is discussed next.
17-4 Common Warehouse Metamodel, v1.1 March 2003

17
17.4 CWM and MDC Open Information Model

17.4.1 Overview

The Meta Data Coalition’s Open Information Model (OIM) is a non-proprietary and
technology-neutral, and extensible specification of the core metadata types that are
representative of enterprise-wide information architectures and environments. This
enterprise-wide view includes analysis and design, objects and components, database
and warehousing, and knowledge management, so in this sense, the scope of the OIM
is much broader than that of the CWM, which is focused primarily on the data
warehousing domain.

MDC-OIM was originally developed primarily by Microsoft Corporation and Platinum
Technology. OIM was subsequently transferred to the MDC, under whose auspices it
continues to evolve as a public-domain specification.

MDC-OIM uses UML as its formal specification language. OIM defines common
representations of various types of data sources and targets (record, relational, OLAP)
and transformations between sources and targets. The OIM metamodel derives from
the UML metamodel, and the OIM specification claims that OIM has a repository
orientation, but unlike CWM, is not compliant with the MOF. OIM does not use XMI
as an interchange mechanism. Rather, it uses a specific OIM to XML encoding to
generate interchange files.

The following subsections describe commonalities and differences between CWM and
OIM. In the interests of specificity, these comparisons are limited to the salient features
of the Database Schema, Data Transformation, OLAP Schema, and Record-Oriented
Database Schema models. These comparisons can serve as the starting point for an
alignment exercise between CWM and OIM in these model areas, but it should be
noted that not all possible points of convergence and divergence are covered here.

17.4.2 Comparison with CWM: Database Schema

The MDC-OIM Database Schema is a metamodel describing relational data sources.
Just as with CWM, the purpose of the relational metamodel is to provide a means by
which tools may exchange commonly-understood descriptions of relational schemas,
with the possible inclusion of tool-specific extensions. It is modeled largely after the
ANSI SQL-92 standard. Here are the major comparison points between the CWM
Relational Package and the OIM Database Schema:

• Reference standards. OIM is based on the SQL-92 standard, while CWM is based
on the SQL-99 standard and is compatible with JDBC.

• Base metaclasses. Both OIM and CWM have fairly similar base metaclass
structures, centered on the notion of column set and the subsequent derivation of
table, view, and query from the column set.

• Keys and indexes. The concepts of keys (unique keys, foreign keys) and indexes are
defined in the CWM as CWM Foundation metaclasses, so they have general
applicability to other data models within the CWM, not just the CWM Relational
March 2003 OMG-CWM, v1.1: CWM and MDC Open Information Model 17-5

17
Package. OIM confines keys and indexes to its relational schema. Hence, only OIM
data source models that derive from, or are based on, the Database Schema, can
provide these concepts.

• Catalog and schema. Both the CWM and OIM relational models support the basic
structure of catalogs containing schemas and schemas, in turn, containing all other
relational objects.

• Deployment structures. The OIM generally provides Logical and Deployment
subclasses of all of its major semantic classes throughout the OIM Database
Schema. For example, LogicalTable and DeployedTable both derive from the
(semantic) Table metaclass. However, these Logical and Deployed subclasses are
generally not defined much further, except DeployedCatalog is represented as being
owned by a DataSource, which in turn has associations with metaclasses
representing Connections and Providers. Note that most of the OIM models derive
from the Database Schema model; hence, the ultimate deployment of any part of the
OIM must be via mappings to the Database Schema (relational) metamodel. The
overall deployment structures of the CWM metamodel, by comparison, are much
more general than this. CWM defines a Software Deployment metamodel that
defines concepts of providers, data managers, and connections. Any logical data
model (whether Relational, Multidimensional, Record) models its own deployment
by mapping to an appropriate metaclass of the CWM Software Deployment
package. For example, the Catalog metaclass of the CWM Relational metamodel is
implicitly owned by the DataManager metaclass of the Software Deployment
metamodel, and this metamodel in turn relates the physical DataManager to its
associated DataProviders, ProviderConnections, Machine, Site, and most
importantly, deployment-specific TypeMappings (which in turn derive from the
CWM Foundation package).

17.4.3 Comparison with CWM: Data Transformations

The MDC-OIM Data Transformations metamodel, like its CWM counterpart, defines
metadata that describes the processes that map and transform the contents of various
source and target data stores. This might include, for example, the transformation of
operational data to a normalized, relational representation or analysis-oriented store.
Both also provide facilities whereby data lineage may be tracked across a series of
transformations.

There are, however, some fundamental differences between the two metamodels. In
particular, the OIM Data Transformation model is specific to the OIM Database
Schema model. In its current form, it can describe relational-to-relational
transformations only, and has certain dependencies on the Database Schema package
(for example, the CodeDecodeSet derives from Database Schema Columns).

The CWM Transformation package, on the other hand, is more generalized and is not
tied to any one particular data store or schema. This is because the CWM
Transformation package describes transformational mappings in terms of the Object
Model core metaclasses of Classifier and Feature. Hence, transformation mappings
may be defined on any CWM metaclasses that derive from these metaclasses.
17-6 Common Warehouse Metamodel, v1.1 March 2003

17
For example, under CWM, Relational Tables and Multidimensional Dimensions derive
from Object Model Class, respectively, and CWM Relational Columns and
Multidimensional DimensionedObjects derive from Object Model Attribute,
respectively. So the same Transformation metamodel can be used to describe both
relational-to-relational mappings, as well as relational-to-multidimensional mappings.

The CWM and MDC-OIM metamodels are most similar, however, in their overall
representation of the transformation process. Both metamodels support the
specification of transformations in terms of TransformationSteps, TransformationTasks,
and dependencies or constraints between steps. Both support the generic specification
of Transformation logic based on expressions; however, CWM Transformations can be
specified using either an opaque expression (a textual string) or a tree-based expression
structure (which comes from the CWM Foundation package’s Expression model).
Using structured expressions further facilitates the tracking of transformation lineage.

The historical records of transformations are modeled in similar ways in CWM and
MDC-OIM. OIM’s StepExecution and ActivityExecution correspond to similar objects
in the CWM Warehouse Operation package.

17.4.4 Comparison with CWM: OLAP Schema

MDC-OIM provides an OLAP Schema metamodel for describing the use of
multidimensional database technology within the enterprise in support of advanced
business analytics and decision support capabilities. OLAP technology has broad
applicability, both within the data warehousing environment, specifically, and across
the enterprise, in general. Hence, both CWM and OIM have a requirement for
representing OLAP and multidimensional metadata.

The CWM and MDC-OIM OLAP metamodels have many similarities, but many
fundamental differences, as well. Perhaps the most fundamental difference is in the
overall orientation of the two metamodels.

The CWM OLAP metamodel is a pure, semantic model of general OLAP concepts,
and does not define any particular logical or physical deployment constructs of its own.
This is done for two reasons:

• OLAP and multidimensional concepts (what the user sees) tend to be rather abstract
in nature and very broad in applicability; for example, notions such as “dimension”
and “dimensioned variable” are concepts that span the enterprise and really aren’t
specific to any particular technology that provides computational support for such
concepts.

• OLAP concepts may be implemented in many different ways, depending on the
objectives of the enterprise and the technologies available. For example, OLAP
applications are often implemented using either relational database technology
(ROLAP), multidimensional database servers (MOLAP), or some hybrid mixture of
both relational and multidimensional technologies.

So the CWM OLAP metamodel defines generic OLAP concepts only and leverages the
CWM Transformation metamodel to map OLAP metaclasses to metaclasses of other
packages that could be used to describe logical models of implementations (for
March 2003 OMG-CWM, v1.1: CWM and MDC Open Information Model 17-7

17
example, the CWM Relational and Multidimensional metamodels). Those logical
models, in turn, rely on the Software Deployment metamodel to describe their actual,
physical deployments.

The MDC-OIM OLAP model, on the other hand, is largely derived from the OIM
Database Schema model (in the same manner that the Data Transformation model is).
For example, Cubes and Partitions are ultimately derived from ColumnSet. This may
have the effect of restricting the usage of the OIM OLAP model to the representation
of relational-OLAP constructs only.

The OIM OLAP model also includes a number of logical and physical deployment
metaclasses, such as OLAPServer, DataSource, and Connection metaclasses, plus
DeployedOLAPDatabase and LogicalOLAPDatabase subclasses, in keeping with the
OIM’s overall dichotomization of the concepts of logical versus deployed subclasses.
As stated earlier in the discussion on the relational Database Schema, there is no need
for the CWM OLAP metamodel to include these kinds of metaclasses, since logical
descriptions are implicitly defined by transformation mappings of OLAP semantics to
more logical constructs (for example, relational), and the physical deployment
metaclasses are provided within a single, Software Deployment metamodel.

Areas where the CWM OLAP and OIM OLAP metamodels are mostly (though not
completely) similar include the following:

• Cubes and Dimensions. Both metamodels support the concept of Cubes and
Dimensions being separate from one another and both contained within an OLAP
Database (called Schema in CWM). Both support the special designation of a Time
Dimension, although the CWM OLAP metamodel further defines a Measures
Dimension. Both metamodels also support the concepts of virtual versus physical
Cubes, as well as the concept of a Cubes being composed from sub-cubes (called
Cube Regions by CWM and Partitions by OIM). However, OIM includes the notion
of an Aggregation metaclass, which represents pre-calculated aggregations in
relational stores, generally what one might find in a typical, relational Star-schema
deployment of OLAP. CWM provides no such concept, because this is regarded as
being an implementation detail that would be addressed at the model instance level.

• Levels and Hierarchies. Both OLAP metamodels support the concept of Hierarchy
as being a separate entity from its owning Dimension. Both metamodels support the
concept of multiple Hierarchies per Dimension. Both metamodels also support the
concepts of Dimension Levels and the association of Dimension Levels with
Dimension Hierarchies, and both also define mapping constructs that enable
Hierarchies and Levels to be mapped to logical deployment structures. However,
within the OIM OLAP metamodel, these deployment mappings are explicitly geared
toward a relational database (and optionally Star-Schema) deployment, whereas the
CWM OLAP contains mapping constructs that derive from more general CWM
Transformation mapping metaclasses and, hence, can be used to specify deployment
mappings to any conceivable logical structure that might be supported elsewhere
within the CWM metamodel.
17-8 Common Warehouse Metamodel, v1.1 March 2003

17
17.4.5 Comparison with CWM: Record-Oriented Database Schema

The MDC-OIM Record-Oriented Database Schema is a metamodel describing record-
oriented data sources. Just as with CWM, the purpose of the record-oriented
metamodel is to provide a means by which tools may exchange commonly-understood
descriptions of record-oriented data resources, with the possible inclusion of tool-
specific extensions. Here are the major comparison points between the CWM Record
package and the OIM Record-Oriented Database Schema:

• Scope. OIM limits the scope of its record-oriented model to database schemas.
CWM, in contrast, permits the description of a broader range of record data
resources including both traditional record-oriented resources such as databases,
files, and programmatic data structures and non-traditional, hierarchical data
resources such as documents, reports, and forms.

• Specificity. OIM includes metaclasses supporting a number of language-specific
constructs such as COBOL renaming and data structure overlay capabilities and
source management constructs such as Copylibs. Many of these constructs are not
reusable by other programming languages that support similar notions. CWM, on
the other hand, models such capabilities in a general fashion and relegates
language-specific constructs to the appropriate language extension packages.

17.5 CWM and OLAP Council/MDAPI

17.5.1 Overview

The OLAP Council’s Multidimensional API (MDAPI) is a non-proprietary
specification for an object-oriented API that exposes a full range of OLAP functions
that a given vendor’s implementation of an OLAP product might want to support. This
includes: Server connection and login, Metadata querying functions, multidimensional
data querying functions, generic filtering and sorting capabilities, and error handling
and progress monitoring functions. Vendors implementing the MDAPI may also add
their own extensions wherever necessary, through pass-through capabilities inherent in
the MDAPI.

The MDAPI provides a query-oriented interface to an OLAP metadata/data provider
(such as an OLAP server) that can be used to expose both metadata and data cell
contents of the provider, and supports the incremental modification of queries, as well
as the navigation of result sets and extraction of values from result sets.

17.5.2 Comparison with CWM

There are a number of fundamental differences between the MDAPI and the CWM that
make direct comparisons somewhat difficult.
March 2003 OMG-CWM, v1.1: CWM and OLAP Council/MDAPI 17-9

17
First of all, the MDAPI is an implementation model, rather than a metamodel. The
MDAPI primarily defines interfaces that can be used to query metadata from an OLAP
metadata provider, which usually (but not necessarily) means a commercially-available
OLAP server. For example, an OLAP server can utilize both the CWM OLAP
metamodel and the MDAPI in the following manner:

The server initially consumes a CWM model instance and sets up its internal,
multidimensional metadata structures accordingly. After the server has been loaded
with data input values and calculations, etc., are performed, clients of the server
could then issue multidimensional queries against the server through the MDAPI.
This has the benefit of providing a unified metadata instance and data querying
mechanism. For example, a user can define several metadata queries to subset
Dimension Members and then issue a data query that uses the metadata query result
sets as the basis for forming and exposing a data result (essentially a cube region or
cube view). In this scenario, CWM is used to define the core OLAP metadata to a
CWM-enabled provider, and the provider exposes the MDAPI as its primary client
interface for exposing both metadata instances and multidimensional data values.

Note that, since a CWM model instance is MOF-compliant, instances of CWM
metaclasses have inherent support for CORBA (or programming language mapped)
interfaces that provide access and navigation of the model itself. However, this is not
necessarily sufficient for integrated multidimensional metadata and data querying,
which requires support for generating and navigating result sets, among other things
(since the CWM OLAP metamodel is a semantic model and not an implementation
model, it defines neither behavioral semantics, nor interfaces). Hence, the MDAPI and
CWM can play rather complementary roles in the deployment of a multidimensional
data server.

The key to integrating the CWM and the MDAPI in the manner described above is
through the alignment of the CWM OLAP metamodel and MDAPI data model, a
conceptual model that defines the semantic underpinnings of the metadata objects and
interfaces. Alignment, in this case, would generally consist of mapping the major
classes of the MDAPI data model to the CWM OLAP metaclasses. The following
paragraphs do not attempt such a detailed mapping/derivation, but rather just point out
some of the major areas of correspondence between the two models:

• Cube. MDAPI, being primarily a query model, does not define the notion of Cube
as a persistent, multidimensional database, but rather defines a Cube View. Cube
View corresponds closely to the CWM OLAP concept of Cube Region, if the Cube
Region’s formula is interpreted as the multidimensional query processed by the
Cube View.

• Dimension. Both the MDAPI data model and CWM OLAP metamodel support
similar concepts of Dimension and Dimension types.

• MemberSelection. Both models support the concept of a member query on a
Dimension. This is called MemberSelection by CWM, and Membership by MDAPI.
In both models, this member query is expression based.

• Hierarchy and Level. Both models support the concepts of Hierarchy and Level and
associations between them. A Dimension can have an arbitrary number of
Hierarchies in either model. In the MDAPI data model, Dimension, Hierarchy, and
17-10 Common Warehouse Metamodel, v1.1 March 2003

17
Level are all subclasses of Membership, and are all, therefore, expression (query)
based by default. In the CWM OLAP metamodel, only Level derives from
MemberSelection, but the correspondence in this regard is close enough.

• Properties. The MDAPI data model supports user-defined property types and values
as a means of extending the core data model. A client of the metadata and data
query objects (MemberSelection and CubeView) can specify both searches and sorts
based on property types and value or ranges of values. The closest equivalent the
CWM OLAP metamodel has in this regard is the general association to UML
Attributes that’s inherited by any subclasses of the core UML Class. So, at least at
the instance level, there is a close correspondence between both models in this
regard, as well.
March 2003 OMG-CWM, v1.1: CWM and OLAP Council/MDAPI 17-11

17
17-12 Common Warehouse Metamodel, v1.1 March 2003

Conformance Points 18
Contents

This chapter contains the following topics.

18.1 Introduction

This section describes the required and optional points of compliance with the CWM
specification.

18.2 Required Compliance

18.2.1 CWM Metamodel Compliance

A CWM-compliant warehouse platform is required to implement the following
packages:

• ObjectModel

• Foundation

• Transformation

• Warehouse Process

• Warehouse Operation

Topic Page

“Introduction” 18-1

“Required Compliance” 18-1

“Optional Compliance Points” 18-2
March 2003 Common Warehouse Metamodel, v1.1 18-1

18
A warehouse platform provides generic capabilities for integrating different types of
warehouse tools and for managing warehouse processes and warehouse operations.

18.2.2 CWM XML Compliance

The CWM XML is a normative part of CWM. This definition must be used when
interchanging the CWM metamodel, in accordance with the XMI specification.

18.2.3 CWM IDL Compliance

The CWM IDL is a normative part of CWM. This definition, or equivalent OMG-
compliant language bindings, must be used for programmatic access to warehouse
metadata conforming to the CWM metamodel, in accordance with the MOF
specification.

18.2.4 CWM DTD Compliance

The CWM DTD is a normative part of CWM. This definition must be used when
interchanging warehouse metadata conforming to the CWM metamodel, in accordance
with the XMI specification.

18.3 Optional Compliance Points

A CWM-compliant warehouse platform or warehouse tool that supports relational data
resources is required to implement the following package and its dependencies:

• Relational

A CWM-compliant warehouse platform or warehouse tool that supports record data
resources is required to implement the following package and its dependencies:

• Record

A CWM-compliant warehouse platform or warehouse tool that supports
multidimensional data resources is required to implement the following package and its
dependencies:

• Multidimensional

A CWM-compliant warehouse platform or warehouse tool that supports XML data
resources is required to implement the following package and its dependencies:

• XML

A CWM-compliant warehouse tool that provides data transformation functionality is
required to implement the following package and its dependencies:

• Transformation

A CWM-compliant warehouse platform or warehouse tool that provides OLAP
functionality is required to implement the following package and its dependencies:
18-2 Common Warehouse Metamodel, v1.1 March 2003

18
• OLAP

A CWM-compliant warehouse platform or warehouse tool that provides data mining
functionality is required to implement the following package and its dependencies:

• Data Mining

A CWM-compliant warehouse platform or warehouse tool that provides information
visualization functionality is required to implement the following package and its
dependencies:

• Information Visualization

A CWM-compliant warehouse platform or warehouse tool that provides or handles
business metadata is required to implement the following package and its
dependencies:

• Business Nomenclature
March 2003 OMG-CWM, v1.1: Optional Compliance Points 18-3

18
18-4 Common Warehouse Metamodel, v1.1 March 2003

CWM Data Types 19
Contents

This chapter contains the following topics.

19.1 Overview

The CWM Foundation, in its DataTypes package, provides metamodel types
supporting definition of data types required by data sources, data targets, and tools that
implement transformations between them. Although these metamodel types are
sufficient to permit the definition of most data types, they do not themselves actually
create definitions of data types. This is because the metamodel types are M2 level
types whereas data type definitions are M1 level definitions.

This approach to the creation of data types was chosen because the specific data type
needs of individual transformation tools and source and target data systems are
sufficiently different that their interchange cannot be specified fully in advance.
Unfortunately, data type incompatibility is often true even for systems that claim to
support the same data language (consider, for example, the many variants of “SQL”).

Topic Page

“Overview” 19-1

“Organization of the CWM Data Types” 19-2

“CORBA IDL Data Types” 19-3

“J ava Data Types” 19-10

“SQL-99 Data Types” 19-11

“Type Mapping Examples” 19-14
March 2003 Common Warehouse Metamodel, v1.1 19-1

19
Even though some tools and systems may enjoy compatibility for commonly used data
types (such as integer and string), systems that are compatible across the full range of
their data types are indeed rare.

Data type incompatibilities between systems result from a number of factors including
specific characteristics of hardware implementation platforms, software vendors’ desire
to differentiate their products in the marketplace, and other, largely historical, causes.
These factors combine to make definition of a common set of data types supporting the
diverse, and frequently incompatible, needs of existing and future CWM-compliant
tools impossible in any practical way. Consequently, modelers of software systems in
CWM may find it necessary to create both data type definitions compatible with their
tools and to create TypeMapping instances to indicate mappings between their tools’
data types and the native data types of systems with which they interchange data.

Nevertheless, the CWM recognizes the importance of shared data types -- especially
those based on industry standards such as CORBA IDL, SQL and Java -- as a means of
promoting data interchange between disparate systems. Consequently, this chapter
provides a set of data type definitions for several widely used industry specifications.
These data type definitions serve two purposes within the CWM:

• Provide a pre-defined basis for data interchange among diverse tools and systems
that support a selection of standard data types.

• Provide examples of the appropriate use of the CWM Foundation’s metamodel
types for creating tool-specific data type definitions.

To further promote understanding of the appropriate use of other CWM Foundation
metamodel types, this chapter also contains examples showing how tool-specific
expressions can be mapped into the CWM Foundation’s expression metamodel types.

In general, the CWM packages only support data type attributes that are considered
necessary for interchange of information between systems; attributes that are thought
to be system specific are left to tool modelers. When such attributes must be
represented, modelers may create model-specific types that derive from supplied CWM
types and house the necessary attributes therein.

The information and definitions in this chapter, while considered important to
accomplishing the overall goals of CWM, are supplementary in nature and are not
considered a normative part of the CWM specification.

19.2 Organization of the CWM Data Types

The CWM DataTypes contains definitions of data types for the CORBA IDL language
[CORBA], the SQL-99 language [SQL], and the Java programming language [Java].
Because they are M1 level entities, data type definitions for these languages are
expressed in a tabular form that indicate the instances of M2 level CWM metaclasses
that can be created in an appropriate CWM metadata store to define the M1 level data
types. The data type definitions might then be used to create M1 level models
appropriate for specific tools and software systems.
19-2 Common Warehouse Metamodel, v1.1 March 2003

19
The example M1 instances define only primitive data types; structured data types are
not generally defined in these examples. (However, the CORBA IDL metamodel types
required to define M1 structured types are provided as an example of how this might
be done, if needed.) Data types that require no additional information to complete their
definition, such as SQL’s INTEGER type, are completely defined. However, data types
that are in some sense “parameterized,” such as SQL’s CHARACTER(n) and
FIXED(p, s) data types, are incompletely defined because it is not practical to
anticipate all possible parameter values! Tools that need to declare such parameterized
data types should do so as they encounter them. The data type instances in this chapter
define a few parameterized data types, where appropriate, as examples.

As an example of appropriate usage of the CWM Foundation’s TypeMapping
metamodel to indicate preferred and non-preferred mappings between the data types of
different tools and software systems, the last section of the chapter contains some
example mappings between Java and CORBA IDL and between Java and SQL-99.

19.3 CORBA IDL Data Types

The CORBA IDL Data Types package depends on the following packages:

• org.omg::CWM::ObjectModel::Core

• org.omg::CWM::Foundation::DataTypes

19.3.1 Overview

A CORBA IDL metamodel extension to the CWM Foundation is required to support
the CORBA IDL data types in the CWM model. It is provided here as an example of
extending the DataTypes metamodel and is not a normative part of the CWM
specification.

The chief motivation for the creation of this metamodel is the need to provide a
typeCode attribute for CORBA IDL data types. These extensions also serve as an
illustration of the use of CWM Foundation metamodel types as superclasses of the
metamodel types for a specific language environment.

19.3.2 Organization of the CORBA IDL Data Types

Because the M1 data type instances are of primary import and because of the length of
the metamodel subsection, the M1 instances are described before the metamodel types.
When reviewing the M1 instances, refer to the appropriate metamodel type definitions
and Figure 19-1 for more information about metamodel types.
March 2003 OMG-CWM, v1.1: CORBA IDL Data Types 19-3

19
Figure 19-1 CORBA IDL data type metamodel types

19.3.3 CORBA IDL Data Type Instances

Data type instances for CORBA IDL non-structured data types are presented in the
following table. The M1 data types instances correspond to those described in the
CORBA IDL language specification.

CORBA IDL
Data Type

Instance of Attributes

any IDLType typeCode = tk_any

octet IDLType typeCode = tk_octet

boolean IDLType typeCode = tk_boolean

char IDLType typeCode = tk_char

wchar IDLType typeCode = tk_wchar

short IDLType typeCode = tk_short

long IDLType typeCode = tk_long

long long IDLType typeCode = tk_longlong

unsigned short IDLType typeCode = tk_ushort

unsigned long IDLType typeCode = tk_ulong

DataType
(f rom Core)

Enumeration
(f rom DataTy pes)

Uni on
(f rom D ata Ty pes)

Excep ti onT yp e WstringType

length : Integer

StringType

length : Integer

FixedType

digits : Integer
scale : Integer

Alias

St ructType

UnionTypeEnumT ype

TypeAlias
(f rom DataTy pes)

ArrayT ype

length : Integer
/ elementType : IDLType

IDLType

typeCode : TypeCode

1

*

elementType

1

*

Seque nce Type

length : Integer
/ elementType : IDLType

1

*

elementType1

*

19-4 Common Warehouse Metamodel, v1.1 March 2003

19
19.3.4 CORBA IDL Data Types Classes

CORBA IDL metamodel classes are provided to support the definition of CORBA data
types that cannot be represented simply as instances of the IDLType class. This group
of types includes all CORBA structured and array-like data types as well as those that
also derive from the types defined in the CWM Foundation’s Data Types conceptual
area.

19.3.4.1 Alias

The Alias type represents CORBA IDL type aliases. Aliases must be represented by
their own type so that they can have a typeCode attribute as required by the CORBA
IDL definition.

Superclasses

IDLType

TypeAlias

19.3.4.2 ArrayType

The ArrayType class represents CORBA IDL array data types.

Superclasses

IDLType

Attributes

length

unsigned long long IDLType typeCode = tk_ulonglong

float IDLType typeCode = tk_float

double IDLType typeCode = tk_double

long double IDLType typeCode = tk_longdouble

The number of elements in the array. Multiply dimensioned arrays are treated as arrays of array
in CORBA IDL.

type: Integer

multiplicity: exactly one

CORBA IDL
Data Type

Instance of Attributes
March 2003 OMG-CWM, v1.1: CORBA IDL Data Types 19-5

19
References

elementType

19.3.4.3 EnumType

The EnumType class represents the CORBA IDL enumerated data type, enum.

Superclasses

IDLType

Enumeration

19.3.4.4 ExceptionType

The ExceptionType class represents the CORBA IDL exception data type.

Superclasses

IDLType

19.3.4.5 FixedType

The FixedType class represent CORBA IDL fixed data types.

Superclasses

IDLType

Attributes

digits

The type of elements of an array.

class: IDLType

defined by: ArrayElementType::elementType

multiplicity: exactly one

Number of digits of precision.

type: Integer

multiplicity: exactly one
19-6 Common Warehouse Metamodel, v1.1 March 2003

19
scale

19.3.4.6 IDLType

The IDLType class is a common superclass for all CORBA IDL data type classes that
require a typeCode.

Superclasses

DataType

Attributes

typeCode

19.3.4.7 SequenceType

The SequenceType class represents CORBA IDL sequence data types. Sequences are
single dimensioned arrays of a user-specified type.

Superclasses

IDLType

Attributes

length

Number of implied decimal places. Scale may be either positive (implied left decimal places) or
negative (implied right decimal places).

type: Integer

multiplicity: zero or more

The type code value identifying a CORBA IDL data type.

type: TypeCode

multiplicity: exactly one

The number of elements in the sequence expressed in type units.

type: Integer

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: CORBA IDL Data Types 19-7

19
References

elementType

19.3.4.8 StringType

The StringType class represents CORBA IDL string data types.

Superclasses

IDLType

Attributes

length

19.3.4.9 StructType

The StructType class represents CORBA IDL user -defined data types created with the
typedef keyword.

Superclasses

IDLType

19.3.4.10 UnionType

The UnionType class represents CORBA IDL union data types.

Superclasses

IDLType

Union

The type of elements of a sequence.

class: IDLType

defined by: SequenceElementType::elementType

multiplicity: exactly one

The number of characters in the string. If length is zero, the string is considered unbounded.

type: Integer

multiplicity: exactly one
19-8 Common Warehouse Metamodel, v1.1 March 2003

19
19.3.4.11 WstringType

The WstringType class represents CORBA IDL wstring data types. A CORBA wstring
is an ordered sequence of wchars, each of which represents a ‘wide’ character from
any character set.

Superclasses

IDLType

Attributes

length

19.3.5 CORBAL IDL Data Types Associations

19.3.5.1 ArrayElementType Protected

Associates an ArrayType with the type of its elements.

Ends

arrayType

elementType

19.3.5.2 SequenceElementType Protected

Identifies the type of elements in a sequence.

The number of wchars in the string. If length is zero, the string is considered unbounded.

type: Integer

multiplicity: exactly one

Arrays having elements of this type.

class: ArrayType

multiplicity: zero or more

Identifies the type of an array’s elements.

class: IDLType

multiplicity: exactly one
March 2003 OMG-CWM, v1.1: CORBA IDL Data Types 19-9

19
Ends

elementType

sequence

19.4J ava Data Types

Creation of primitive data type instances for the Java language is straightforward
because they are all simple, unparameterized types. These primitive data types are used
for simple declarations and for building more complex data types implemented as Java
classes. Even such common data types as String are implemented as classes in Java.
The CWM ObjectModel provides sufficient support for the description of Java classes
that CWM classes (notably, Class and Attribute) should be used directly to define any
needed Java classes. Consequently, CWM need not provide metamodel classes
supporting the definition of Java classes or primitive data types -- the available CWM
classes are sufficient.

The Java language specification provides additional semantics about the meaning of,
and restrictions on, primitive data types. For example, the int data type is restricted to
integer values in the range -27 to 27 - 1. However, because these restrictions are
constant for all variables of type int, they do not need to be encoded into the
metamodel. Consequently, the DataType class is sufficient as the container of all Java
primitive data types as is shown the following table.

Identifies the type of elements in a sequence.

class: IDLType

multiplicity: exactly one

Sequences of this type.

class: SequenceType

multiplicity: zero or more

Data type Instance of Attributes

boolean DataType None

char DataType None

byte DataType None

short DataType None

int DataType None

long DataType None

double DataType None

float DataType None
19-10 Common Warehouse Metamodel, v1.1 March 2003

19
19.5 SQL-99 Data Types

The data types defined by the SQL-99 specification are created within CWM as
instances of the Relational package’s SQLSimpleType metaclass. These data type
instances are a superset of those defined by the SQL-92 specification and follow the
SQL-99 specification’s Data_Type_Descriptor information. Practical implementations
of SQL-based systems will have variations on the types presented here; consult
relevant product information for details.

The SQL-99 data type instances provide a number of examples of the use of
“parameterized” types. Because the CWM Relational package separates the notions of
data type and column, the data type instances do not contain all seemingly relevant
data type parameters. Rather, the Column instances associated with a particular Table
instance contain the values of some parameters. For example, for a Column instance of
declared data type DECIMAL(5, 2), the precision (“5”) and scale (“2”) would be
recorded in the attributes Column::precision and Column::scale, respectively, whereas
the DECIMAL data type instance would have its SQLSimpleType::precisionRadix
attribute set to the value 10, meaning that the precision and scale values are stored as
base-10 numeric values. Similarly, a Column instance declared as CHARACTER(80)
would have the Column::length attribute set to 80 while the CHARACTER data type’s
SQLSimpleType::characterOctetLength attribute would be set to value 8 indicating that
the data type contains 8-bit character codes.

SQL-99 Data Type Instance of Attributes

BIT SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

BIT VARYING SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

BINARY LARGE OBJECT* SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

CHARACTER SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null
March 2003 OMG-CWM, v1.1: SQL-99 Data Types 19-11

19
CHARACTER VARYING SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

CHARACTER LARGE
OBJECT*

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

NATIONAL CHARACTER SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

NATIONAL CHARACTER
VARYING

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

NATIONAL CHARACTER
LARGE OBJECT*

SQLSimpleType characterMaximumLength = IDV
characterOctetLength = null (defined in Column)
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

NUMERIC SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = null (defined in Column)
numericPrecisionRadix = 10
numericScale = null (defined in Column)
dateTimePrecision = null

DECIMAL SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = null (defined in Column)
numericPrecisionRadix = 10
numericScale = null (defined in Column)
dateTimePrecision = null

INTEGER SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2 or 10 (IDV)
numericScale = 0
dateTimePrecision = null

SQL-99 Data Type Instance of Attributes
19-12 Common Warehouse Metamodel, v1.1 March 2003

19
SMALLINT SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2 or 10 (IDV)
numericScale = 0
dateTimePrecision = null

FLOAT SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2
numericScale = null
dateTimePrecision = null

REAL SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2
numericScale = null
dateTimePrecision = null

DOUBLE PRECISION SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = 2
numericScale = null
dateTimePrecision = null

BOOLEAN* SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = null
numericPrecisionRadix = null
numericScale = null
dateTimePrecision = null

DATE SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

TIME SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

TIME WITH TIMEZONE SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

SQL-99 Data Type Instance of Attributes
March 2003 OMG-CWM, v1.1: SQL-99 Data Types 19-13

19
19.6 Type Mapping Examples

To promote understanding of the appropriate use of the CWM Foundation’s
TypeMapping package for recording mappings between data types defined by different
software systems, this section presents example instances illustrating how the CORBA
IDL and Java primitive data types can be mapped to each other and how the Java and
SQL-99 primitive data types can be mapped to each other. These mappings are
obtained from relevant published standards documents: [IDL-Java], [Java-IDL] and
[JDBC]. Although the CWM Relational package supports the SQL-99 standard, the
type mappings between Java and SQL are derived from the JDBC specification which
uses X/Open CLI SQL as its SQL language standard rather than SQL-99.
Consequently, the Java/SQL mappings are not exactly equivalent to those that would be
needed to map to SQL-99 but should serve to illustrate the mapping techniques
required. SQL typeNumbers from the java.sql.Types file can be used to uniquely
identify SQL types.

The following tables present sample type mapping instances for CORBA IDL/Java and
Java/SQL-99 mappings. Because TypeMapping instances are unidirectional, two
instances -- one for each direction -- are required to indicate that a pair of data types
can be mutually interchanged. To keep the size of the tables manageable, only type
mapping instances with isBestMatch = True are shown; other, non-preferred mappings

TIMESTAMP SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

TIMESTAMP WITH
TIMEZONE

SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

INTERVAL SQLSimpleType characterMaximumLength = null
characterOctetLength = null
numericPrecision = IDV
numericPrecisionRadix = IDV
numericScale = null
dateTimePrecision = IDV

SQL-99 Data Type Instance of Attributes
19-14 Common Warehouse Metamodel, v1.1 March 2003

19
can be added as necessary to support particular implementation needs. Also, values for
the isLossy attribute of TypeMapping instances are omitted because their precise values
may be implementation dependent.

Table 19-1 TypeMapping instances mapping CORBA IDL data types to Java data types

SourceType (IDL) TargetType (Java)

boolean boolean

char char

wchar char

octet byte

string java.lang.String

wstring java.lang.String

short short

unsigned short unsigned short

long int

unsigned long int

long long long

unsigned long long long

float float

double double

fixed java.math.BigDecimal

Table 19-2 TypeMapping instances mapping Java data types to CORBA IDL data types

SourceType (Java) TargetType (IDL)

void void

boolean boolean

char wchar

byte octet

short short

int long

long long long

float float

double double
March 2003 OMG-CWM, v1.1: Type Mapping Examples 19-15

19
Table 19-3 TypeMapping instances mapping X/Open CLI SQL data types to Java data type

SourceType (X/Open CLI SQL) TargetType (Java)

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Table 19-4 TypeMapping instances mapping Java data types to X/Open CLI SQL data types

SourceType (Java) TargetType (X/Open CLI SQL)

String VARCHAR (or LONGVARCHAR)

java.math.BigDecimal NUMERIC

Boolean BIT

Integer INTEGER

Long BIGINT

Float REAL

Double DOUBLE
19-16 Common Warehouse Metamodel, v1.1 March 2003

19
byte[] VARBINARY (or LONGVARBINARY)

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

Table 19-4 TypeMapping instances mapping Java data types to X/Open CLI SQL data types

SourceType (Java) TargetType (X/Open CLI SQL)
March 2003 OMG-CWM, v1.1: Type Mapping Examples 19-17

19
19-18 Common Warehouse Metamodel, v1.1 March 2003

References A
A.1 Normative

[MOF] - MOF, an adopted standard of the OMG. http://www.omg.org

[UML] - UML, an adopted standard of the OMG. http://www.omg.org

[XMI] - XMI, an adopted standard of the OMG. http://www.omg.org

[XML] - XML 1.0, an adopted standard of the W3C. http://www.w3c.org

A.2 Non-Normative

[CORBA] - CORBA/IIOP 2.3.1 Specification, 99-10-07

[CORBA IDL] - CORBA IDL, an adopted standard of the OMG.
http://www.omg.org/cgi-bin/doc?formal/99-10-17

[IDL-Java] - IDL to Java Mapping, an adopted standard of the OMG.
http://www.omg.org/cgi-bin/doc?formal/99-07-57

[Java] - http://java.sun.com/docs/books/jls/html/index.html

[Java-IDL] - Java to IDL Mapping, an adopted standard of the OMG.
http://www.omg.org/cgi-bin/doc?formal/99-07-63

[JDBC] - JDBC 2.0 API. http://java.sun.com/products/jdbc/

[OIM] - MDC Open Information Model, Version 1.0, 1999

[SQL] - ISO/IEC 9075-2:1999, Information technology - Database languages - SQL -
Part 2: Foundation (SQL/Foundation), 1999

[WFM] - Workflow Management Facility (OMG, bom/98-06-07)

[WfMC] - Workflow Management Coalition Standards. http://www.aiim.org/wfmc/
March 2003 OMG - CWM , v1.1 A-1

A

A-2 OMG - CWM , v1.1 March 2003

Glossary
This glossary defines the terms that are used to describe CWM. The glossary includes
concepts from the Meta Object Facility (MOF), the Unified Modeling Language
(UML), and XML Metadata Interchange (XMI) for completeness. The rationale for
including key MOF, UML and XMI terms is to be consistent in the definition and
usage of fundamental object modeling as well as meta modeling constructs. This
glossary builds on the UML 1.3, MOF 1.3, and XMI 1.1 glossaries.

Glossary entries are listed alphabetically. The new glossary entries have been marked
(CWM) and mainly consist of data warehousing related terminology.

Scope

This glossary includes terms from the following sources:

• Meta Object Facility 1.3 specification [MOF]

• UML 1.3 specification [UML]

• XMI 1.1 specification [XMI]

• Object Management Architecture object model [OMA]

• CORBA 2.0 [CORBA]

• W3C XML 1.0 specification [XML]

Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial uppercase
letter is used when a word is usually capitalized in standard practice. Acronyms are all
capitalized, unless they traditionally appear in all lowercase.
March 2003 OMG - CWM 1.1 Glossary-1

When brackets enclose one or more words in a multi-word term, it indicates that those
words are optional when referring to the term. For example, aggregate [class] may be
referred to as simply aggregate.

The following conventions are used in this glossary:

• Contrast: <term>. Refers to a term that has an opposed or substantively different
meaning.

• See: <term>. Refers to a related term that has a similar, but not synonymous
meaning.

• Synonym: <term>. Indicates that the term has the same meaning as another term,
which is referenced.

• Acronym: <term>. This indicates that the term is an acronym. The reader is usually
referred to the spelled-out term for the definition, unless the spelled-out term is
rarely used.

The glossary is extensively cross-referenced to assist in the location of terms that may
be found in multiple places.
Glossary-2 OMG - CWM 1.1 March 2003

Terms

abstract class A class that cannot be instantiated.

abstraction A group of essential characteristics of an entity that distinguish it from other
entities. An abstraction defines a boundary relative to the perspective of the viewer.

abstract language A system of expression for expressing information that is independent of any
particular human readable notation. Contrast: concrete language or notation. (MOF)

actual parameter Synonym: argument.

aggregate [class] A class that represents the "whole" in an aggregation (whole-part) relationship. See:
aggregation. (UML)

aggregation A special form of association that specifies a whole-part relationship between the
aggregate (whole) and a component part. See: composition

analysis A phase of the software development process whose primary purpose is to
formulate a model of the problem domain. Analysis focuses on what to do, design
focuses on how to do it.

analysis time Refers to something that occurs during an analysis phase of the software
development process.

annotation Synonym: note. (MOF)

any A CORBA primitive data type. A strongly typed “universal union” type that can
contain any value whose type is a CORBA data type. This data type is typically
used in CORBA IDL when it is not possible to choose an appropriate type at the
time the interface is defined. Use of CORBA anys entails dynamic type checking,
and extra overheads in value transmission. See strong typing, dynamic typing,
TypeCode. (CORBA)

architecture The organizational structure of a system. An architecture can be recursively
decomposed into parts that interact through interfaces, relationships that connect
parts, and constraints on the way that parts can be assembled.

argument A specific value corresponding to a parameter. Synonym: actual parameter

array 1. A CORBA constructed data type.
2. A collection (1) whose type fixes the number of elements. The ordering and
uniqueness properties of an array are indeterminate. (MOF)

artifact A piece of information that is used or produced by a software development process.
An artifact can be a model, a description, or a piece of software.

association 1. A semantic relationship two or more types describe a set of connections between
their respective instances. (UML)
2. An association (1) between classes. (MOF

Association A model element that defines an association (2) in an MOF metamodel. (MOF)

association end See: association role.
March 2003 OMG - CWM 1.1 Glossary-3

AssociationEnd A model element that defines an association end in an MOF metamodel. (MOF)

association class A modeling element that has both association and class properties. An association
class can be seen as an association that also has class, or as a class that also has
association properties. (UML)

association role The role that a type or class plays in an association. Synonym: association end

attribute 1. An attribute of an object is an identifiable association between the object and
some other entity or entities. (OMA)
2. An attribute is a named property of a type. (UML)
3. An attribute is a named property of a class. (MOF)

Attribute A model element that defines an attribute in an MOF metamodel. (MOF)

bag An unordered collection in which duplicate members are allowed. (MOF)

base type The base type of a collection (1) is the type (1) of its elements.

behavior The observable effects of an operation, including its results (MOF). Synonym:
behavior (OMA)

binary association An association between two classes. The degenerate case of an n-ary association
where “n” is two.

boolean 1. A UML enumeration type whose values are true and false. (UML)
2. A CORBA primitive data type whose values are true and false. (CORBA)

boolean expression An expression that evaluates to a boolean value

builtin type A type in a type system that is available as a predefined type in all instantiations of
the type system; for example, “short” and “string” are builtin types in CORBA
IDL. Contrast: primitive type.

business metadata Business metadata is used to help end users understand and utilize the data in the
warehouse, in business terms. It describes the business context and meaning of the
warehouse data. (CWM)

CDATA section A part of an XML Document in which any markup (e.g., tags) is not interpreted,
but is passed to the application as is. (W3C)

cardinality The number of elements in a collection. Contrast: multiplicity.

class 1. A type (3) that characterizes objects that share the same attributes, operations,
methods, relationships, and semantics. (UML)
2. An implementation that can be instantiated to create multiple objects with the
same behavior. Types classify objects according to a common interface; classes
classify objects according to a common implementation. (OMA)

Class A model element that defines a class (1) in an MOF metamodel. (MOF)

classifier 1. A category of UML model elements that roughly correspond to types in
programming languages. The category includes association classes, classes (1), data
types (2), interfaces, subsystems and use cases. (UML)
2. The category of MOF model elements analogous to classifier (1).
Glossary-4 OMG - CWM 1.1 March 2003

classifier level In MOF metamodels and UML models, this label indicates that the labelled feature
is common to all instances of its classifier. For example, a classifier level attribute
of a class is common to all instances of the class. Synonym: static. Contrast:
instance level. (UML, MOF)

class diagram A UML diagram that shows a collection of declarative (static) model elements,
such as classes, types, and their contents and relationships. (UML)

class proxy An MOF metaobject that carries the classifier level attributes and operations for an
instance of an MOF class. (MOF)

client A type, class, or component that requests a service from another type, class, or
component. (UML)

closure The transitive closure of some object under some relationship or relationships.

collection 1. A group of values or objects. The values in a collection are often referred to as
members or elements of the collection.
2. A collection (1) in which the members are instances of the same base type. The
type of a collection is defined by the base type and a multiplicity. See: array,
sequence, bag, set, list and unique list. (MOF)

compile time Indicates something that occurs during the compilation of a software module.

component An executable software module with an identity and a well-defined interface.

composite [class] A class that is related to one or more classes by a composition relationship. See:
composition.

composite aggregation Synonym: composition

composition A form of aggregation with strong ownership and coincident lifetime as part of the
whole. Parts with non-fixed multiplicity may be created after the composite itself,
but once created they live and die with it; that is, they share lifetimes. Such parts
can also be explicitly removed before the death of the composite. Composition may
be recursive. Synonym: composite aggregation. (UML)

concrete class A class that can be directly instantiated. Contrast: abstract class

concrete language Synonym: notation

constraint A semantic condition or restriction. Certain constraints are predefined, others may
be user defined. Constraints may be expressed in natural language or a formal
language. (UML, MOF)

Constraint A model element that defines a constraint on another element in an MOF
metamodel. (MOF)

container 1. An entity that exists to contain other entities. See containment
2. An entity’s container is the entity that contains it.

containment A form of aggregation that is similar to composition. The fundamental properties of
containment are:

• an entity can have at most one container at any given time, and

• an entity cannot directly or indirectly contain itself.
March 2003 OMG - CWM 1.1 Glossary-5

containment hierarchy A containment hierarchy is a tree-shaped graph of entities, consisting of a root
entity and all other entities that are directly or indirectly contained by it.

containment matrix A set of constraints on a containment relationship (expressible as a matrix of
boolean values) that determine what other kinds of entities a given kind of entity
can contain. For example, the MOF Model definition includes such a matrix to
specify which concrete subclasses of ModelElement can be contained by each
concrete subclass of Namespace. (MOF)

CORBA Acronym: The Common Object Request Broker Architecture

CORBA IDL Synonym: IDL

CWM Acronym: Common Warehouse Metamodel. The OMG specification for
representing and managing warehouse metadata. (CWM)

data 1. A representation of information.
2. Items representing facts, text, graphics, images, sound, and video. Data is the raw
material of a system supplied by data producers and is used by information
consumers to create information. (CWM)

data analysis tools Software that provides a logical view of data in a data warehouse. (CWM)

data element The most elementary unit of data that can be identified and described in a system.
(CWM)

data management Controlling, protecting, and facilitating access to data in order to provide
information consumers with timely access to the data they need. (CWM)

data transformation Creating information from data. This includes decoding operational data and
merging of data from multiple operational data sources. (CWM)

data type A type whose values have no identity. The data types in a type system are typically
into the primitive built-in types, and constructed types such as enumerations and so
on.

DataType A model element that defines a data type on another element in an MOF
metamodel. (MOF)

data warehouse An implementation of an informational database used to store sharable data sourced
from an operational database. (CWM)

dependency 1. A relationship between two entities in which a change to an aspect of one entity
affects the other (dependent) entity in some way.
2. A dependency (1) between two modeling elements such that a change to an
element changes the meaning of the dependent element. (UML, MOF)

derived attribute An pseudo-attribute whose value is not stored explicitly as part of an object, but is
calculated from another state when required. Derived attributes can also be updated.
(MOF)

derived association A pseudo-association whose component links are not stored explicitly, but are
calculated from another state when queried. Derived associations can also be
updated. (MOF)
Glossary-6 OMG - CWM 1.1 March 2003

derived element 1. A model element whose value can be computed from another element, but that is
shown for clarity or that is included for design purposes even though it adds no
semantic information. (UML)
2. An element in a metamodel that is derived from other metamodel elements, and
yet is visible in the interfaces produced by an object mapping. See derived attribute,
derived association. (MOF)

design The phase of the software development process whose primary purpose is to decide
how the system will be implemented. During the design phase, strategic and tactical
decisions are made to meet the required functional and quality requirements of a
system.

design time Refers to something that occurs during a design phase of the software development
process. Contrast: analysis time.

development process A set of partially ordered steps performed for a given purpose during software
development, such as constructing models or implementing models.

diagram A graphical presentation of a collection of model elements, most often rendered as
a connected graph of arcs (relationships) and vertices (other model elements).

document element See root element. (XML)

Document Type Definition See DTD (XML)

domain An area of knowledge or activity characterized by a set of concepts and
terminology understood by practitioners in that area.

dynamic typing A category of type safety that can only be enforced by dynamic type checking.
Type systems with dynamic typing are more expressive than those with static
typing only at the cost of run time overheads and potential type errors. Contrast:
static typing.

dynamic type checking A type checking activity that occurs at run time. Contrast: static type checking.

DTD A set of rules governing the element types that are allowed within an XML
document and rules specifying the allowed content and attributes of each element
type. The DTD also declares all the external entities referenced within the
document and the notations that can be used. (XML)

EBNF Acronym: Extended Backus-Naur Form. A widely used notation for expressing
grammars.

element 1. An atomic constituent of a model. Synonym: model element. (MOF, UML
2. A logical unit of information in an XML document. An XML element consists of
a start tag, an element content, and a matching end tag. (XML)

Element attributes The name-value pairs that can appear within the start tag of an element (2). (XML)

element content The elements or text that is contained between the start tag and end tag of an
element. (XML)

element type A particular type of element, such as a paragraph in a document or a class in an
XMI encoded metamodel. The element type is indicated by the name that occurs in
its start-tag and end-tag. (XML)
March 2003 OMG - CWM 1.1 Glossary-7

empty string A string with zero characters.

end tag A tag that marks the end of an element, such as </Model>. See start tag. (XML)

entity 1. A “thing.”
2. An item of interest in a system being modeled.

enumeration 1. A type that is defined as a finite list of named values. For example, Color =
{Red, Green, Blue}. (UML)
2. A kind of constructed data type in the CORBA type system. (CORBA)

export 1. To transmit a description of an object to an external entity. (OMA)
2. In the context of packages, to make an element visible outside of its enclosing
namespace. See: visibility, import (2). (UML)

expression A formula in some language that can be evaluated in some context to give a value.
For example, the expression (7 + 5 * 3) evaluates to 22.

extent The set of objects that belong to an MOF package instance, class proxy, or
association instance. (MOF)

feature A (meta-)model element that defines part of another (meta-)model element. For
example a UML class has attributes and operations as features. (UML, MOF)

formal language A language with a specified syntax and meaning.

formal parameter Synonym: parameter.

framework A micro-architecture that provides an extensible template for applications within a
specific domain. (UML)

frozen Synonym: immutable. (MOF)

grammar A formal specification of the syntax of a language.

generalizable element A model element that may participate in a generalization relationship. See:
generalization. (UML)

generalization A taxonomic relationship between a more general element and a more specific
element. The more specific element is fully consistent with the more general
element and contains additional information. An instance of the more specific
element may be used where the more general element is allowed. See:
specialization

generic interface Interfaces that are shared by all MOF metaobjects. See Reflective. Contrast:
specific interfaces. (MOF)

HTML Acronym: Hyper Text Markup Language. A language for associating visual markup
and hyperlinks with textual information that is one of the cornerstones of the World
Wide Web. HTML is a particular application of SGML. (W3C)

Identifier A value that denotes an instance with identity. See: name, object reference.

identity “Thingness.” An instance has identity if it can be distinguished from other instances
irrespective of its component values. For example, objects have identity but
numbers do not.
Glossary-8 OMG - CWM 1.1 March 2003

IDL 1. Acronym: Interface Definition Language. The OMG language for specifying
CORBA object interfaces. (OMA)
2. An interface specification in CORBA IDL (1) - colloquial.

IDL mapping 1. A mapping of the design expressed in a model onto CORBA IDL.
2. An IDL mapping (1) defined in the MOF standard that maps an MOF metamodel
into CORBA IDL for metaobjects that represent metadata for the metamodel.

immutable The property of an entity or value that it will never change. For example, the
number 42 is immutable. Synonym: frozen. Contrast: read only. (MOF)

implementation 1. An artifact that is the realization of an abstraction in more concrete terms. For
example, a class is an implementation of a type, a method is an implementation of
an operation. (UML)
2. A realization of a design object in engineering technology; for example, IDL or
program source code.
3. The process of producing an implementation (1)(2).

implementation inheritance The use of inheritance to produce one implementation artifact from another
implementation artifact. Implementation inheritance presupposes interface
inheritance.

import 1. To create an object based on a description of an object transmitted from an
external entity. See import (1). (OMA)
2. In the context of package, a dependency that shows the packages whose classes
may be referenced within a given package (including packages recursively
embedded within it). Contrast: export (2). (UML)
3. A relationship between packages in an MOF metamodel that makes the contents
of the imported package visible within the importing package. (MOF)

Import A model element that in an MOF metamodel specifies that one package imports
another package. (MOF)

information 1. The conjunction of data and structure. For example, facts.
2. Data that has been processed in such a way that it can increase the knowledge of
the person who receives it. (CWM)

information consumer A person or software service that uses data to create information. (CWM)

information set A domain-specific extension of OLAP that defines logical structures for raw data
collection from mainly human sources; for example, questionnaire, report form.
(CWM)

inheritance The mechanism by which more specific elements incorporate structure and
behavior of more general elements related by behavior. See generalization. (UML,
MOF)

instance 1. An instance of a type (1) is some value that satisfies the type predicate. (ODP)
2. An object created by instantiating a class. (OMA)
3. An entity to which a set of operations can be applied and which has a state that
stores the effects of the operation. (UML)
March 2003 OMG - CWM 1.1 Glossary-9

instance level In MOF metamodels and UML models, this label indicates that the labelled feature
is common to all instances of its classifier. For example, a classifier level attribute
of a class is common to all instances of the class. Contrast: classifier level. (UML,
MOF)

instantiate The act or process of making an instance of something. See: reify

interface A type (1) that describes the externally visible behavior common to a set of objects.
An interface includes the signatures of any operations common to all of the objects.

interface inheritance The inheritance of the interface of a more specific element. This does not imply
inheritance of behavior.

introspection A style of programming in which a program is able to examine parts of its own
definition. Contrast: reflection (1)

invariant A constraint on an entity or group of entities that must hold at all times.

knowledge The conjunction of information with some aspect of understanding.

language A means of expression. See abstract language, concrete language, natural
language.

link A semantic connection between a tuple of objects. An instance of an association.
See: association.

link role An instance of an association role. See: link, role.

list A collection in which the order of the contents is significant, and duplicates are
allowed. An ordered collection. See: Set, Array, Unique list.

lumpy cube A jagged multidimensional array. A cube whose dimensionality changes
dynamically.

markup Information that is intermingled with the text of an XML document to indicate its
logical and physical structure. (XML

member Synonym: feature

meta- A prefix that denotes a Describes relationship. For example, “metadata” describes
“data.” (MOF)

metadata 1. Data that describes other data. A constituent of a model. (MOF)
2. An inclusive term for metadata (1), meta-metadata and meta-meta-metadata.
(XMI)
3. Metadata is data about data. Examples of metadata include data element
descriptions, data type descriptions, attribute/property descriptions, range/domain
descriptions, and process/method descriptions. (CWM)

meta-level The level of “meta-”ness of a concept in a metadata framework.

meta-metadata Data that describes metadata. A constituent of a metamodel. (MOF)

meta-meta-metadata Data that describes meta-metadata. A constituent of a meta-metamodel. (MOF)

meta-metamodel A model that defines an abstract language for expressing metamodels. The
relationship between a meta-metamodel and a metamodel is analogous to the
relationship between a metamodel and a model. See: MOF Model, the. (MOF)
Glossary-10 OMG - CWM 1.1 March 2003

metamodel A model that defines an abstract language for expressing other models. An
instance of a meta-metamodel. See: MOF metamodel. (MOF)

metamodel elaboration The process of generating a repository type from a published metamodel. Can
includes the generation of interfaces and repository implementations for the
metamodel being elaborated. (MOF)

metaobject 1. An object that represents metadata (2). (MOF)
2. Often, an MOF metaobject. (MOF)

metaobject protocol A reflection (1) technology in which a program can alter the behavior of the
instances of a class by sending a message to its metaclass. This style of reflection is
not part of the MOF specification.

Meta Object Facility, the See: MOF, the

method The implementation of an operation. The algorithm or procedure that effects the
results of an operation. (UML)

model 1. A semantically closed abstraction of a system. See: system. (UML)
2. A semantically closed collection of metadata described by a single metamodel.
(MOF)

model aspect A dimension of modeling that emphasizes particular qualities of the metamodel.
For example, the structural model aspect emphasizes the structural qualities of the
metamodel. (MOF)

model element Synonym: element. (MOF, UML)

ModelElement The abstract superclass of all model elements in an MOF metamodel. (MOF)

modeling time Refers to something that occurs during a modeling phase of the software
development process. It includes analysis time and design time. Usage note: When
discussing object systems it is often important to distinguish between modeling-
time and run-time concerns.

module A software unit of storage and manipulation. Modules include source code
modules, binary code modules, and executable code modules. See: component.

MODL Acronym: Meta Object Definition Language. A textual language developed by
DSTC that can be used to define MOF metamodels. (MOF)

MOF, the 1. Acronym: Meta Object Facility. The OMG adopted standard for representing and
managing metadata. (MOF)
2. A metadata service that implements the MOF, the (1) specification. (MOF)

MOF-based model Synonym: MOF model.

MOF-based metamodel Synonym: MOF metamodel

MOF meta-metamodel Synonym: MOF Model, the

MOF metamodel A metamodel whose meta-metamodel is the MOF Model. (MOF)

MOF model A model (2) whose metamodel is an MOF metamodel. (MOF)

MOF Model, the The MOF Model is the standard meta-metamodel that is used to describe all MOF
metamodels. It is defined in the MOF specification. (MOF)
March 2003 OMG - CWM 1.1 Glossary-11

multiple inheritance A kind of inheritance in which a type may have more than one supertype.

multiplicity 1. A specification of the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within
composites, repetitions, and other purposes. Essentially a multiplicity is a (possibly
infinite) subset of the non-negative integers. (UML)
2. A specification of the allowable cardinalities of the values of an attribute,
parameter, or association end, along with its uniqueness and orderedness. In the
MOF, the allowable cardinalities of a multiplicity must form a contiguous subrange
of the non-negative integers. (MOF)

multi-valued A ModelElement with multiplicity said to be multi-valued when the ‘upper’ bound
of its multiplicity is greater than one. The term does not refer to the number of
values held by an attribute, parameter, etc., at any point in time, but rather to the
number of values that it can have at one time. Contrast: single-valued. (MOF)

n-ary association An association involving three or more classes. Each link of the association is an n-
tuple of values from the respective classes.

name 1. A human readable identifier. See: identifier.
2. The name (1) of a model element. (MOF, UML)

namespace 1. A mapping from names (1) to entities denoted by those names
2. An element of a metamodel whose primary purpose is to act as a namespace (1)
for element names. (MOF)

Namespace The abstract class in the MOF model that is the supertype of those classes that act
as namespaces (2). The Namespace class also provides element containment in the
MOF Model. (MOF)

natural language A language that has no specification. A language that has evolved for human to
human communication; for example, English, Sanskrit, American Sign Language.

nested package A package that is defined as contained by another package in an MOF metamodel.
An instances of a nested package can only exist in the context of an instance of its
enclosing package. (MOF)

node 1. A component in a network. A network consists of nodes connected by edges.
2. A run-time physical object that represents a computational resource, generally
having at least a memory and often processing capability as well. Run-time objects
and components may reside on nodes. (UML)

notation A system of human readable (textual or graphical) symbols and constructs for
expressing information.

note A comment attached to an element or a collection of elements. A note has no
semantics. (UML)

object An entity with a well-defined boundary and identity that encapsulates state and
behavior. State is represented by attributes and relationships, behavior is
represented by operations and methods. An object is an instance of a class. (MOF,
UML)

object reference An identifier for an object, typically a CORBA object. (OMA)
Glossary-12 OMG - CWM 1.1 March 2003

OCL Acronym: Object Constraint Language. A pure expression language that is a non-
normative part of the UML specification (ad/99-06-08) that is designed for
expressing constraints. (UML)

OLAP On-Line Analytical Processing. OLAP uses a multidimensional view of aggregate
data to provide quick access to strategic information for further analysis. OLAP and
data warehouses are complementary. A data warehouse stores and manages data.
OLAP transforms this data into strategic information. (CWM)

operation A service that can be requested from an object to effect behavior. An operation has
a signature, which may restrict the actual parameters that are possible. (MOF,
UML)

operation database The operational database contains detailed data used to run the day-to-day
operations of a business. It is the source of data for the data warehouse. (CWM)

ordered collection A collection that is ordered. See ordering. (MOF)

ordering A property of collections. A collection is ordered if the sequence in which the
elements appear needs to be preserved. (MOF)

package A mechanism for organizing the elements of a model or metamodel into groups.
Packages may be nested within other packages. (MOF, UML)

Package The class in the MOF Model that describes a package in a metamodel. (MOF)

package cluster A package that groups together a number of packages so that a set of instances of
those packages can form a single extent. A package composition mechanism.
(MOF)

package consolidation Synonym: package cluster. (MOF)

package importing See: import (3). A package composition mechanism. (MOF)

package inheritance A generalization relationship between packages. Analogous to interface inheritance
for classes. A package composition mechanism. (MOF)

package nesting Defining one package inside another. A package composition mechanism. See:
nested package. (MOF)

parameter 1. A place holder for a value that can be changed, passed, or returned by a
computation.
A parameter typically consists of a parameter name, a type, and attributes that
specify the information passing semantics for actual parameters. Synonym: formal
parameter. Contrast: actual parameter, argument.
2. A parameter (1) of an operation or exception. (CORBA, MOF)
3. A parameter (1) of an operation, message, or event. (UML)

postcondition A constraint that must be true at the completion of a computation.

precondition A constraint that must be true at the start of a computation.

primitive type A type from which other types may be constructed, but that is not constructed from
other types. See type system.

product The artifacts of development, such as models, code, documentation, work plans.
(UML)
March 2003 OMG - CWM 1.1 Glossary-13

profile A simplified subset of a language or a metamodel.

projection 1. A primitive operation in relational algebra that produces a relation by “slicing”
one or more columns from another relation.
2. The set of MOF class instances that is visible via the reference operations of a
class instance. For a class X, an n-ary association A(X,Y1, ... Yn-1) and an instance
x ∈ X then the expression

 PROJECT [Y1, ... Yn-1] (SELECT A WHERE X = x)

defines the set of links. In the binary case, the set is a set of instances. (MOF)
3. A mapping from a set to a subset. (UML)

property 1. A characteristic of an entity.
2. A property (1) that is represented as a mapping from an entity and a property
name to a value for the property. See tagged value. (UML)

pseudo-code An informal description of an algorithm in a language whose meaning is not fully
defined.

published (meta-)model A (meta-)model that has been frozen, and made available for use. For example, a
published metamodel can be used to instantiate repositories and can be safely
reused in other metamodels.

read only Describes an object or attribute for which no explicit update operations are
provided. (MOF)

recursive See recursive.

reference 1. An identifier.
2. A use of a model element. (UML, MOF)
3. A feature of a class that allows a client to navigate from one instance to another
via association links. See projection (2). (MOF)

Reference A model element that defines a reference in an MOF metamodel. (MOF)

reflection 1. A style of programming in which a program is able to alter its own execution
model.
A reflective program can create new classes and modify existing ones in its own
execution. Examples of reflection technology are metaobject protocols and callable
compilers.
2. In the MOF, reflection characterizes what happens when a client examines and
updates metadata without compile time knowledge of its metamodel. (MOF)

reflective Describes something that uses or supports reflection.

reflective interfaces Synonym: generic interface. (MOF)

Reflective The name of the CORBA IDL module containing the MOF’s reflective interfaces.
(MOF)

reify To produce an object representation of some information.
Glossary-14 OMG - CWM 1.1 March 2003

relation A collection of relationships (1) with the same roles. A relation is typically pictured
as a two dimensional table with the rows representing relationship tuples, and the
columns representing the roles and their values.

relationship 1. A semantic connection between 2 or more entities where each entity fills a
distinct role. A relationship is typically expressed as a tuple.
2. Colloquially, a relation.
3. A relationship (1) between elements of a model. Examples include associations
and generalizations (MOF, UML).

repository 1. A logical container for metadata. (MOF)
2. A distributed service that implements a repository (1). (MOF)

requirement A desired feature, property (1), or behavior of a system.

responsibility A contract or obligation of a type or class. (UML)

reuse The act or process of taking a concept or artifact defined in one context and using
it again in another context.

role 1. A position in a relationship or column in a relation.
2. The named specific behavior of an entity participating in a particular context. A
role may be static (e.g., an association role) or dynamic (e.g., a collaboration role).
(UML)

root element The single outermost element in an XML Document. Synonym: document element.
(XML)

run time The period of time during which a computer program executes.

scope 1. A region of a specification in which a given identifier or entity may be used.
2. An attribute of some features in the UML metamodel and MOF Model that
determines if the feature is instance level or classifier level. (MOF, UML)

sequence 1. A CORBA constructed data type. (CORBA)
2. A collection whose data type does not specify ordering or uniqueness semantics.
Differs from an array in that the number of elements is not fixed. (MOF)

set An unordered collection in which a given entity may appear at most once.

SGML Acronym: Standard Generalized Markup Language. An International Standard
(ISO 8879:1986) that describes a generalized markup scheme for representing the
logical structure of documents in a system-independent and platform independent
manner.

signature The name and parameters of an operation. Parameters may include an optional
returned parameter. (MOF)

single inheritance A form of generalization in which a type may have only one supertype.

single-valued A ModelElement with a multiplicity is called single-valued when its upper bound is
equal to one. The term single-valued does not pertain to the number of values held
by the corresponding feature of an instance at any point in time. For example, a
single-valued attribute, with a multiplicity lower bound of zero may have no value.
Contrast: multi-valued.
March 2003 OMG - CWM 1.1 Glossary-15

specialization The reverse of a generalization relationship.

specific interfaces An interface for metadata described by a given metamodel that is tailored to the
abstract syntax of that metamodel. Contrast: generic interface.

specification A precise description that can or should be used to produce things.

Standard Generalized Markup
Language

See: SGML

start tag A tag that marks the beginning of an element, such as <Model>. Also see end-tag.
(XMI)

state The state of an object is the group of values that constitute its properties at a given
point in time.

static In C++ or Java, a static attribute or a static member function is shared by all
instances of a class. Synonym: classifier level.

static type checking Contrast: dynamic type checking

static typing Contrast: dynamic typing

strong typing A characteristic of a computational system that type failures are guaranteed not to
occur.

stereotype A new type of modeling element that extends the semantics of the metamodel.
Stereotypes must be based on certain existing types or classes in the metamodel.
Stereotypes may extend the semantics, but not the structure of pre-existing types
and classes. Certain stereotypes are predefined in the UML, others may be user
defined. Stereotypes are one of three extendibility mechanisms in UML.

string A sequence of text characters. The details of string representation depends on
implementation, and may include character sets that support international characters
and graphics.

subclass In a generalization relationship the specialization of another class, the superclass.
See: generalization.

subtype In a generalization relationship the specialization of another type, the supertype.
See: generalization.

subsystem A part of a system that it is meaningful to describe in isolation.

superclass In a generalization relationship the generalization of another class, the subclass.
See: generalization.

supertype In a generalization relationship the generalization of another type, the subtype.
See: generalization.

supplier A type, class, or component that provides services that can be invoked by others.

system A collection of connected units that are organized to accomplish a specific purpose.
A system can be described by one or more models, possibly from different
viewpoints. (UML)
Glossary-16 OMG - CWM 1.1 March 2003

tagged value A representation of a property as a name-value pair. In a tagged value, the name is
referred to as the tag. Certain tags are predefined; others may be user defined.
(UML, MOF)

technical metadata Technical metadata, such as transformation mappings, is used to build and maintain
the data warehouse processes. It describes the data used by various tools to store,
manipulate, or move warehouse data. (CWM)

technology mapping A mapping that transforms a design expressed as a model or metamodel into
implementation artifacts; for example, CORBA IDL or program source code.

top-level package A package that is not nested in another package. (MOF)

transitive closure 1. The transitive closure of the value v0 in V under the mapping m : V → V is
defined by the following equation:

TC(v0, m) ≅ { v ∈ V : (v = v0) ∨ (∃ vi ∈ TC(v0, m) : m(vi) = v) }

In other words, the set of all V’s that are “reachable” from v0 via the mapping.
(Math)
2. The transitive closure of an initial object under an association is the set of objects
reachable from the initial object via extant links in the association. (MOF, XMI)

type 1. A predicate characterizing a collection of entities. (RM-ODP)
2. A predicate defined over values that can be used to restrict a possible parameter
or characterize a possible result. Synonym: type (1). (OMA)
3. A stereotype of class that is used to specify a domain of instances (objects)
together with the operations applicable to the objects. A type (3) may not contain
methods. (UML)

type checking A process that checks for programs or executions that could lead to type failure.

TypeCode A CORBA primitive data type. The TypeCode type is used in CORBA to pass
runtime descriptions of CORBA types. A CORBA any value contains a TypeCode
to describe the embedded value’s type. See any. (CORBA)

type error An event that is triggered when type checking detects a situation that could lead to
type failure.

type expression An expression that evaluates to a reference to one or more types. (UML)

type failure A type failure occurs when a computation erroneously uses a value thinking it has
one type when it has a different (incompatible) type. The consequences of a type
failure are often completely unpredictable.

type loophole A construct or artifice that allows a program to breach type safety.

type safety A desirable property of a program or computation that type failures are guaranteed
not to occur.

type system A language for expressing types (1). A type system is typically defined from a
small set of primitive type and type constructors. See metamodel.

typing Synonym: type checking.
March 2003 OMG - CWM 1.1 Glossary-17

unique list An ordered collection in which no entity may appear more than once as a collection
member; that is, a list in which duplicate elements are not allowed. (MOF)

uniqueness A property of collection types that determines whether a given element may appear
more than once in the collection. (MOF)

unordered collection A collection in which the order in which the collection members appear has no
significance. See ordering. (MOF)

UML, the Acronym: The Unified Modeling Language. (UML)

UUID Acronym: Universally Unique IDentifier. An identifier that is guaranteed to be
unique across all computer systems and across time, provided certain assumptions
hold.

valid XML document An XML Document that conforms to its DTD. (XML)

value 1. An element of a type domain. (UML)
2. An entity that can be a possible actual parameter in a request. (OMA)

view A projection (3) of a model, which is seen from a given perspective or vantage
point and omits entities that are not relevant to this perspective. (UML)

visibility An attribute of a model element whose value (public, protected, private, or
implementation) determines the extent to which the model element may be seen,
and hence used, outside of the namespace in which it is defined.

W3C, the Acronym: the World Wide Web Consortium. The standards body that takes the lead
in developing standards related to the Web; for example, HTML, HTTP, and XML.
(XML)

well formed XML document An XML document that consists of a single element containing properly nested
subelements. All entity references within the document must refer to entities that
have been declared in the DTD, or be one of a small set of default entities. (XML)

XLink An XML construct for representing links to external documents. See Xpointer.
(XML)

XMI Acronym: XML-based Metadata Interchange. The adopted OMG standard for a
metadata interchange format that is based on the W3C’s XML specification. (XMI)

XML Acronym: Extensible Markup Language. A profile of SGML. XML is the W3C
standard for representing structured information; for example, web metadata.
(XML)

XML Declaration A processing instruction at the start of an XML document, which asserts that the
document is an XML Document. (XML)

XML Document An XML document consists of an optional XML Declaration, followed by an
optional DTD, followed by a document element. (XML)

XPointer An XML construct for linking to an element, range of elements, or text region
within the same XML document. (XML-Link 6)
Glossary-18 OMG - CWM 1.1 March 2003

Index
A
abstract class. See class, abstract
abstract language. See language
abstraction B-2
actual parameter. See parameter
aggregate 1-4, B-2
aggregate class. See aggregate
aggregation B-2
analysis B-2
analysis time B-2
annotation B-2
any B-2
architecture B-3
argument B-3
array B-3
artifact B-3
Association 1-3, 1-4, B-3
association B-3

binary B-3
class. See class, association
derived B-6
end. See association end
n-ary B-11
role B-3

association end B-3
AssociationEnd 1-4, B-3
Attribute 1-4, B-3
attribute B-3

derived B-6
element. See element, attribute

Attributes 3-10

B
bag B-3
base type. See type, base
behavior B-3
binary association. See association, binary
boolean B-3
builtin type. See type, builtin

C
cardinality 1-4, B-4
CDATA section B-4
CDIF 1-7
Class 1-3, B-4
class B-4

abstract B-2
association class B-3
composite B-5
proxy B-4

class diagram B-4
class proxy. See class, proxy
classifier B-4
classifier level. See scope, classifier level
client B-4
closure. See transitive closure
collection B-4

ordered B-12
unordered B-17

compile time B-4
component B-4

composite aggregation. See composition.
composite. See class, composite
composition B-5
concrete class. See class, composite
concrete language. See language, concrete
Constraint 1-4, B-5
constraint B-5
Contained Elements 3-10
containment B-5

hierarchy B-5
matrix B-5

CORBA B-5
CORBA IDL 1-4
CORBA IDL. See IDL

D
data type. See type, data
DataType 1-4, B-6
dependency B-6
derived association. See association derived
derived attribute. See attribute, derived
derived element. See element, derived
design B-6
design time B-6
development process. See process, development
diagram B-6
document element. See element, root
Document Type Definition. See DTD
domain B-7
DTD B-7
dynamic type checking. See type checking, dynamic
dynamic typing. See typing, dynamic

E
EBNF B-7
element B-7

attribute B-7
content B-7
derived B-6
document. See element, root
root B-15
type B-7

element attribute. See element, attribute
element content. See element, content
element type. See element, type
elemet

generalizable B-8
end tag. See tag, end
entity B-7
enumeration B-7
export B-7
expression B-7
extent B-7

F
feature B-7
Figure 1-1 ix
Figure 12-1 9-3
Figure 12-2 9-4
Figure Marker 4-58
formal language. See language, formal
March 2003 OMG-Common Warehouse Metamodel, v1.1 Index-1

Index
formal parameter. See parameter, formal
framework B-8
frozen B-8

G
generalizable element. See element, generalizable
generalization B-8
generic interface. See interface, generic
grammar B-8

H
HTML B-8

I
identifier B-8
identity B-8
IDL B-8

mapping. See mapping, IDL
IDL mapping. See IDL, mapping
immutable B-8
implementation B-8
implementation inheritance. See inheritance, implementation
Import B-9
import B-9
information B-9
inheritance 1-4, B-9

implementation B-8
interface B-9
multiple B-11
single B-15

instance B-9
instance level. See scope, instance level
instantiate B-9
interface

generic B-8
inheritance. See inheritance,interface
reflective B-14
specific B-15

introspection B-9
invariant B-9

K
knowledge B-9

L
language B-10

abstract B-2
concrete B-5
formal B-8
natural 1-4, B-12

link B-9
role. See role, link

list B-9
unique B-17

M
mapping

IDL B-8
technology B-16

markup B-10
member B-10
meta- 1-3, B-10

Meta Object Facility, the. See MOF, the
metadata B-10

characteristics of 1-2
definition 1-2

meta-level B-10
number of 1-3

meta-metadata B-10
metamodel 1-2

meta-meta-metadata B-10
meta-metamodel B-10
metamodel B-10

elaboration B-10
published B-14

metamodel elaboration. See metamodel, elaboration
metaobject B-10

protocol B-10
metaobject protocol. See metaobject, protocol
method B-10
model B-10

aspect B-10
definition 1-2
element B-11
published B-14

ModelElement B-11
modeling time B-11
MODL B-11
module B-11
MOF 1-2

meta-metamodel B-11
metamodel B-11
model B-11

MOF model
definition 1-2

MOF Model, the B-11
MOF metamodel 1-3
UML 1-3

MOF, the B-11
MOF-based metamodel. See MOF metamodel
MOF-based model. See MOF model
multiple inheritance. See inheritance, multiple
multiplicity 1-4, B-11
multi-valued B-11

N
name B-11
name space B-12
Namespace B-12
namespace B-12
n-ary association. See association, n-ary
natural language. See language, natural
navigability 1-4
nested package. See package, nested
node B-12
notation B-12
note B-12

O
object B-12

reference. See object reference
Object Management Group vii

address of viii
Index-2 OMG-Common Warehouse Metamodel, v1.1 March 2003

Index
object reference B-12
OCL 1-4, B-12
Operation 1-4
operation B-12
Operations 3-12
ordered collection. See collection, ordered
ordering B-12

P
Package 1-3, 1-4, B-13

import 1-4
inheritance 1-4
nested 1-4

package B-12
cluster B-13
consolidation B-13
importing B-13
inheritance B-13
nested B-12
nesting B-13
typ-level B-16

Parameter 1-4
parameter B-13

actual B-2
formal B-8

postcondition B-13
precondition B-13
primitive type. See type, primitive
process

development B-6
product B-13
profile B-13
projection B-13
property B-13
pseudo-code B-13

R
read only B-14
Reference B-14
reference B-14

object. See object reference
References 3-11
reflection B-14
Reflective B-14
reflective B-14
reflective interfaces. See interface, reflective
reify B-14
relation B-14
relationship B-14
repository B-14
requirement B-14
responsibility B-14
reuse 1-4, B-14
role B-15

association. See association, role
link B-9

root element. See element, root
run time B-15

S
scope B-15

classifier level B-4
instance level B-9

scrub-wallaby B-14
sequence B-15
set B-15
SGML B-15
signature B-15
single inheritance. See inheritance, single
single-valued B-15
specialization B-15
specific interfaces. See interface, specific
specification B-15
start tag. See tag, start
state B-15
static type checking. See type checking, static
static typing. See typing, static
stereotype B-16
string B-16

empty B-7
strong typing. See typing, strong
subsystem B-16
subtype B-16
superclass B-16
supertype B-16
Supertypes 3-10
supplier B-16
syntax

abstract 1-2
system B-16

T
Table 10-2-1 7-4
tag

end B-7
start B-15

tagged value B-16
tatic B-15
technology mapping. See mapping, technology
top-level package. See package, top-level
transitive closure B-16
type B-17

base B-3
builtin B-4
checking. See type checking
data B-6
element. See element, type
error B-17
expression B-17
failure B-17
loophole B-17
primitive B-13
safety B-17
system B-17

type checkin gB-17
dynamic B-7
static B-15

TypeCode B-17
typeing

static B-16
Types 3-9
typing B-17
March 2003 OMG-Common Warehouse Metamodel, v1.1 Index-3

Index
dynamic B-7
static B-15

U
UML, the B-17
unique list. See list, unique
uniqueness 1-4, B-17
unordered collection. See collection, unordered
usage scenarios 2-1
UUID B-17

V
value B-17
view B-17
visibility B-18

W
W3C, the B-18

X
XLink B-18
XMI B-18

applicability of1-8, 1-9
design goals for1-8
document production rules 1-8
DTD production rules 1-7

XML B-18
XML Declaration B-18
XML Document B-18
XML document

valid B-17
well-formed B-18

XPointer B-18
Index-4 OMG-Common Warehouse Metamodel, v1.1 March 2003

Common Warehouse Metamodel (CWM), v1.1
Reference Sheet for Volume 1

The following OMG documents were used to produce this specification:

• ptc/02-01-04 (part 1) - report

• ptc/02-01/07 (part 1) - convenience document

• ad/02-05-01, 02-05-02, 02-05-03, 02-05-04 - supporting files
March 6, 2003 1

2 March 6, 2003

	Preface
	1. Design Rationale
	1.1 Design Overview
	1.2 CWM and the MOF
	1.2.1 An Overview of the MOF
	1.2.2 The Relationship between CWM and MOF

	1.3 CWM and UML
	1.3.1 An Overview of UML
	1.3.2 The Relationship between CWM and UML

	1.4 CWM and XMI
	1.4.1 An Overview of XMI
	1.4.2 The Relationship between CWM and XMI

	1.5 Design Rationale
	1.5.1 Reuse of UML Concepts
	1.5.2 Modularity
	1.5.3 Generic Model

	2. Usage Scenarios
	2.1 Overview
	2.2 Users of CWM
	2.3 Usage Scenarios
	2.3.1 ETL Scenario
	2.3.2 OLAP Scenario
	2.3.3 Questionnaire Scenario
	2.3.4 Warehouse Administration Scenario
	2.3.5 Tool Scenarios

	3. CWM
	3.1 Overview
	3.1.1 The Roles of UML in CWM

	3.2 Organization of the CWM
	3.2.1 Modeling Conventions

	3.3 How the CWM Metamodel is Described
	3.3.1 Classes
	3.3.2 Associations

	4. ObjectModel
	4.1 Overview
	4.2 Organization of the ObjectModel Package
	4.3 Core Metamodel
	4.3.1 Core Data Types
	4.3.2 Core Classes
	4.3.3 Core Associations
	4.3.4 OCL Representation of Core Constraints

	4.4 Behavioral Metamodel
	4.4.1 Behavioral Data Types
	4.4.2 Behavioral Classes
	4.4.3 Behavioral Associations
	4.4.4 OCL Representation of Behavioral Constraints

	4.5 Relationships Metamodel
	4.5.1 Relationships Data Types
	4.5.2 Relationships Classes
	4.5.3 Relationships Associations
	4.5.4 OCL Representation of Relationships Constraints

	4.6 Instance Metamodel
	4.6.1 Instance Classes
	4.6.2 Instance Associations
	4.6.3 OCL Representation of Instance Constraints

	5. Foundation
	5.1 Overview
	5.2 Organization of the Foundation
	5.3 Business Information Metamodel
	5.3.1 BusinessInformation Classes
	5.3.2 BusinessInformation Associations
	5.3.3 OCL Representation of BusinessInformation Constraints

	5.4 DataTypes Metamodel
	5.4.1 DataTypes Classes
	5.4.2 DataTypes Associations
	5.4.3 OCL Representation of DataTypes Constraints

	5.5 Expressions Metamodel
	5.5.1 Expressions Classes
	5.5.2 Expressions Associations
	5.5.3 OCL Representation of Expressions Constraints

	5.6 KeysIndexes Metamodel
	5.6.1 KeysIndexes Classes
	5.6.2 KeysIndexes Associations
	5.6.3 OCL Representation of KeysIndexes Constraints

	5.7 SoftwareDeployment Metamodel
	5.7.1 SoftwareDeployment Classes
	5.7.2 SoftwareDeployment Associations
	5.7.5 OCL Representation of SoftwareDeployment Constraints

	5.8 TypeMapping Metamodel
	5.8.1 TypeMapping Classes
	5.8.2 TypeMapping Associations
	5.8.3 OCL Representation of TypeMapping Constraints

	6. Relational
	6.1 Overview
	6.2 Organization of the Relational Package
	6.2.1 Inheritance
	6.2.2 Containers
	6.2.3 Tables, Columns, and Data Types
	6.2.4 Structured Types and Object Extensions
	6.2.5 Keys
	6.2.6 Index
	6.2.7 Triggers
	6.2.8 Procedures
	6.2.9 Instances

	6.3 Relational Classes
	6.3.1 Catalog
	6.3.2 CheckConstraint
	6.3.3 Column
	6.3.4 ColumnSet
	6.3.5 ColumnValue
	6.3.6 ForeignKey
	6.3.7 NamedColumnSet
	6.3.8 PrimaryKey
	6.3.9 Procedure
	6.3.10 QueryColumnSet
	6.3.11 Row
	6.3.12 RowSet
	6.3.13 Schema
	6.3.14 SQLDataType abstract
	6.3.15 SQLDistinctType
	6.3.16 SQLIndex
	6.3.17 SQLIndexColumn
	6.3.18 SQLParameter
	6.3.19 SQLSimpleType
	6.3.20 SQLStructuredType
	6.3.21 Table
	6.3.22 Trigger
	6.3.23 UniqueConstraint
	6.3.24 View

	6.4 Relational Associations
	6.4.1 ColumnOptionsColumnSet protected
	6.4.2 ColumnRefStructuredType protected
	6.4.3 ColumnSetOfStructuredType protected
	6.4.4 DistinctTypeHasSimpleType
	6.4.5 TableOwningTrigger protected
	6.4.6 TriggerUsingColumnSet protected

	6.5 OCL Representation of Relational Constraints

	7. Record
	7.1 Overview
	7.2 Organization of the Record Package
	7.2.1 Instances

	7.3 Record Classes
	7.3.1 Field
	7.3.2 FieldValue
	7.3.3 FixedOffsetField
	7.3.4 Group
	7.3.5 Record
	7.3.6 RecordDef
	7.3.7 RecordFile
	7.3.8 RecordSet

	7.4 Record Associations
	7.4.1 RecordToFile Protected

	7.5 OCL Representation of Record Constraints

	8. Multidimensional
	8.1 Overview
	8.2 Organization of the Multidimensional Package
	8.2.1 Dependencies
	8.2.2 Major Classes and Associations
	8.2.3 Inheritance from the ObjectModel

	8.3 Multidimensional Classes
	8.3.1 Dimension
	8.3.2 DimensionedObject
	8.3.3 Member
	8.3.4 MemberSet
	8.3.5 MemberValue
	8.3.6 Schema

	8.4 Multidimensional Associations
	8.4.1 CompositesReferenceComponents
	8.4.2 DimensionOwnsMemberSets
	8.4.3 DimensionsReferenceDimensionedObjects
	8.4.4 MDSchemaOwnsDimensionedObjects
	8.4.5 MDSchemaOwnsDimensions

	8.5 OCL Representation of Multidimensional Constraints

	9. XML
	9.1 Overview
	9.1.1 Semantics

	9.2 Organization of the XML Package
	9.3 XML Classes
	9.3.1 Attribute
	9.3.2 Content
	9.3.3 Document
	9.3.4 Element
	9.3.5 ElementContent
	9.3.6 ElementType
	9.3.7 ElementTypeReference
	9.3.8 MixedContent
	9.3.9 Schema
	9.3.10 Text

	9.4 XML Associations
	9.4.1 ContentElementTypeReference protected
	9.4.2 ElementTypeContent protected
	9.4.3 MixedContentText protected
	9.4.4 OwnedElementContent protected

	9.5 OCL Representation of XML Constraints

	10.Transformation
	10.1 Overview
	10.1.1 Semantics

	10.2 Organization of the Transformation Package
	10.3 Transformation Classes
	10.3.1 ClassifierFeatureMap
	10.3.2 ClassifierMap
	10.3.3 DataObjectSet
	10.3.4 FeatureMap
	10.3.5 PrecedenceConstraint
	10.3.6 StepPrecedence
	10.3.7 Transformation
	10.3.8 TransformationActivity
	10.3.9 TransformationMap
	10.3.10 TransformationStep
	10.3.11 TransformationTask
	10.3.12 TransformationTree
	10.3.13 TransformationUse

	10.4 Transformation Associations
	10.4.1 CFMapClassifier
	10.4.2 CFMapFeature
	10.4.3 ClassifierMapSource
	10.4.4 ClassifierMapTarget
	10.4.5 ClassifierMapToCFMap derived protected
	10.4.6 ClassifierMapToFeatureMap derived protected
	10.4.7 DataObjectSetElement
	10.4.8 FeatureMapSource
	10.4.9 FeatureMapTarget
	10.4.10 InverseTransformationTask protected
	10.4.11 TransformationSource protected
	10.4.12 TransformationStepTask
	10.4.13 TransformationTarget protected
	10.4.14 TransformationTaskElement

	10.5 OCL Representation of Transformation Constraints

	11.OLAP
	11.1 Overview
	11.2 Objectives of the OLAP Package
	11.3 Organization of the OLAP Package
	11.3.1 Dependencies
	11.3.2 Major Classes and Associations
	11.3.3 Dimension and Hierarchy
	11.3.4 Inheritance from the Object Model
	11.3.5 Deploying OLAP Models

	11.4 OLAP Classes
	11.4.1 CodedLevel
	11.4.2 ContentMap
	11.4.3 Cube
	11.4.4 CubeDeployment
	11.4.5 CubeDimensionAssociation
	11.4.6 CubeRegion
	11.4.7 DeploymentGroup
	11.4.8 Dimension
	11.4.9 DimensionDeployment
	11.4.10 Hierarchy abstract
	11.4.11 HierarchyLevelAssociation
	11.4.12 HierarchyMemberSelectionGroup
	11.4.13 Level
	11.4.14 LevelBasedHierarchy
	11.4.15 Measure
	11.4.16 MemberSelection
	11.4.17 MemberSelectionGroup
	11.4.18 Schema
	11.4.19 StructureMap
	11.4.20 ValueBasedHierarchy

	11.5 OLAP Associations
	11.5.1 CubeDeploymentOwnsContentMaps
	11.5.2 CubeDimensionAssociationsReferenceCalcHierarchy
	11.5.3 CubeDimensionAssociationsReferenceDimension
	11.5.4 CubeOwnsCubeDimensionAssociations
	11.5.5 CubeOwnsCubeRegions
	11.5.6 CubeRegionOwnsCubeDeployments
	11.5.7 CubeRegionOwnsMemberSelectionGroups
	11.5.8 DeploymentGroupReferencesCubeDeployments
	11.5.9 DeploymentGroupReferencesDimensionDeployments
	11.5.10 DimensionDeploymentHasImmediateParent
	11.5.11 DimensionDeploymentHasListOfValues
	11.5.12 DimensionDeploymentOwnsStructureMaps
	11.5.13 DimensionHasDefaultHierarchy
	11.5.14 DimensionOwnsHierarchies
	11.5.15 DimensionOwnsMemberSelections
	11.5.16 HierarchyLevelAssociationOwnsDimensionDeployments
	11.5.17 HierarchyLevelAssociationsReferenceLevel
	11.5.18 LevelBasedHierarchyOwnsHierarchyLevelAssociations
	11.5.19 HierarchyMemberSelectionGroupReferencesHierarchy
	11.5.20 MemberSelectionGroupReferencesMemberSelections
	11.5.21 SchemaOwnsCubes
	11.5.22 SchemaOwnsDeploymentGroups
	11.5.23 SchemaOwnsDimensions
	11.5.24 ValueBasedHierarchyOwnsDimensionDeployments

	11.6 OCL Representation of OLAP Constraints

	12.Data Mining
	12.1 Overview
	12.2 Organization of the Data Mining Metamodel
	12.2.1 Dependencies
	12.2.2 Major Classes and Associations
	12.2.3 Inheritance from the ObjectModel

	12.3 Data Mining Classes
	12.3.1 ApplyContentItem Abstract
	12.3.2 ApplyOutputItem Abstract
	12.3.3 ApplyProbabilityItem
	12.3.4 ApplyRuleIdItem
	12.3.5 ApplyScoreItem
	12.3.6 ApplySourceItem
	12.3.7 ApplyTargetValueItem
	12.3.8 ApproximationFunctionSettings
	12.3.9 ApproximationTestResult
	12.3.10 ApproximationTestTask
	12.3.11 AssociationRulesFunctionSettings
	12.3.12 AttributeAssignment Abstract
	12.3.13 AttributeAssignmentSet
	12.3.14 AttributeImportanceSettings
	12.3.15 AttributeUsage
	12.3.16 AttributeUsageSet
	12.3.17 AuxiliaryObject
	12.3.18 Catalog
	12.3.19 CatagoricalAttributeProperties
	12.3.20 Category
	12.3.21 CategoryMap
	12.3.22 CategoryMapObject
	12.3.23 CategoryMapObjectEntry
	12.3.24 CategoryMapTable
	12.3.25 CategoryMatrix
	12.3.26 CategoryMatrixEntry
	12.3.27 CategoryMatrixObject
	12.3.28 CategoryMatrixTable
	12.3.29 CategoryTaxonomy
	12.3.30 ClassificationAttributeUsage
	12.3.31 ClassificationFunctionSettings
	12.3.32 ClassificationTestResult
	12.3.33 ClassificationTestTask
	12.3.34 ClusteringAttributeUsage
	12.3.35 ClusteringFunctionSettings
	12.3.36 DirectAttributeAssignment
	12.3.37 FrequentItemSetFunctionSettings
	12.3.38 LiftAnalysis
	12.3.39 LiftAnalysisPoint
	12.3.40 LogicalAttribute
	12.3.41 LogicalData
	12.3.42 MiningAlgorithmSettings Abstract
	12.3.43 MiningApplyOutput
	12.3.44 MiningApplyTask
	12.3.45 MiningAttribute Abstract
	12.3.46 MiningBuildTask
	12.3.47 MiningFunctionSettings Abstract
	12.3.48 MiningModel
	12.3.49 MiningResult
	12.3.50 MiningTask Abstract
	12.3.51 MiningTestResult
	12.3.52 MiningTestTask
	12.3.53 MiningTransformation
	12.3.54 ModelSignature
	12.3.55 NumericalAttributeProperties
	12.3.56 OrdinalAttributeProperties
	12.3.57 PhysicalData
	12.3.58 PivotAttributeAssignment
	12.3.59 PriorProbabilities
	12.3.60 PriorProbabilitiesEntry
	12.3.61 ReversePivotAttributeAssignment
	12.3.62 Schema
	12.3.63 SequenceFunctionSettings
	12.3.64 SetAttributeAssignment
	12.3.65 SignatureAttribute
	12.3.66 SupervisedFunctionSettings

	12.4 Data Mining Associations
	12.4.1 ApplyOutputHasContentItems
	12.4.2 ApplyTaskRefOutputAssignment
	12.4.3 ApplyTaskRefOutputSpec
	12.4.4 ApproximationTestTaskHasResult
	12.4.5 AssignmentRefLogicalAttribute
	12.4.6 AssignmentRefOrderIdAttribute
	12.4.7 AssignmentSetHasAssignment
	12.4.8 AuxObjectHasAttrAssignmentSet
	12.4.9 BuildTaskProducesModel
	12.4.10 BuildTaskRefInputAssignment
	12.4.11 BuildTaskRefSettings
	12.4.12 BuildTaskRefValidationAssignment
	12.4.13 BuildTaskRefValidationData
	12.4.14 CatalogHasSchema
	12.4.15 CategoricalPropertiesHasCategories
	12.4.16 CategoricalPropertiesRefTaxonomy
	12.4.17 CategoryMapObjectHasEntry
	12.4.18 CategoryMapRefClass
	12.4.19 ClassificationAttrUsageHasPriors
	12.4.20 ClassificationAttrUsageRefCategory
	12.4.21 ClassificationSettingsRefCostMatrix
	12.4.22 ClassificationTestTaskHasResult
	12.4.23 ClusteringAttrUsageRefComparisonMatrix
	12.4.24 DirectAssignmentRefAttribute
	12.4.25 LiftHasAnalysisPoint
	12.4.26 LiftRefPositiveTargetCategory
	12.4.27 LogicalAttrHasCategoricalProperties
	12.4.28 LogicalAttrHasNumericalProperties
	12.4.29 MapEntryRefChildCategory
	12.4.30 MapEntryRefParentCategory
	12.4.31 MapTableRefChildAttribute
	12.4.32 MapTableRefGraphIdAttribute
	12.4.33 MapTableRefParentAttribute
	12.4.34 MatrixEntryRefColumnIndex
	12.4.35 MatrixEntryRefRowIndex
	12.4.36 MatrixObjectHasEntry
	12.4.37 MatrixRefIndexLabels
	12.4.38 MatrixTableRefColumnAttr
	12.4.39 MatrixTableRefRowAttr
	12.4.40 MatrixTableRefSource
	12.4.41 MatrixTableRefValueAttr
	12.4.42 ModelHasSignature
	12.4.43 ModelRefKeyAttribute
	12.4.44 ModelRefLocation
	12.4.45 ModelRefSettings
	12.4.46 PhysicalDataRefSource
	12.4.47 PivotRefNameAttribute
	12.4.48 PivotRefSetIdAttribute
	12.4.49 PivotRefValueAttribute
	12.4.50 PriorProbabilitiesHasEntries
	12.4.51 PriorRefCategory
	12.4.52 ReversePivotRefAttribute
	12.4.53 SchemaHasAuxObjects
	12.4.54 SchemaHasCategoryMatrix
	12.4.55 SchemaHasCategoryTaxonomy
	12.4.56 SchemaHasLogicalData
	12.4.57 SchemaHasFunctionSettings
	12.4.58 SchemaHasMiningModel
	12.4.59 SchemaHasMiningResult
	12.4.60 SchemaHasMiningTask
	12.4.61 SetAssignmentRefMemberAttr
	12.4.62 SetAssignmentRefSetIdAttr
	12.4.63 SettingsHasAttributeUsageSet
	12.4.64 SettingsRefAlgorithmSettings
	12.4.65 SettingsRefExcludedCategories
	12.4.66 SettingsRefLogicalData
	12.4.67 TargetValueItemRefCategory
	12.4.68 TaskRefAttrAssignmentSet
	12.4.69 TaskRefInputModel
	12.4.70 TaskRefPhysicalData
	12.4.71 TaxonomyHasCategoryMap
	12.4.72 TaxonomyRefRootCategory
	12.4.73 TestResultHasConfusionMatrix
	12.4.74 TestResultHasLiftAnalysis
	12.4.75 TestTaskRefPositiveTarget
	12.4.76 TransformationRefMiningTask
	12.4.77 UsageRefAttribute

	13.Information Visualization
	13.1 Overview
	13.2 Organization of the Information Visualization Metamodel
	13.2.1 Dependencies
	13.2.2 Major Classes and Associations

	13.3 Inheritance from the Object Model
	13.4 Information Visualization Classes
	13.4.1 RenderedObject
	13.4.2 RenderedObjectSet
	13.4.3 Rendering
	13.4.4 XSLRendering

	13.5 Information Visualization Associations
	13.5.1 CompositesReferenceComponents
	13.5.2 NeighborsReferenceNeighbors
	13.5.3 RenderedObjectSetOwnsRenderedObjects
	13.5.4 RenderedObjectSetOwnsRenderings
	13.5.5 RenderedObjectsReferenceDefaultRendering
	13.5.6 RenderedObjectsReferenceModelElement
	13.5.7 RenderedObjectsReferenceRenderings

	13.6 OCL Representation of Information Visualization Constraints

	14.Business Nomenclature
	14.1 Overview
	14.1.1 Semantics

	14.2 Organization of the Business Nomenclature Package
	14.3 Business Nomenclature Classes
	14.3.1 BusinessDomain
	14.3.2 Concept
	14.3.3 Glossary
	14.3.4 Nomenclature
	14.3.5 Taxonomy
	14.3.6 Term
	14.3.7 VocabularyElement

	14.4 Business Nomenclature Associations
	14.4.1 GlossaryToTaxonomy
	14.4.2 NomenclatureHierarchy
	14.4.3 RelatedConcepts derived
	14.4.4 RelatedTerms derived
	14.4.5 RelatedVocabularyElements
	14.4.6 SynonymToPreferredTerm
	14.4.7 TermToConcept
	14.4.8 VocabularyElementToModelElement
	14.4.9 WiderToNarrowerTerm

	14.5 OCL Representation of Business Nomenclature Constraints

	15.Warehouse Process
	15.1 Overview
	15.2 Organization of the Warehouse Process Package
	15.3 Warehouse Process Classes
	15.3.1 CalendarDate
	15.3.2 CascadeEvent
	15.3.3 CustomCalendar
	15.3.4 CustomCalendarEvent
	15.3.5 ExternalEvent
	15.3.6 InternalEvent
	15.3.7 IntervalEvent
	15.3.8 PointInTimeEvent
	15.3.9 ProcessPackage
	15.3.10 RecurringPointInTimeEvent
	15.3.11 RetryEvent
	15.3.12 ScheduleEvent abstract
	15.3.13 WarehouseActivity
	15.3.14 WarehouseEvent abstract
	15.3.15 WarehouseProcess abstract
	15.3.16 WarehouseStep

	15.4 Warehouse Process Associations
	15.4.1 Event protected
	15.4.2 EventUsesCustomCalendar protected
	15.4.3 TriggeringProcess protected
	15.4.4 WarehouseActivityRunsTransformationActivity
	15.4.5 WarehouseActivityStep protected
	15.4.6 WarehouseStepRunsTransformationStep

	15.5 OCL Representation of Warehouse Process Constraints

	16.Warehouse Operation
	16.1 Overview
	16.1.1 Transformation Executions
	16.1.2 Measurements
	16.1.3 Change Requests

	16.2 Organization of the Warehouse Operation Package
	16.3 Warehouse Operation Classes
	16.3.1 ActivityExecution
	16.3.2 ChangeRequest
	16.3.3 Measurement
	16.3.4 StepExecution
	16.3.5 TransformationExecution

	16.4 Warehouse Operation Associations
	16.4.1 ActivityStepExecutions protected
	16.4.2 ModelElementChangeRequest
	16.4.3 ModelElementMeasurement
	16.4.4 StepExecutionCallAction
	16.4.5 TransformationActivityExecutions
	16.4.6 TransformationStepExecutions

	16.5 OCL Representation of Warehouse Operation Constraints

	17.Compatibility with Other Standards
	17.1 Introduction
	17.2 Background: Components of the OMG Metamodeling Architecture
	17.3 CWM and MDC Meta Data Interchange Specification
	17.3.1 Overview
	17.3.2 Comparison with CWM

	17.4 CWM and MDC Open Information Model
	17.4.1 Overview
	17.4.2 Comparison with CWM: Database Schema
	17.4.3 Comparison with CWM: Data Transformations
	17.4.4 Comparison with CWM: OLAP Schema
	17.4.5 Comparison with CWM: Record-Oriented Database Schema

	17.5 CWM and OLAP Council/MDAPI
	17.5.1 Overview
	17.5.2 Comparison with CWM

	18.Conformance Points
	18.1 Introduction
	18.2 Required Compliance
	18.2.1 CWM Metamodel Compliance
	18.2.2 CWM XML Compliance
	18.2.3 CWM IDL Compliance
	18.2.4 CWM DTD Compliance

	18.3 Optional Compliance Points

	19.CWM Data Types
	19.1 Overview
	19.2 Organization of the CWM Data Types
	19.3 CORBA IDL Data Types
	19.3.1 Overview
	19.3.2 Organization of the CORBA IDL Data Types
	19.3.3 CORBA IDL Data Type Instances
	19.3.4 CORBA IDL Data Types Classes
	19.3.5 CORBAL IDL Data Types Associations

	19.4 J ava Data Types
	19.5 SQL-99 Data Types
	19.6 Type Mapping Examples

	A. References
	Glossary
	Index
	Reference Sheet

