
Probability Estimation Trees 
(PETs)

• Error rate does not consider the probability of 
the prediction, so in PET 

• Instead of predicting a class, the leaves give a 
probability

• Very useful when we do not want just the class, 
but examples most likely to belong to a class 
(e.g. direct marketing)

• No additional effort in learning PET compared to 
DTs

• Requires different evaluation methods



Continuous attributes

• a simple trick: sort examples on the values 
of the attribute considered; choose the 
midpoint between ea two consecutive 
values. For m values, there are m-1 
possible splits, but they can be examined 
linearly

• It’s a kind of discretization (see later in 
class)

• cost?



Geometric interpretation of decision trees: 
axis-parallel area
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Pruning

• Overfitting: getting away from training data
• Predictive performance (on data not seen

during training)
• Pruning: discarding 1 or more subtrees

and replacing them with leaves
• pruning causes the tree to misclassify 

some training cases. But it may improve 
performance on validation data



Error-based pruning: suppose error rate can be 
predicted. Then moving bottom-up consider 
replacing each subtree with a leaf, or its most 
frequently used branch. Do it if the replacement 
decreases the error rate

One practical way to measure the post-pruning 
error rate is to measure the error on a hold-out 
set (eg 10% of data). This hold-out set would be 
used for pruning purposes only 



Weka’s way to estimate the error rate: 
• measure the actual error on the training set; 
• treat it as a random variable; 
• estimate standard deviation of this variable assuming a 

binomial distribution; 
• take the lower bound for a given confidence level: eg for 

a 95% confidence, the error rate is observed error –
1.96* standard deviation)



From trees to rules:
traversing a decision tree from root to leaf 

gives a rule, with the path conditions as 
the antecedent and the leaf as the class

rules can then be simplified by removing 
conditions that do not contribute to 
discriminate the nominated class from 
other classes

rulesets for a whole class are simplified by 
removing rules that do not contribute to 
the accuracy of the whole set



b > b1b > b1

a > a1a > a1

a < a2a < a2
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Decision rules can be obtained from decision treesDecision rules can be obtained from decision trees

(1)(1)if b>b1 then class is if b>b1 then class is --

(2)(2)if b <= b1 and a > a1 then if b <= b1 and a > a1 then 
class is +class is +

(3)(3)if b <= b1 and a < a2 then class is +if b <= b1 and a < a2 then class is +

(4)(4)if b <= b1 and a2 <= a <= a1 then if b <= b1 and a2 <= a <= a1 then 
class is class is --

notice the inference involved in rule (3)notice the inference involved in rule (3)



Empirical evaluation of accuracy 
in classification tasks

• The confusion matrix
• Accuracy 





Computing accuracy: in practice 
– partition  the set E  of all labeled examples 

(examples with their classification labels) into 
a training set X1 and a testing (validation) set 
X2. Normally, X1 and X2 are disjoint

– use the training set for learning, obtain a 
hypothesis H, set acc := 0

– for ea. element t of the testing set,
apply H on t; if H(t) = label(t) then acc := 

acc+1
– acc := acc/|testing set| 



Testing - cont’d
• Given a dataset, how do we split it between the training 

set and the test set?
• cross-validation (n-fold)

– partition E into n groups
– choose n-1 groups from n, perform learning on their 

union
– repeat the choice n times
– average the n results
– usually, n = 3, 5, 10

• another approach - learn on all but one example, test 
that example. 
“Leave One Out”



Role of examples in learning

• Positive examples are used to generalize a 
hypothesis (or search for a more general 
hypothesis)

• Negative examples are used to specialize the 
hypothesis we have learned from the positive 
ones (or search for a more specific one)

• The search is constrained by the language in 
which we express the hypothesis
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•And the search criterion is to minimize the 
empirical risk

Where f is the true hypothesis, h is the learned 
(selected) hypothesis
The distribution DX is important! (eg learning to 
recognize taxis in NY vs Ottawa)



The language of the hypotheses 
must be adequate for the concept 

we learn:
• A concept is a partition of the space of all 

instances (consider the number of 
concepts for, e.g. 800 examples)



• The shape (i.e. language) of the concept 
determines how much we generalize:



• If the language is not adequate, l will be a 
very poor approximation of h:

true concept



Bias-variance compromise

• Bias: the difference between h and f due to 
the language of H and F

• Variance (estimation error): due to inability 
of finding h*, the best h in H

H

F

{hS}S

h h*

variance

bias

total error

f

fnoise



Example of bias and variance

• Learning the sex of a person
• Particularly simple language bias: a 

“hyperplane”. For a single attribute, this is 
just one number (point on a line)

P(woman|height) P(man|height)

t



• Bias is very bad: relatively poor choice of H 
leads to poor discrimination between the two 
classes

• Variance is good: for different samples, i.i.d. 
(independently and identically distributed) 
samples will result is same shape gaussians

• Imagine instead that we have 50 physical 
attributes of people. Bias is low: there may exist 
a perfectly discriminant function in this highly 
dimensional space. But variance is bad: for a 
limited sample we may not find the best 
hyperplane

Example of bias and variance



Bias-variance compromise

Richness of H

total error

error

variance

bias

minimum of
the total error



Approximate learning

X

h1

h2

suppose h1 is true and h2 
is not. But if h1⊕h2 is still 
small, h2 is considered a 
good approximation of h1

let P be an unchanging probability distribution over X.  Then

error(h1, h2) = ∑u ∈ h1⊕h2 P(u)



Bias

There are 2|U| possible concepts over U -
why?

Bias = means to restrict that space
1. restricted hypothesis bias = syntactic 

restriction (e.g. a concept description is a 
Boolean conjunction)

2. preference bias - e.g. prefer the simples 
hypothesis (Occam’s razor) 



PAC learning

• Assumptions: m training examples, labeled 
according to their mbshp in a concept C, and 
drawn independently from U according to some 
unknown distr. P(u). Goal: find a hypo. h 
∈ Η consistent with all m training examples. 
Assuming such h can be found, what is the 
probability that it has error greater than ε



• let Hbad = {h1, …hl} be the set of hypo that have 
error > ε

• If the probability that, after m examples some 
element of Hbad is consistent with all training 
examples, is SMALL, then with high probability 
all the remaining hypotheses consistent with 
training examples have error < ε

• consequently, any consistent hypo is probably 
approximately correct



PAC learning cont’d

• consider h1 ∈ Hbad. what is the probability that h1is consistent 
with 1 t.e.? For that the t.e. has to be outside the error area.
The probability of hitting such a t.e. is no more than 1- ε

• with all m t.es: (1- ε)m

• what is the prob. that after m t.e. some elem of Hbadhas not 
been eliminated? It is ≤ |Hbad| (1- ε)m ≤ 
|H| (1- ε)m ≤ δ

• resolving for m, we get m ≥ 1/ ε (ln1/ δ + ln|H|)



• so we have the following 
• Theorem: let H be a set of hypo over U, S be a set 

of m te drawn independently according to P(u). If 
h is consistent with all te in S and

m ≥ 1/ ε (ln1/ δ + ln|H|)
then the probability that h has error > ε is  <  δ.
• observe that we can control  δ and ε by changing 

the number of examples!
• example: consider that the hypo language 

consists of conjunctions of n Boolean variables 
(attributes). Then

m ≥ 1/ ε (ln1/ δ + n*ln|3|)



PAC cont’d

• In general, to show PAC learnability, we 
must show that
– polynomial number of examples is sufficient to 

PAC learn
– Show an algorithm that uses poly. time per 

example



PAC - cont’d
Some useful classes:
• k-term-DNF: k term disjunction where ea. term is a 

conjunction of Bool. vars of unlimited size; H is poly. size 
but learning is non-poly: -

• k-DNF: disjunction of any number of conjunctive terms, 
ea conjunct limited to k vars – but + with Oracle

• k-CNF: conjunction of any number of clauses (disj. 
terms), ea clause has at most k variables + surprising as 
k-CNF ⊇ k-term-DNF

• DNF: any Bool. expression in disjunctive normal form -
//



Sizes of hypo spaces:

k-term-DNF: 2O(kn)

k-DNF: 2O(n**k)

k-CNF: 2O(n**k)

DNF: 22**n

The first three are potentially PAC-
learnable in poly time (= number of 
examples) if we have a poly-time per 
example procedure



• but how do we move into  infinite hypo spaces? 
There is a way of characterizing expressive 
power of a hypo space. 

• a set of hypo completely fits an example set E if 
for every possible way of labeling elements of E 
pos and neg there exists a hypo H that will 
produce that labeling. The size of the largest set 
of examples that H can completely fit is call the 
VC (Vapnik-Chervonenkis) dimension of H.

• for example, suppose we’re ‘learning’ single 
closed intervals over the real line (ie hypo have 
form [a,b]). 

• suppose E = {3, 4}. How many ways of labeling 
elems of E as pos or neg? Is there an interval 
that will produce that labeling? 



• Hint (closed intervals on the real line) can 
completely fit the set E.

• but consider E’={2,3,4}. So what is the VC 
dimension of Hint ?

• linear separability of sets of points = VC 
dimension of simple neural networks

Theorem (Blumer et al. 89): a space of hypo H is 
PAC learnable iff it has finite VC dimension. Any 
PAC learning algo for H must examine 

O(1/ε[ln 1/δ + VC(H)] examples).



• Boolean conjunction, k-DNF, and k-
CNF are poly learnable, but k-term-
DNF is NP-hard! Even though it is a 
proper subset of k-CNF.

• implications for the change of 
representation

• same true for k-3NNs, ie three layer 
NNs with exactly k hidden units. 
There’s a conjecture that k’-3NN 
learnability where k’ < p(k), p some 
polynomial, could be true.



• the PAC theorem says that we may learn an 
expo. # of hypotheses from a poly # of 
examples!This is sample complexity. But there is 
also computational complexity, ie worst-case 
computation time req’d to producre a hypo from 
a sample of given size.

So, we say (Valiant) that a hypo. space is poly-
learnable iff

• only a poly # of examples is req’d, as a function 
of n, ε and δ 

• a consistent hypo in H can be found in poly time 
in n, ε and δ 



connection betw. VC dimension and 
the PAC theorem:

suppose H is finite, VC(H) = d. There 
is a set of d instances I that H 
completely fits. That requires 2**d 
distinct hypotheses,                  so 
|H|≥ 2∗∗d. 

so VC(H) ≤ log(H)



A lattice of learning models

PAC(NO, PAC(NO, --,, ?)?)

PAC+MQ(NO, ?, YES)PAC+MQ(NO, ?, YES)

UNIFORM+MQ(NO, YES, YES)UNIFORM+MQ(NO, YES, YES)

UNIFORM(NO, ?, ?)UNIFORM(NO, ?, ?)

NNNN DNFDNF DTDT

Cryptographic  toolsCryptographic  tools


